Department of Electrical Engineering Assignment

Date: 25/06/2020

Course Details

Course Title: Instructor:	Signals & Systems	Module: Total Marks:	04 50
	Student Details		
Name:		Student ID:	

Q1.	(a)	Show with a help of an equation that the differentiation of a function in time domain	Marks
		results in the multiplication by jw in frequency domain.	06+08
			CLO 3
	(b)	$ lf \qquad x[n] = 2\delta[n] - 4\delta[n-2] + 2\delta[n-3]$	
		$h[n] = 3\delta[n] + \delta[n-1] + 2\delta[n-2]$	
		Produce Y(z) and y[n]	
Q2.		$f(x) = \begin{cases} -\pi/2 & -\pi \le x \le 0 \\ \pi/2 & 0 \le x \le \pi \end{cases}$	Marks
		$\int_{0}^{1(x)} - \int_{0}^{1} \pi/2 \qquad 0 \le x \le \pi$	10
		Retrieve the Fourier series for the given function.	CLO 3
Q3.		If $X(z) = \frac{2z^2 + 2z}{(z^2 + 2z - 3)}$	Marks
		$/(\mathbf{z}^2+2\mathbf{z}-3)$	10
		Datuinus vial voins invansa 7 tuonafanna maathad	CLO 3
		Retrieve x[n] using inverse Z-transform method.	
Q4.		Express the transfer function using the given data.	Marks
		$A = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} C = \begin{bmatrix} 1 & 2 \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix}$	09
			CLO 3
Q5.		Apply Fourier transform on the signal, $x(t) = e^{-a t } u(t)$ where $u(t)$ is a unit step	Marks
		function.	
			CLO 3