Department of Electrical Engineering Final Assignment

Date: 23-06-2020

<u>Course Details</u>				
Course Title: <u>Electro Magnetic</u> Field Theory	Module:			
Instructor:	Total Marks:	<u>.</u>		
Student Details				
Name:	Student ID:			

Q1: Solve the	(a)	Determine the magnetic field at the center of the semicircular	
following short Question			CLO 2
	(b)	A circular coil of radius 5×10^{-2} m and with 40 turns is carrying	Marks 10
		a current of 0.25 A. Determine the magnetic field of the circular coil at the center.	CLO 2
Q2:	(a)	Compute the magnetic field of a long straight wire that has a	Marks 07
		circular loop with a radius of 0.05m. 2amp is the reading of the current flowing through this closed loop.	CLO 2
	(b)	Within the cylinder $\rho = 2$, $0 < z < 1$, the potential is given by $V = 100 + 50\rho + 150\rho$ $Sin\phi$ V . (a) Find V , E , D , and ρ_v at p (1, 60°, 0.5) in free space. (b) How much charge lies within the cylinder?	
Q3:		Given the time-varying magnetic field B= $(0.5a_x+0.6a_y-$	
	(a)	$0.3a_z$) $cos5000t$ T and a square filamentary loop with its corners at $(2, 3, 0)$, $(2,-3,0)$, and $(-2,3,0)$ and $(-2,-3,0)$, find the time-varying current flowing in the general a_{φ} direction if the total loop resistance is $400k\Omega$.	CLO 3