Department of Electrical Engineering Final – Assignment Spring 2020

Date: 23/06/2020

Course	

Course Title: Instructor:	Dr. Shahid Latif Communication Systems	Module: Total Marks: _	50
	Student Details		_
Name:		Student ID:	
Note: Attempt a	l of the following questions.		

0.1			36.1.5
Q1.	(a)	Consider the signal g(t), a periodic train of rectangular pulses of duration 0.25 seconds and period of	Marks 5 CLO 2
		1 second. This even signal is described analytically over one period as:	CLO 2
		$\begin{cases} 2, & 0 \le t \le 1/8 \end{cases}$	
		$g(t) = \begin{cases} 2, & 0 \le t \le 1/8 \\ 0, & 1/8 < t < 7/8 \\ 2, & 7/8 \le t \le 1 \end{cases}$	
		(2, 7/65151	
		(a) Using the complex exponential Fourier series coefficients, determine the amplitude spectrum and	
		the power spectrum of g(t).	
		(b) Determine what portion of the power lies within the main lobe and also find the frequency W,	
	(1.)	where W is an integer, so about 96% of the power lies in the frequency range [–W, W].	36.1.5
	(b)	A signal is Fourier transformable if it satisfies the Dirichlet's conditions.	Marks 5 CLO 2
		What are these conditions for Fourier Transform Pair?	
Q2.	(a)	Fourier Transform for Periodic Signals in a strict mathematical sense does not exist, as	Marks 5 CLO 2
		periodic signals are not energy signals. Consider the periodic signal g(t) with period T0.	CLO 2
		Define the periodic signal g(t) using the generating function p(t), where p(t) equals g(t) over	
		one single period and is zero elsewhere.	
	(b)	Determine the Fourier transform of g(t) = sinc(t)?	Marks 5
Q3.	(a)	"The benduished of a signal reflects a remark of positive frequencies with significant an extra	CLO 2 Marks 5
QJ.	(a)	"The bandwidth of a signal reflects a range of positive frequencies with significant spectral	CLO 2
		content". Keeping this statement in view classify atleast four types of bandwidths,	CEO 2
	(b)	considering $B=f_2-f_1$, where $f_2 \ge f_1 \ge 0$. The impulse response of an LTI system is $h(t)=u(t)-u(t-2)$. Determine the output signal $y(t)$	Marks 5
	(0)		CLO 2
Q4.	(a)	provided that the input signal is x(t)=u(t)-u(t-3).	Marks 5
QŦ.	(a)	"Convolution is an input-output relationship in time domain". Denotes the convolution	CLO 2
		operation. Write and prove equation for the convolution integral function y(t) is response to	
	(b)	convolution input x(t)and impulse response h(t).	Marks 5
	(0)	The frequency response of an LTI system is	CLO 2
		$H(f) = \frac{1}{2 + j2\pi f}$	
		Determine the output signal in the time domain provided that the input signal is	
		$x(t) = e^{-t}u(t)$	
Q5.	(a)	Differentiate between distortion less transmission and non-linear distortion.	Marks 5
			CLO 2
	(b)	Differentiate between low-pass filter, high-pass filter, band-pass filter and band-stop filter	Marks 5
			CLO 2