INDUCTION AND INDUCTANCE

WHAT IS PHYSICS?

In Chapter 29 we discussed the fact that a current produces a magnetic field. That fact came as a surprise to the scientists who discovered the effect. Perhaps even more surprising was the discovery of the reverse effect: A magnetic field can produce an electric field that can drive a current. This link between a magnetic field and the electric field it produces (induces) is now called Faraday's law of induction.

The observations by Michael Faraday and other scientists that led to this law were at first just basic science. Today, however, applications of that basic science are almost everywhere. For example, induction is the basis of the electric guitars that revolutionized early rock and still drive heavy metal and punk today. It is also the basis of the electric generators that power cities and transportation lines and of the huge induction furnaces that are commonplace in foundries where large amounts of metal must be melted rapidly.

Before we get to applications like the electric guitar, we must examine two simple experiments about Faraday's law of induction.

30-2 Two Experiments

Let us examine two simple experiments to prepare for our discussion of Faraday's law of induction.

First Experiment. Figure 30-1 shows a conducting loop connected to a sensitive ammeter. Because there is no battery or other source of emf included, there is no current in the circuit. However, if we move a bar magnet toward the loop, a current suddenly appears in the circuit. The current disappears when the magnet stops. If we then move the magnet away, a current again suddenly appears, but now in the opposite direction. If we experimented for a while, we would discover the following:

1. A current appears only if there is relative motion between the loop and the magnet (one must move relative to the other); the current disappears when the relative motion between them ceases.
2. Faster motion produces a greater current.
3. If moving the magnet's north pole toward the loop causes, say, clockwise current, then moving the north pole away causes counterclockwise current. Moving the south pole toward or away from the loop also causes currents, but in the reversed directions.

The current produced in the loop is called an induced current; the work done per unit charge to produce that current (to move the conduction electrons that

The magnet's motion creates a current in the loop.

Fig. 30-1 An ammeter registers a current in the wire loop when the magnet is moving with respect to the loop.

Fig. 30-2 An ammeter registers a current in the left-hand wire loop just as switch S is closed (to turn on the current in the right-hand wire loop) or opened (to turn off the current in the right-hand loop). No motion of the coils is involved.
constitute the current) is called an induced emf; and the process of producing the current and emf is called induction.

Second Experiment. For this experiment we use the apparatus of Fig. 30-2, with the two conducting loops close to each other but not touching. If we close switch S , to turn on a current in the right-hand loop, the meter suddenly and briefly registers a current-an induced current -in the left-hand loop. If we then open the switch, another sudden and brief induced current appears in the lefthand loop, but in the opposite direction. We get an induced current (and thus an induced emf) only when the current in the right-hand loop is changing (either turning on or turning off) and not when it is constant (even if it is large).

The induced emf and induced current in these experiments are apparently caused when something changes-but what is that "something"? Faraday knew.

30-3 Faraday's Law of Induction

Faraday realized that an emf and a current can be induced in a loop, as in our two experiments, by changing the amount of magnetic field passing through the loop. He further realized that the "amount of magnetic field" can be visualized in terms of the magnetic field lines passing through the loop. Faraday's law of induction, stated in terms of our experiments, is this:

An emf is induced in the loop at the left in Figs. 30-1 and 30-2 when the number of magnetic field lines that pass through the loop is changing.

The actual number of field lines passing through the loop does not matter; the values of the induced emf and induced current are determined by the rate at which that number changes.

In our first experiment (Fig. 30-1), the magnetic field lines spread out from the north pole of the magnet. Thus, as we move the north pole closer to the loop, the number of field lines passing through the loop increases. That increase apparently causes conduction electrons in the loop to move (the induced current) and provides energy (the induced emf) for their motion. When the magnet stops moving, the number of field lines through the loop no longer changes and the induced current and induced emf disappear.

In our second experiment (Fig. 30-2), when the switch is open (no current), there are no field lines. However, when we turn on the current in the right-hand loop, the increasing current builds up a magnetic field around that loop and at the left-hand loop. While the field builds, the number of magnetic field lines through the left-hand loop increases. As in the first experiment, the increase in field lines through that loop apparently induces a current and an emf there. When the current in the right-hand loop reaches a final, steady value, the number of field lines through the left-hand loop no longer changes, and the induced current and induced emf disappear.

A Quantitative Treatment

To put Faraday's law to work, we need a way to calculate the amount of magnetic field that passes through a loop. In Chapter 23, in a similar situation, we needed to calculate the amount of electric field that passes through a surface. There we defined an electric flux $\Phi_{E}=\int \vec{E} \cdot d \vec{A}$. Here we define a magnetic flux: Suppose a loop enclosing an area A is placed in a magnetic field \vec{B}. Then the magnetic flux through the loop is

$$
\begin{equation*}
\Phi_{B}=\int \vec{B} \cdot d \vec{A} \quad(\text { magnetic flux through area } A) \tag{30-1}
\end{equation*}
$$

As in Chapter $23, d \vec{A}$ is a vector of magnitude $d A$ that is perpendicular to a differential area $d A$.

Fig. 30-2 An ammeter registers a current in the left-hand wire loop just as switch S is closed (to turn on the current in the right-hand wire loop) or opened (to turn off the current in the right-hand loop). No motion of the coils is involved.
constitute the current) is called an induced emf; and the process of producing the current and emf is called induction.

Second Experiment. For this experiment we use the apparatus of Fig. 30-2, with the two conducting loops close to each other but not touching. If we close switch S , to turn on a current in the right-hand loop, the meter suddenly and briefly registers a current-an induced current -in the left-hand loop. If we then open the switch, another sudden and brief induced current appears in the lefthand loop, but in the opposite direction. We get an induced current (and thus an induced emf) only when the current in the right-hand loop is changing (either turning on or turning off) and not when it is constant (even if it is large).

The induced emf and induced current in these experiments are apparently caused when something changes-but what is that "something"? Faraday knew.

30-3 Faraday's Law of Induction

Faraday realized that an emf and a current can be induced in a loop, as in our two experiments, by changing the amount of magnetic field passing through the loop. He further realized that the "amount of magnetic field" can be visualized in terms of the magnetic field lines passing through the loop. Faraday's law of induction, stated in terms of our experiments, is this:

An emf is induced in the loop at the left in Figs. 30-1 and 30-2 when the number of magnetic field lines that pass through the loop is changing.

The actual number of field lines passing through the loop does not matter; the values of the induced emf and induced current are determined by the rate at which that number changes.

In our first experiment (Fig. 30-1), the magnetic field lines spread out from the north pole of the magnet. Thus, as we move the north pole closer to the loop, the number of field lines passing through the loop increases. That increase apparently causes conduction electrons in the loop to move (the induced current) and provides energy (the induced emf) for their motion. When the magnet stops moving, the number of field lines through the loop no longer changes and the induced current and induced emf disappear.

In our second experiment (Fig. 30-2), when the switch is open (no current), there are no field lines. However, when we turn on the current in the right-hand loop, the increasing current builds up a magnetic field around that loop and at the left-hand loop. While the field builds, the number of magnetic field lines through the left-hand loop increases. As in the first experiment, the increase in field lines through that loop apparently induces a current and an emf there. When the current in the right-hand loop reaches a final, steady value, the number of field lines through the left-hand loop no longer changes, and the induced current and induced emf disappear.

A Quantitative Treatment

To put Faraday's law to work, we need a way to calculate the amount of magnetic field that passes through a loop. In Chapter 23, in a similar situation, we needed to calculate the amount of electric field that passes through a surface. There we defined an electric flux $\Phi_{E}=\int \vec{E} \cdot d \vec{A}$. Here we define a magnetic flux: Suppose a loop enclosing an area A is placed in a magnetic field \vec{B}. Then the magnetic flux through the loop is

$$
\begin{equation*}
\Phi_{B}=\int \vec{B} \cdot d \vec{A} \quad(\text { magnetic flux through area } A) \tag{30-1}
\end{equation*}
$$

As in Chapter $23, d \vec{A}$ is a vector of magnitude $d A$ that is perpendicular to a differential area $d A$.

As a special case of Eq. 30-1, suppose that the loop lies in a plane and that the magnetic field is perpendicular to the plane of the loop. Then we can write the dot product in Eq. $30-1$ as $B d A \cos 0^{\circ}=B d A$. If the magnetic field is also uniform, then B can be brought out in front of the integral sign. The remaining $\int d A$ then gives just the area A of the loop. Thus, Eq. $30-1$ reduces to

$$
\begin{equation*}
\Phi_{B}=B A \quad(\vec{B} \perp \text { area } A, \vec{B} \text { uniform }) . \tag{30-2}
\end{equation*}
$$

From Eqs. $30-1$ and $30-2$, we see that the SI unit for magnetic flux is the tesla-square meter, which is called the weber (abbreviated Wb):

$$
\begin{equation*}
1 \text { weber }=1 \mathrm{~Wb}=1 \mathrm{~T} \cdot \mathrm{~m}^{2} . \tag{30-3}
\end{equation*}
$$

With the notion of magnetic flux, we can state Faraday's law in a more quantitative and useful way:

The magnitude of the $\mathrm{emf} \mathscr{E}$ induced in a conducting loop is equal to the rate at which the magnetic flux Φ_{B} through that loop changes with time.

As you will see in the next section, the induced emf \mathscr{E} tends to oppose the flux change, so Faraday's law is formally written as

$$
\begin{equation*}
\mathscr{E}=-\frac{d \Phi_{B}}{d t} \quad \text { (Faraday's law) } \tag{30-4}
\end{equation*}
$$

with the minus sign indicating that opposition. We often neglect the minus sign in Eq. 30-4, seeking only the magnitude of the induced emf.

If we change the magnetic flux through a coil of N turns, an induced emf appears in every turn and the total emf induced in the coil is the sum of these individual induced emfs. If the coil is tightly wound (closely packed), so that the same magnetic flux Φ_{B} passes through all the turns, the total emf induced in the coil is

$$
\begin{equation*}
\mathscr{E}=-N \frac{d \Phi_{B}}{d t} \quad \text { (coil of } N \text { turns). } \tag{30-5}
\end{equation*}
$$

Here are the general means by which we can change the magnetic flux through a coil:

1. Change the magnitude B of the magnetic field within the coil.
2. Change either the total area of the coil or the portion of that area that lies within the magnetic field (for example, by expanding the coil or sliding it into or out of the field).
3. Change the angle between the direction of the magnetic field \vec{B} and the plane of the coil (for example, by rotating the coil so that field \vec{B} is first perpendicular to the plane of the coil and then is along that plane).

CHECKPOINT 1

The graph gives the magnitude $B(t)$ of a uniform magnetic field that exists throughout a conducting loop, with the direction of the field perpendicular to the plane of the loop. Rank the five regions of the graph according to the magnitude of the emf induced in the loop, greatest first.

Sample Problern

Induced emf in coil due to a solenoid

The long solenoid S shown (in cross section) in Fig. 30-3 has 220 turns $/ \mathrm{cm}$ and carries a current $i=1.5 \mathrm{~A}$; its diameter D is 3.2 cm . At its center we place a 130 -turn closely packed coil C of diameter $d=2.1 \mathrm{~cm}$. The current in the solenoid is reduced to zero at a steady rate in 25 ms . What is the magnitude of the emf that is induced in coil C while the current in the solenoid is changing?

MEY DEAS

1. Because it is located in the interior of the solenoid, coil C lies within the magnetic field produced by current i in the solenoid; thus, there is a magnetic flux Φ_{B} through coil C.
2. Because current i decreases, flux Φ_{B} also decreases.
3. As Φ_{B} decreases, emf \mathscr{E} is induced in coil C .
