Fiber-Optic Communications Technology

Fiber-Optic Communications Technology

Sailing He and Shiming Gao Zhejiang University <u>sailing@zju.edu.cn</u> <u>gaosm@zju.edu.cn</u> Course website: <u>http://opt.zju.edu.cn/octech/</u>

Overview of the course (I)

Order	Time	Teacher	Content	
1	Feb 16	Shiming Gao	Introduction and Physics of Light	
2	Feb 23	Shiming Gao	Optical Fibers: Basics	
3	Mar 1	Sailing He	Overview & Introduction (1)	
4	Mar 8	Sailing He	Overview & Introduction (2)	
5	Mar 15	Shiming Gao	Optical Fibers: A Deeper Look	
6	Mar 22	Shiming Gao	Single-Mode Fibers: Basics	
7	Mar 29	Shiming Gao	Single-Mode Fibers: A Deeper Look	
8	Apr 5	Shiming Gao	Fabrication, Cabling, Installation, and Testing	
9	Apr 19	Shiming Gao	Optical Transmitters (1)	
10	Apr 26	Shiming Gao	Optical Transmitters (2)	
11	May 3	Shiming Gao	Receivers (1)	
12	May 10	Shiming Gao	Receivers (2)	
13	May 17	Shiming Gao	Amplifiers	
14	May 24	Sailing He	Passive Components (1)	
15	May 31	Sailing He	Passive Components (2) & Prospects	
16	Jun 7	Shiming Gao	Review & Questions	

Overview (II)

- Experiments:
 - Testing of Optical Fibers
 - NA, coupling, loss
 - Optic-Fiber Sensing Systems
 - Dual-beam interference, temperature sensing, stress sensing
 - Testing of Fiber Components
 - Optical switching, isolator, attenuator
 - Optical Fiber Communication
 - Data transmission, voice transmission
- Score:
 - Examination 60%,
 - Experiment 20%,
 - Homework & Class-Interactive 20%
- Teaching Assistant:
 - Kai Hu (88206514-227, hukai@coer.zju.edu.cn)
- Website: http://opt.zju.edu.cn/octech

Overview (III)

• Textbook:

 Djafar K. Mynbaev and Lowell L. Scheiner, Fiber-Optic Communications Technology, 1st Edition, 科学出版社(英 文影印版), 2002.

• References:

- 徐公权等,光纤通信技术,机械工业出版社,2002.
- G. P. Agrawal, Fiber-Optic Communications Systems, John Wiley & Sons, 2002.
- 廖延彪,光纤光学,清华大学出版社,2000.
- 杨祥林,光纤通信系统,国防工业出版社,2003.

Chapter 1

Introduction to Telecommunications and Fiber Optics

> Why Fiber-optic communications?

> What is the basic blocks of fiberoptic communications systems?

> What we will learn in this course?

• What is telecommunications?

- Tele: over a distance
- Communications: exchange of information----voice, video, and data
- Telecommunications is the exchange of information over a certain distance using some type of equipments.
- Original light communications
 - "Light" → "Fire"
 - Beacon(烽火台):~780 BC, King You of Zhou;
 - Early Middle Ages (500-1000 AD), Russian

- Telegraph(电报1837):
 - Carriers: current, **EM waves**
 - Coding: Morse Code
- Telephony(电话1876):
 - Voice \rightarrow Electric pulses
 - Analog signals
- Information:
 - Voice
 - Video
 - Data

Morse

- Media: Cooper wire, coaxial cable, air, optical fiber
- Modern Communications: Conversion—Modulation— Transmission----Demodulation

- What we want from modern telecommunications?
 - Capacity, capacity, and more capacity!
 - Information-carrying capacity is the ability of a communication link to transmit a certain amount of information per unit of time.
- More information is produced
 - Postindustrial era \rightarrow Information era
 - Internet, telephone, mobile, credit card, online bank, online TV, movie,

- Analog \rightarrow Digital
 - Analog: amplitude, frequency, phase
 - Digital: bits "0" and "1"
 - Omereliable!

- The capacity limit
 - Shannon-Hartley theorem:

 $C = BW \times \log_2(1 + SNR)$

- Bndwidth: the range of frequencies within which the signals can be tranmitted without substantial attenuation
- The higher the carrier's frequency, the greater the channel bandwidth and the higher the information-carrier capacity.
- Cooper wire: 1MHz
- Coaxial cable: 100MHz
- Radio frequency: 500 KHz~100MHz
- Microwave: 100GHz (Satellites, Radio over fiber)
- Optical fiber: 50THz!

1.2 Basic blocks of fiber communications systems

• Fiber-optic communications link

1.2 Basic blocks of fiber communications systems

• Fiber-optic communications network

1.2 Basic blocks of fiber communications systems

• Optical fiber

- How to guide light? Total internal reflection
- Where to go?
- In 1965, Charles K. Kao with Hockham concluded that the fundamental limitation for glass light attenuation is below
 20 dB/km (decibels per kilometer), which is a key threshold value for optical communications. (Nobel Prize 2009)

Optical Fibers

• Attenuation: 1970 Corning <20 dB/km

- Macrobending loss
- Microbending loss
- Scattering
- Absoprtion
- Dispersion
 - Intermodal dispersion
 - Chromatic dispersion
- Mode
 - Multi-mode fiber
 - Single-mode fiber
- Special fibers

. . .

- Erbium-doped fiber, polymer fiber, photonic crystal fiber,

Optical devices in fiber-optic communications system

- Transmitter
 - Light source
 - Convert an information signal from electric to light
- Receiver
 - Photondetector
 - Convert an optical information signal back into an electrical signal.
- Amplifier
 - Erbium-doped fiber amplifier (EDFA)
 - Fiber Raman amplifier (FRA)
- Optical signal processing components
 - Ensure the system running

Common passive and active components

- Optical connectors
- Optical attenuators
- Couplers/splitters
- Isolators
- Circulators
- Filters
- Optical add/drop multiplexer
- Wavelength multiplexer and demultiplexer
- Modulators
- Switches
- Wavelength converters
- Optical cross-connects

Chapter 2

Physics of Light : A Brief Overview

> EM waves (电磁波)?
> Ray (光射线)?
> Photons (光子)?

2.1 Electromagnetic Waves (*the wave view*)

Two Important Concepts

A standing wave (black) depicted as the sum of two propagating waves traveling in opposite directions (red and blue).

EM waves come in all sizes

2.2 Beams or Rays (the geometric-optics view)

◆ Refractive index (折射率) for nonmagnetic materials

- -> a measure of how much a ray of light is bent when propagating from one medium into another
- -> v=c/n : the speed of light in a material of refractive index n

$$v = \frac{1}{\sqrt{\mu_o \varepsilon_o \varepsilon_r}} = \frac{c}{n}$$
$$n = \sqrt{\varepsilon_r}$$

Example: light propagates in glass and many plastics

n ~ 1.5, and $\varepsilon_{\rm r}$ ~ 2.25 $v = c/n = 3 \times 10^8 (m/s)/1.5 = 2.0 \times 10^8 (m/s)$ $\lambda = \lambda_0/n$ (wavelength shortening)

◆ Snell's Law of Refraction (斯涅尔 折射定律)

• Governs the geometry of refraction.

 $n_1 \sin \theta_i = n_2(\lambda) \sin \theta_t(\lambda)$

 $n_I = RI$ of incident medium

 $n_2 = RI$ of medium into which the light is transmitted

- If the light is transmitted into a denser medium (光密介质), it is refracted toward the normal of the interface.
- If the light is transmitted into a rarer medium (光疏介质), it is refracted away from the normal of the interface.

◆ Total Internal Reflection (全内反射)

- At some angle, called the *critical angle*, light is bent to lie exactly in the plane of the interface.
- At all angles greater than this, the light is reflected back into the incident medium: *total internal reflection* (TIR).
- Snell's law gives critical angle θ_c $n_1 \sin \theta_c = n_2(\lambda) \sin(\pi/2)$ $\sin \theta_c = n_2(\lambda) / n_1$

* Waveguide or * Optical Fiber

◆ Critical Angle (临界角)

- When a beam propagates from a dense material into a less dense medium, the refraction angle increase with the increment of the incident angle.
- Critical angle: The incident angle at which the refracted angle is 90 degree.

Example:

2.3 A Stream of Photons (光子) (the quantum view) ◆ The Bohr theory : the line spectrum of hydrogen.

◆ Radiation (辐射) and Absorption (吸收)

CLASS	FREQUENCY	WAVELENGTH	ENERGY
\sim	300 EHz	1 pm	1.24 MeV
' нх —	30 EHz	10 pm	124 keV
<u> </u>	3 EHz	100 pm	12.4 keV
sx —	300 PHz	1 nm	1.24 keV
	30 PHz	10 nm	124 eV
NUV -	3 PHz	100 nm	12.4 eV
	300 THz	1µm	1.24 eV
MIR	30 THz	10 µm	124 meV
FIR	3 THz	100 µm	12.4 meV
EHE	300 GHz	1 mm	1.24 meV
SHE	30 GHz	1 cm	124 µeV
	3 GHz	1 dm	12.4 µeV
VHE	300 MHz	1 m	1.24 µeV
HE	30 MHz	10 m	124 neV
ME	3 MHz	100 m	12.4 neV
	300 kHz	1 km	1.24 neV
	30 kHz	10 km	124 peV
	3 kHz	100 km	12.4 peV
SIF	300 Hz	1 Mm	1.24 peV
	30 Hz	10 Mm	124 feV
	3 Hz	100 Mm	12.4 feV

Legend:

Y = Gamma rays HX = Hard X-rays SX = Soft X-Rays EUV = Extreme ultraviolet NUV = Near ultraviolet Visible light NIR = Near infrared MIR = Moderate infrared FIR = Far infrared

Radio waves:

EHF = Extremely high frequency (Microwaves) SHF = Super high frequency (Microwaves) UHF = Ultrahigh frequency VHF = Very high frequency HF = High frequency MF = Medium frequency LF = Low frequency VLF = Very low frequency VLF = Voice frequency ULF = Ultra low frequency SLF = Super low frequency ELF = Extremely low frequency

♦ Example

1) Suppose an LD radiates red light at λ =650 nm. What is the energy of a single photon?

$$E_p = hf = hc / \lambda = (6.6 \times 10^{-34} J \cdot S) \times (3 \times 10^8 m / s) / (650 \times 10^{-9} m)$$
$$= 3.04 \times 10^{-19} J$$

2) Suppose the energy gap of an LD is 2.5 eV. What color will it radiate?

$$E_p = 2.5 eV \times (1.602 \times 10^{-19} J / eV) \approx 4 \times 10^{-19} J$$

$$\lambda = c \cdot h / \Delta E = (6.6 \times 10^{-34} J \cdot S) \times (3 \times 10^8 m / s) / (4 \times 10^{-19} m)$$

= 500 nm

Summary

- **EM waves :** waveguide analysis, functional device, mode coupling
- **Ray** : qualitative or phenomena explanation
- **Photons :** active device, interaction with materials, semiconductor laser,

Question :

What's the difference between the three models ? And the relations ?

References:

- 1. Gerd Keiser, <u>Optical fiber communications</u>, Publisher Boston, Mass. : McGraw-Hill, c2000.
- 2. G. P. Agrawal, <u>Fiber-optic communication systems</u>, Publisher New York : John Wiley, c2002
- 3. Hermann A. Haus, <u>Waves and fields in optoelectronics</u>, Publisher Englewood Cliffs, NJ : Prentice-Hall, c1984.

Contact:

Tel: 88206516 x211 E-mail: gaosm@zju.edu.cn

