Formal Methods Iin Software
Engineering

Engr. Madeha Mushtaq
Department of Computer Science
Igra National University



Why Formal Methods?

Can we properly/thoroughly test the software to find the bugs
in advance before the program goes into execution??

Testing can detect bugs but we need to make sure absence of
bugs.

Suppose we have a theorem that states that all numbers are
less than 1000.

In order to prove this theorem, we take some examples.
We say 1 is less than 1000, theorem holds true.

We say 2 is less than 1000, theorem holds true.

We say 3 is less than 1000, theorem holds true.

And so on, so forth...



Why Formal Methods?

We can have 100s of examples to show that the theorem
holds true, but actually not all numbers are less than 1000.

This looks like a trivial example but this is the simplest
example that shows, even if we take 100s examples, we can
not make sure whether the theorem holds true or not.

The only way to prove the theorem is by using a formal proof.

Same is the case with testing, for testing we write test cases, a
test case is nothing more but an example scenario.

If one particular scenario works that does not mean all
scenarios will work.



Example

Lets look at an example:

In this program we have to test two strings and see if they are
equal or not.

We have to write test cases to test this program.
Name of the function that tests the equivalence is “is equal”.
It takes 2 parameters(strings) as arguments.



Example

* Program to test for two equal strings
* Test cases:
— iskqual (“cat”, “dog”) - expected false

— iskqual (“Testing”, “Testing”) - expected true
— iskqual (“house”, “home”) - expected false



Example

We have written 3 test cases.

We can write many test cases as that and test the program,
but will that actually help us?

It may or it may not find an error.

Lets have a look at the code and see if the code will work or
not.



Example




Example

By looking closely at the code, we found out that the code is
incorrect.

What is the error? For two strings of equal length, if only the
last character of the string is same. The program will conclude
that the strings are equal.

For example house and mouse.

So by looking at this example, we again see that even if we
write 100s of test cases, we may still not be able to find the
error.



Black Box Testing

* In this string equivalence program, we were doing black box
testing.

« BLACK BOX TESTING, also known as Behavioral Testing, is a
software testing method in which the internal
structure/implementation of the item being tested is not
known to the tester.



White Box Testing/Structural Testing

 WHITE BOX TESTING also known as Code-Based Testing or
Structural Testing.

* Itis a software testing method in which the internal
structure/implementation of the item being tested is known
to the tester.

 We make a flow graph, analyze it and develop test cases to
test the different components of the program.



Flow Graphs

We have different components of programs:
Sequence

Selection

— Simple IF Statement

— |F/Else Statement

— Case Statement

Loop



Flow Graphs

* Sequence:
e Sequence is represented by two nodes and an arrow.
* |tis adirected graph.

O—O0O

Sequence



Flow Graphs

2o

Selection — if statement




Flow Graphs

Selection — if-else statement



Flow Graphs

Selection — case statement



Flow Graphs

o o

Loop



Flow graph for bubble sort

sorted = false; //1
while (!sorted) { /] 2
sorted = true;
for (inti=0;i<SIZE-1; i++) { //3
if (a[i] > a[i+1]) { /] 4
swap(ali], a[i+1]); /5
sorted = false;
}
} //6
} //7

//8




Limitation of Flow Graphs

Flow graph helps us in understanding the structure of the
program.

Based upon the structure of the program, we write test cases
to test the various components of the program.

But there is a limitation to this type of testing.

Given the structure of a program in terms of a flow graph, we
can have what is known as coverage.

There are three types of coverage.
— Statement Coverage
— Branch Coverage
— Path Coverage



Statement Coverage

Statement coverage basically means that we write a set of
test cases and ensure that each statement is executed at least

once.

This means there is no part of the program which is not
tested.

This is the lowest level of coverage.



Branch Coverage

* This is the second level of coverage.
* In this case we try to identify all the branches in the program.
* And write test cases for all the branches.



Path Coverage

This is the highest level of coverage.
Here we have to find all the paths in the program.
And test all the paths by writing test cases for each path.

Let us see if we can actually do it or not with the help of an
example.



Path Coverage Example

for(i=0;i<N;i++) { i
If (condition1)
/f do something here 2
else
/f do something here i3
// something here 4
} 5

2N Paths




Path Coverage Example

The total number of paths in this program are 2N

If the value of N is 10, we will have to run 1024 test cases.
If the value of N is 20, we will have to run 1 million test cases.
Can we actually run 1 million test cases??

And this is one of the simplest program with only one If
statement and only one For loop.



Only Solution FM

Hence we are back to the same statement that no number of
test cases can actually make sure that the program is bug free.

The only solution to this is Formal Methods.

In FM we develop models.

These models help us argue about the correctness of the
program.



End of Slides



