
Formal Methods in Software

Engineering

Engr. Madeha Mushtaq

Department of Computer Science

Iqra National University

Why Formal Methods?

• Can we properly/thoroughly test the software to find the bugs
in advance before the program goes into execution??

• Testing can detect bugs but we need to make sure absence of
bugs.

• Suppose we have a theorem that states that all numbers are
less than 1000.

• In order to prove this theorem, we take some examples.

• We say 1 is less than 1000, theorem holds true.

• We say 2 is less than 1000, theorem holds true.

• We say 3 is less than 1000, theorem holds true.

• And so on, so forth…

Why Formal Methods?

• We can have 100s of examples to show that the theorem
holds true, but actually not all numbers are less than 1000.

• This looks like a trivial example but this is the simplest
example that shows, even if we take 100s examples, we can
not make sure whether the theorem holds true or not.

• The only way to prove the theorem is by using a formal proof.

• Same is the case with testing, for testing we write test cases, a
test case is nothing more but an example scenario.

• If one particular scenario works that does not mean all
scenarios will work.

Example

• Lets look at an example:

• In this program we have to test two strings and see if they are
equal or not.

• We have to write test cases to test this program.

• Name of the function that tests the equivalence is “is equal”.

• It takes 2 parameters(strings) as arguments.

• Program to test for two equal strings

• Test cases:

– isEqual (“cat”, “dog”) - expected false

– isEqual (“Testing”, “Testing”) - expected true

– isEqual (“house”, “home”) - expected false

Example

Example

• We have written 3 test cases.

• We can write many test cases as that and test the program,
but will that actually help us?

• It may or it may not find an error.

• Lets have a look at the code and see if the code will work or
not.

equal = strlen(string1) == strlen(string2);

if (equal)

 for (i = 0; i < strlen(string1); i++)

 equal = string1[i] == string2[i];

return equal;

Example

• By looking closely at the code, we found out that the code is
incorrect.

• What is the error? For two strings of equal length, if only the
last character of the string is same. The program will conclude
that the strings are equal.

• For example house and mouse.

• So by looking at this example, we again see that even if we
write 100s of test cases, we may still not be able to find the
error.

Example

Black Box Testing

• In this string equivalence program, we were doing black box
testing.

• BLACK BOX TESTING, also known as Behavioral Testing, is a
software testing method in which the internal
structure/implementation of the item being tested is not
known to the tester.

White Box Testing/Structural Testing

• WHITE BOX TESTING also known as Code-Based Testing or
Structural Testing.

• It is a software testing method in which the internal
structure/implementation of the item being tested is known
to the tester.

• We make a flow graph, analyze it and develop test cases to
test the different components of the program.

Flow Graphs

• We have different components of programs:

• Sequence

• Selection

– Simple IF Statement

– IF/Else Statement

– Case Statement

• Loop

Sequence

Flow Graphs

• Sequence:
• Sequence is represented by two nodes and an arrow.
• It is a directed graph.

Selection – if statement

Flow Graphs

Selection – if-else statement

Flow Graphs

Selection – case statement

Flow Graphs

Loop

Flow Graphs

Flow graph for bubble sort

sorted = false; // 1

while (!sorted) { // 2

 sorted = true;

 for (int i = 0; i < SIZE-1; i++) { // 3

 if (a[i] > a[i+1]) { // 4

 swap(a[i], a[i+1]); // 5

 sorted = false;

 }

 } //6

} //7

 //8

1

2

8

3

4

5

6

7

Limitation of Flow Graphs

• Flow graph helps us in understanding the structure of the
program.

• Based upon the structure of the program, we write test cases
to test the various components of the program.

• But there is a limitation to this type of testing.

• Given the structure of a program in terms of a flow graph, we
can have what is known as coverage.

• There are three types of coverage.

– Statement Coverage

– Branch Coverage

– Path Coverage

Statement Coverage

• Statement coverage basically means that we write a set of
test cases and ensure that each statement is executed at least
once.

• This means there is no part of the program which is not
tested.

• This is the lowest level of coverage.

Branch Coverage

• This is the second level of coverage.

• In this case we try to identify all the branches in the program.

• And write test cases for all the branches.

Path Coverage

• This is the highest level of coverage.

• Here we have to find all the paths in the program.

• And test all the paths by writing test cases for each path.

• Let us see if we can actually do it or not with the help of an
example.

2N Paths

Path Coverage Example

Path Coverage Example

• The total number of paths in this program are 2N.

• If the value of N is 10, we will have to run 1024 test cases.

• If the value of N is 20, we will have to run 1 million test cases.

• Can we actually run 1 million test cases??

• And this is one of the simplest program with only one If
statement and only one For loop.

Only Solution FM

• Hence we are back to the same statement that no number of
test cases can actually make sure that the program is bug free.

• The only solution to this is Formal Methods.

• In FM we develop models.

• These models help us argue about the correctness of the
program.

End of Slides

