
Formal Methods in Software 

Engineering 

 

 

Engr. Madeha Mushtaq 

Department of Computer Science 

Iqra National University 

 



From Classic Languages to Formal Methods 

 

• Classic development 

• Here we will analyze the classic (meaning non-formal) process 
used to make a software application. 

– Development process: 

• The creation of a software application is broken down 
into stages (specification, design, coding, tests, etc.). 
We refer to it as the lifecycle. 

 



Classic development 

 

– Coding: 

• The classic development process of a software 
application is based on the use of programming 
language, for example Ada, C and/or C++. 

– Specification and architecture 

– Verification and validation (V&V) 

– Summary 

 



Classic development 



 Software Engineering andFM 

 Every software engineering methodology is based on a 
recommended development process proceeding through 
several phases: 

 Requirements, Specification, Design 
 Coding, Unit Testing 
 Integration and System Testing, Maintenance 

 
 Formal methods can 

 Be a foundation for designing safety critical systems 
 Be a foundation for describing complex systems 
 Provide support for program development 



 
What are Formal Methods? 

 
 

• Techniques and tools based on mathematics and formal 
logic 

• Approach to develop high-quality systems 

• Develop a clear, formal, unambiguous, abstract model 

• Ensure model actually reflects requirements. 



What are Formal Methods? 

• Use formal reasoning to ensure the model has required 
properties 

– Safety properties: State X never reached 

– Lifeness properties: State X eventually reached 

– Fairness properties: In infinite time, X is reached infinitely 
often 

– Partial correctness: If system terminates on input X, output 
is f (X) 

• Implement model 

– Use proof/synthesis to ensure correct translation 

– Ensure abstraction does not break (i.e. integer numbers vs. 
machine words, unlimited memory, exact floating point 
arithmetic). 



FM Vs. Classical Process Steps 

• In the Classical approach, Requirements analysis may fail to 
identify all requirements. 

– Formal Methods cannot help much here... 

 

• Specifications may be ambiguous and/or not reflect 
requirements. 

– Formal specifications can be unambiguous 

– Formal specifications can be checked for consistency 

– Formal specifications can be used to deduce (unexpected?) 
properties. 

 



FM Vs. Classical Process Steps 

 

• Bad design and Architecture 

– Mostly a matter of taste and experience. . . 

 

• Coding in Classical Approach may fail to implement the 
specifications 

– Program verification (large subfield of FM) can help. 

– Program synthesis/transformation may generate code directly 
from specifications. 



FM Vs. Classical Process Steps 

 

• Testing in Classical process cannot (well, rarely) establish 
absence of bugs! 

– Only existence of bugs can be detected 

– Again, verification can guarantee the absence of bugs (or 
at least some classes of bugs). 

• Software maintenance in Classical Approach often involves 
large-scale systematic changes 

– Formal methods can assure equivalence of changed code 

– Formal methods can automate changes. 

 



Example: Ambiguous Requirements 
Analysis/Specification 

• Spacecraft developed by two teams of engineers at NASA JPL 
and Lockheed Martin 

• NASA uses metric unit system 

• Lockheed Martin uses imperial unit system 

• Nobody noticed the discrepancy! 

 

• Result: Mars Climate Orbiter crashed into Mars on September 
23rd, 1999 

• 125 million US$ lost 

• 10 month journey to Mars wasted 

• Mission partially compromised (back-up space probes to the 
rescue...) 



Example: Maintenance/Porting Error 

 

• ESA had a successful space program. 

• Ariane IV one of the most successful commercial satellite 
launch platforms. 

• Ariane V should be bigger, better, faster version. 

• To safe development costs, some code from Ariane IV was 
reused. 

• Development took 10 years and EUR 8 billion anyways. 



Example: Maintenance/Porting Error 

• In the code, 64 bit floating point representation of speed was 
cast into 16 bit integer value 

• Ok for Ariane IV 

• Ariane V’s higher speed causes overflow condition 

• Correctly trapped by software, but no trap handler (efficiency 
reasons, “it never happens anyways”) 

• Hence software crash 

• Result: First Ariane V rocket out of control, destroyed by 
safety mechanism (June 4th, 1996). 



Example: Design/Coding Error 

 

• Therac-25 was a combined electron/X-ray medical radiation 
device (1985-1988) 

• Able to produce high energy electron beams, using a beam 
spreader to control intensity 

• Also able to produce 25MeV X-rays (by placing a target and a 
beam spreader into a much amplified electron beam) 

• Used in radiation therapy for cancer patients. 



Example: Design/Coding Error 

• Software was expected to assure that electron beam intensity, 
target, and beam spreader can only work in safe conditions. 

• However, race conditions in the code allowed unsafe states to 
be reached: 

• High-energy, high intensity electron beam without 
target/beam spreader 

• Race condition never detected in testing! 

• Result: 

• Several people died of radiation burns, several more injured 

• Lawsuits settled out of court. 



Limitations of using FM 

 

• Basic software development is cheap 

– Minimal investment: One PC, one copy of Linux/gcc 

– Production cost for a new (corrected?) version is negligible 
(a few minutes of compilation) 

– Distribution cost is cheap (ship a CD/free download). 

• Formal methods add massive overhead. 

• Needs very complex Hardware and Software. 

• Training for formal methods is expensive/time consuming. 

• Reasoning about software is harder, but: Debugging software 
is easier. 

 

 

 



 

Benefits of Formal Specifications 
 

• Higher level of rigor leads to better problem understanding 

• Defects are uncovered that would be missed using traditional 
specification methods 

• Allows earlier defect identification 

• Formal specification language semantics allow checks for self-
consistency. 

• Enables the use of formal proofs to establish fundamental 
system properties and invariants. 

 



End of Slides 


