Formal Methods Iin Software
Engineering

Engr. Madeha Mushtaq
Department of Computer Science
Igra National University

From Classic Languages to Formal Methods

* Classic development

* Here we will analyze the classic (meaning non-formal) process
used to make a software application.

— Development process:

* The creation of a software application is broken down
into stages (specification, design, coding, tests, etc.).
We refer to it as the lifecycle.

Classic development

— Coding:

* The classic development process of a software
application is based on the use of programming
language, for example Ada, C and/or C++.

— Specification and architecture
— Verification and validation (V&V)

— Summary

Determination
of objectives,
alternative and
constraints

Planmng of th
next phase

Classic development

Specification

AN

Architecture

b

Functional
tests

Integration
tests

lee rsi Preliminary
Needs analysis \ i Module
detailed tests
Specification design
7
_ ~ .
Coding
\\ Detailed design
analysis \ . (a)
- x Coding
?*\\ o
| 4
\; Module tests

Protolvpin g \

\
3 i
[] 1

l ’ f
/Simulation

\
\71\
.
\

=+ Phase 0
classic

ol _~V-cycle

Integration tests

M

Functional tests \

- Operation/maintenance

(b)

Software Engineering andFM

Every software engineering methodology is based on a
recommended development process proceeding through
several phases:

" Requirements, Specification, Design
" Coding, Unit Testing
" Integration and System Testing, Maintenance

Formal methods can
= Be a foundation for designing safety critical systems
" Be a foundation for describing complex systems
" Provide support for program development

What are Formal Methods?

Techniques and tools based on mathematics and formal
logic

Approach to develop high-quality systems
Develop a clear, formal, unambiguous, abstract model
Ensure model actually reflects requirements.

What are Formal Methods?

* Use formal reasoning to ensure the model has required
properties

— Safety properties: State X never reached
— Lifeness properties: State X eventually reached

— Fairness properties: In infinite time, X is reached infinitely
often

— Partial correctness: If system terminates on input X, output
is f (X)

* Implement model
— Use proof/synthesis to ensure correct translation

— Ensure abstraction does not break (i.e. integer numbers vs.
machine words, unlimited memory, exact floating point
arithmetic).

FM Vs. Classical Process Steps

In the Classical approach, Requirements analysis may fail to
identify all requirements.

— Formal Methods cannot help much here...

Specifications may be ambiguous and/or not reflect
requirements.

— Formal specifications can be unambiguous
— Formal specifications can be checked for consistency

— Formal specifications can be used to deduce (unexpected?)
properties.

FM Vs. Classical Process Steps

* Bad design and Architecture
— Mostly a matter of taste and experience. . .

* Coding in Classical Approach may fail to implement the
specifications

— Program verification (large subfield of FM) can help.

— Program synthesis/transformation may generate code directly
from specifications.

FM Vs. Classical Process Steps

* Testing in Classical process cannot (well, rarely) establish
absence of bugs!

— Only existence of bugs can be detected

— Again, verification can guarantee the absence of bugs (or
at least some classes of bugs).

* Software maintenance in Classical Approach often involves
large-scale systematic changes

— Formal methods can assure equivalence of changed code
— Formal methods can automate changes.

Example: Ambiguous Requirements
Analysis/Specification

Spacecraft developed by two teams of engineers at NASA JPL
and Lockheed Martin

NASA uses metric unit system
Lockheed Martin uses imperial unit system
Nobody noticed the discrepancy!

Result: Mars Climate Orbiter crashed into Mars on September
23rd, 1999

125 million USS lost
10 month journey to Mars wasted

Mission partially compromised (back-up space probes to the
rescue...)

Example: Maintenance/Porting Error

ESA had a successful space program.

Ariane IV one of the most successful commercial satellite
launch platforms.

Ariane V should be bigger, better, faster version.

To safe development costs, some code from Ariane IV was
reused.

Development took 10 years and EUR 8 billion anyways.

Example: Maintenance/Porting Error

In the code, 64 bit floating point representation of speed was
cast into 16 bit integer value

Ok for Ariane IV
Ariane V’s higher speed causes overflow condition

Correctly trapped by software, but no trap handler (efficiency
reasons, “it never happens anyways”)

Hence software crash

Result: First Ariane V rocket out of control, destroyed by
safety mechanism (June 4th, 1996).

Example: Design/Coding Error

Therac-25 was a combined electron/X-ray medical radiation
device (1985-1988)

Able to produce high energy electron beams, using a beam
spreader to control intensity

Also able to produce 25MeV X-rays (by placing a target and a
beam spreader into a much amplified electron beam)

Used in radiation therapy for cancer patients.

Example: Design/Coding Error

Software was expected to assure that electron beam intensity,
target, and beam spreader can only work in safe conditions.

However, race conditions in the code allowed unsafe states to
be reached:

High-energy, high intensity electron beam without
target/beam spreader

Race condition never detected in testing!

Result:

Several people died of radiation burns, several more injured
Lawsuits settled out of court.

Limitations of using FM

Basic software development is cheap
— Minimal investment: One PC, one copy of Linux/gcc

— Production cost for a new (corrected?) version is negligible
(a few minutes of compilation)

— Distribution cost is cheap (ship a CD/free download).
Formal methods add massive overhead.

Needs very complex Hardware and Software.
Training for formal methods is expensive/time consuming.

Reasoning about software is harder, but: Debugging software
IS easier.

Benefits of Formal Specifications

Higher level of rigor leads to better problem understanding

Defects are uncovered that would be missed using traditional
specification methods

Allows earlier defect identification

Formal specification language semantics allow checks for self-
consistency.

Enables the use of formal proofs to establish fundamental
system properties and invariants.

End of Slides

