	Department of Electrical Engin Assignment Date: 24/06/2020 Course Details	neering	
Course Title: Instructor:	Electric Power Transmission	Module: _ Total Marks: _	4rth 50
Name:	Student Details	Student ID:	

Q1	A single phase line has two parallel conductors 2 meters apart. The	Marks 10
	diameter of each conductor is 1.2 cm.	CLO 1
	Calculate the loop inductance per km of the line.	
Q2	A single phase transmission line has two parallel conductors 3 m	Marks 10
	apart, the radius of each conductor being 1 cm. Calculate the loop	CLO 1
	inductance per km length of the line if the material of the conductor	
	is	
	(i) Copper	
	(ii) Steel with relative permeability of 100.	
Q3	A long transmission lines more than 240kms are consisting of high	Marks 10
	amount of capacitance and inductance distributed across the entire	CLO 1
	length of the line. Ferranti effect occurs when current drawn by the	
	distributed capacitance of the line itself is greater than the current	
	associated with the load at the receiving end of the line (during light	
	or no load). Why Ferranti effect occurs in long transmission line?	
	Back your answer with valid data, facts and figures.	
Q4	A 3-phase load of 2000 kVA, 0.8 p.f. is supplied at 6.6 kV, 50 Hz	Marks 10
	by means of a 33 kV transmission line 20 km long and $33/6.6$ kV	CLO 2
	step-down transformer. The resistance and reactance of each	
	conductor are 0.4Ω and 0.5Ω per km respectively. The resistance	
	and reactance of transformer primary are 7.5 Ω and 13.2 Ω , while	
	those of secondary are 0.35 Ω and 0.65 Ω respectively.	
	Find the voltage necessary at the sending end of transmission line	
	when 6.6 kV is maintained at the receiving end.	
	Determine also the sending end power factor and transmission	
	efficiency.	
Q5	A 132 kV line with 1.956 cm dia. conductors is built so that corona	Marks 10

takes place if the line voltage exceeds 210 kV (r.m.s.). If the value	CLO 2
of potential gradient at which ionization occurs can be taken as 30	
kV per cm, find the spacing between the conductors.	