**Example 1(a):** Design slab and beams of a  $90' \times 60'$  Hall. The height of Hall is 20'. Concrete compressive strength  $(f_c') = 3$  ksi. Steel yield strength  $(f_v) = 40$  ksi.



Figure 1:  $90' \times 60'$  Hall.

**Solution:** Assume structural configuration. Take time to reach to a reasonable arrangement of beams, girders and columns. It depends on experience. Several alternatives are possible.

#### First option for structural arrangement of the given Hall, figure 2:

- Beams spaced at 10' c/c running along 60' side of Hall.
- As height of Hall is 20', assume 18" thick brick masonry walls.



Figure 2: Structural Arrangement ( $90' \times 60'$  Hall).

**Discussion:** Various structural configurations...

**Discussion:** Beam as thickened slab portions...

### (1) <u>SLAB DESIGN:</u>

#### Step No 1: Sizes.

• Minimum thickness of continuous one way slab as given under ACI 9.5.2, table 9.5 (a) is:

| Table 2.1: ACI formulae for continuous one way slab thickness, ACI 9.5.2                                                                               |                          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|
| Case                                                                                                                                                   | Case Slab thickness (in) |  |  |  |
| End span (one end continuous)                                                                                                                          | <i>l</i> /24             |  |  |  |
| Interior span (both ends continuous) <i>l</i> /28                                                                                                      |                          |  |  |  |
| (i) $l = Span length in inches.$<br>(ii) For $f_y$ other than 60,000 psi, the values from above formulae shall be multiplied by $(0.4 + f_y/100000)$ . |                          |  |  |  |

Span length "l" of slab is defined in ACI 8.7

## Span length (1):

- According to ACI 8.7.1: Span length of members not built integrally with support shall be considered as the clear span plus depth of the member, but need not exceed distance between center of supports.
- According to ACI 8.7.4: Span lengths for slabs built integrally with supports can be taken equal to clear span, if clear span of slab is not more than 10'.
- ACI 8.7.1 applies to end span.
- ACI 8.7.4 applies to other spans.

Assuming the thickness of slab equal to 6". Span length for end span of slab will be equal to clear span plus depth of member (slab), but need not exceed center to center distance between supports.





| Table 2.2: Span length of slab (figure 3)                                            |        |       |                    |       |  |  |
|--------------------------------------------------------------------------------------|--------|-------|--------------------|-------|--|--|
| Case $c/c$ distance $Clear span (l_n)$ $l_n + depth of slab (ACI 8.7.1)$ $length(l)$ |        |       |                    |       |  |  |
| End span (one end continuous)                                                        | 10.75′ | 9.25' | 9.25 + 0.5 = 9.75' | 9.75′ |  |  |
| Interior spans (both ends continuous)                                                | 10′    | 8.5'  | n/a                | 8.5′  |  |  |

| Table 2.3: Slab thickness calculation according to ACI 9.5.2. |                                  |                                        |  |  |  |  |
|---------------------------------------------------------------|----------------------------------|----------------------------------------|--|--|--|--|
| SpanFormula for thicknessThickness of slab (in)               |                                  |                                        |  |  |  |  |
| End span (one end continuous)                                 | $l/24 \times (0.4 + f_y/100000)$ | (9.75/24)×(0.4 +40000/100000) ×12=3.9" |  |  |  |  |
| Interior span (both ends continuous)                          | $l/28 \times (0.4 + f_y/100000)$ | (8.5/28)×(0.4 + 40000/100000)×12=2.9"  |  |  |  |  |
| l = Span length in inches.                                    |                                  |                                        |  |  |  |  |

Therefore,

Slab thickness ( $h_f$ ) = 3.9" (Minimum requirement by ACI 9.5.2.1).

Though any depth of slab greater than 3.9" can be taken as per ACI minimum

requirement, we will use the same depth as assumed i.e. 6"

Effective depth (d) =  $h_f - 0.75 - (3/8)/2 = 5''$  (for #3 main bars)



Figure 4: Effective depth of slab.

| Table 2.4: Dead Loads. |                |         |                                   |  |  |
|------------------------|----------------|---------|-----------------------------------|--|--|
| Material               | Thickness (in) | γ (kcf) | $Load = \gamma x thickness (ksf)$ |  |  |
| Slab                   | 6              | 0.15    | $(6/12) \times 0.15 = 0.075$      |  |  |
| Mud                    | 3              | 0.12    | $(3/12) \times 0.12 = 0.03$       |  |  |
| Tile                   | 2              | 0.12    | $(2/12) \times 0.12 = 0.02$       |  |  |

Service Dead Load (D.L) = 0.075 + 0.03 + 0.02 = 0.125 ksf

Service Live Load (L.L) = 40 psf or 0.04 ksf (for Hall)

Class Activity: Calculate live load per square foot on the class room floor

when it is fully occupied.

Service Load  $(w_s) = D.L + L.L = 0.125 + 0.04 = 0.165$  ksf

Factored Load  $(w_u) = 1.2D.L + 1.6L.L$ 

 $= 1.2 \times 0.125 + 1.6 \times 0.04 = 0.214$  ksf

### Step No 3: Analysis.

Our Slab system is:

- One-way,
- Clear spans less than 10', and
- Exterior ends of slab are discontinuous and unrestrained.

Refer to ACI 8.3.3 or page 396, Nilson 13<sup>th</sup> Ed, following ACI moment coefficients apply:



Figure 5: Bending Moment Diagram for slab.

(i) AT INTERIOR SUPPORT (left side of support):

Negative moment  $(-M_{Lint}) = \text{Coefficient} \times (w_u l_n^2)$ 

$$= (1/12) \times \{0.214 \times (9.25)^2\}$$
  
=1.53 ft-k/ft = 18.36 in-k/ft

(ii) AT INTERIOR SUPPORT (right side of support):

Negative moment  $(-M_{Rint}) = \text{Coefficient} \times (w_u l_n^2)$ 

$$= (1/12) \times \{0.214 \times (8.5)^2\}$$

$$= 1.29 \text{ ft-k/ft} = 15.48 \text{ in-k/ft}$$

(iii)AT EXTERIOR MID SPAN:

Positive moment (+M<sub>Mext</sub>) =Coefficient × (w<sub>u</sub>
$$l_n^2$$
)  
= (1/11) × {0.214 × (9.25)<sup>2</sup>}  
= 1.66 ft-k/ft = 19.92 in-k/ft

(iv)AT INTERIOR MID SPAN:

Positive moment (+M<sub>Mint</sub>) =Coefficient × (w<sub>u</sub>
$$l_n^2$$
)  
= (1/16) × {0.214 × (8.5)<sup>2</sup>}  
= 0.97 ft-k/ft = 11.64 in-k/ft

Discussion: ACI analysis vs actual conditions for beam support, concepts of hinge,

roller supports etc.





Figure 6: Reinforcement Placement in slab.

$$\begin{split} A_{smin} &= 0.002 bh_f \,(\text{for } f_y \, 40 \text{ ksi, ACI } 10.5.4) \\ &= 0.002 \times 12 \times 6 = 0.144 \text{ in}^2/\text{ft} \\ a &= A_{smin} f_y / \,(0.85 f_c 'b) = 0.144 \times 40 / \,(0.85 \times 3 \times 12) = 0.188'' \end{split}$$

 $\Phi M_n = \Phi A_{smin} f_y (d-a/2)$ 

 $= 0.9 \times 0.144 \times 40 \times (5-0.188/2) = 25.4$  in-k/ft

 $\Phi$  M<sub>n</sub> calculated from A<sub>smin</sub> is greater than all moments as calculated in Step No 3. Therefore A<sub>s</sub> = A<sub>smin</sub> = 0.144 in<sup>2</sup>/ft

Using  $\frac{1}{2}'' \Phi$  (#4) {#13, 13 mm}, with bar area A<sub>b</sub> = 0.20 in<sup>2</sup>

Spacing = Area of one bar  $(A_b)/A_s$ 

 $= (0.20 \text{ in}^2/0.144 \text{ in}^2/\text{ft}) \times 12 = 16.67 \text{ in}$ 

**Discussion:** *Bar numbers commonly used in slabs...?* 

Using  $3/8'' \Phi$  (#3) {#10, 10 mm}, with bar area A<sub>b</sub> = 0.11 in<sup>2</sup>

Spacing = Area of one bar  $(A_b)/A_s$ 

 $= (0.11 \text{ in}^2/0.144 \text{ in}^2/\text{ft}) \times 12 = 9.16'' \approx 9''$ 

Finally use #3 @ 9" c/c (#10 @ 225 mm c/c). This will work for both Positive and Negative steel as  $A_{smin}$  governs.

Shrinkage steel or temperature steel (A<sub>st</sub>):

 $A_{st} = 0.002bh_f$ 

 $A_{st} = 0.002 \times 12 \times 6 = 0.144 \text{ in}^2/\text{ft}$ 

Shrinkage reinforcement is same as main reinforcement, because:

 $A_{st} = A_{smin} = 0.144 \text{ in}^2$ 

• Maximum spacing for main steel reinforcement in one way slab according to ACI 7.6.5 is minimum of:

(i) 
$$3h_f = 3 \times 6 = 18''$$

(ii) 18"

Therefore 9" spacing is O.K.

- Maximum spacing for temperature steel reinforcement in one way slab according to ACI 7.12.2.2 is minimum of:
  - (i)  $5h_f = 5 \times 6 = 30''$
  - (ii) 18"

Therefore 9" spacing is O.K.

(2) <u>BEAM DESIGN (single span, simply supported):</u>

#### Data Given:

Exterior supports of beam = 18" brick masonry wall.

 $f_c = 3$  ksi;  $f_v = 40$  ksi

Beams c/c spacing =10'

### Step No 1: Sizes.

According to ACI 9.5.2.1, table 9.5 (a):

Minimum thickness of beam (simply supported) =  $h_{min} = l/16$ 

 $l = \text{clear span } (l_n) + \text{depth of member (beam)} \le c/c \text{ distance between supports}$ [ACI 8.7]



Figure 7: Clear span of Beam.



Figure 8: Beam cross-section.

Let depth of beam = 5'

 $l_n$  + depth of beam = 60' + 5' = 65'

c/c distance between beam supports =  $60 + 2 \times (9/12) = 61.5'$ 

Therefore l = 61.5'

Depth (h) =  $(61.5/16) \times (0.4 + f_v/100000) \times 12$ 

= 36.9" (Minimum requirement by ACI 9.5.2.1).

Though any depth of beam greater than 36.9" can be taken as per ACI minimum requirement, we will use the same depth as assumed i.e. 60"

Take h = 5' = 60''d = h - 3 = 57''

### Step No 2: Loads.

Service Dead Load (D.L) = 0.075 + 0.03 + 0.02 = 0.125 ksf (Table 2.3) Service Live Load (L.L) = 40 psf or 0.04 ksf (for Hall) Beam is supporting 10' slab. Therefore load per running foot will be as follows: Service Dead Load from slab=  $0.125 \times 10 = 1.25$  k/ft Service Dead Load from beam's self weight =  $h_w b_w \gamma_c$ 

 $= (54 \times 18/144) \times 0.15 = 1.0125$  k/ft

Total Service Dead Load = 1.25 + 1.0125 = 2.2625 k/ft

Service Live Load =  $0.04 \times 10 = 0.4$  k/ft

 $w_s = D.L + L.L = 1.0125 + 0.4 = 1.4125 \text{ k/ft}$ 

 $w_u \!=\! 1.2D.L + 1.6L.L \!=\! 1.2 \times 2.2625 + 1.6 \times 0.4 \!=\! 3.355 \; k/ft$ 

#### Step No 3: Analysis.



Figure 9: Shear Force & Bending Moment Diagrams.

$$\begin{split} M_u &= w_u l^2 / 8 \quad (l = \text{span length of beam}) \\ M_u &= 3.355 \times 61.5^2 / 8 = 1586.18 \text{ ft-k} = 1586.18 \times 12 = 19034 \text{ in-k} \\ d &= 57'' = 4.75' \\ V_{max} &= 103.16 \text{ k} \\ V_u &= 84.70 \text{ k} \end{split}$$

#### Step No 4: Design of beam.

(A)Flexural Design:

Step (a): According to ACI 8.10, beff for T-beam is minimum of:

(i)  $16h_f + b_w = 16 \times 6 + 18 = 114''$ 

(ii) (c/c span of beam)/4 =  $(61.5'/4) \times 12 = 184.5''$ 

(iii)c/c spacing between beams = $10' \times 12 = 120''$ 

So 
$$b_{eff} = 114''$$

Step (b): Check if beam is to be designed as rectangular beam or T-beam.

Trial #1:

(i) Assume  $a = h_f = 6''$ 

$$A_{s} = M_{u} / \{ \Phi f_{v} (d - a/2) \}$$

$$A_s = 19034 / \{0.9 \times 40 \times (57 - 6/2)\} = 9.79 \text{ in}^2$$

(ii) Re-calculate "a":

$$a = A_s f_y / (0.85 f_c' b_{eff})$$

 $a = 9.79 \times 40/(0.85 \times 3 \times 114) = 1.34'' < h_f$ 

Therefore design beam as rectangular beam.

Trial #2:

 $A_{s} = 19034 / \{0.9 \times 40 \times (57 - 1.34/2)\} = 9.38 \text{ in}^{2}$ a = 9.38 × 40/ (0.85 × 3 × 114) = 1.29"

This value is close enough to the previously calculated value of "a", therefore,  $A_s = 9.38 \text{ in}^2$ , O.K.

Step (c): Check for maximum and minimum reinforcement.

 $\begin{aligned} A_{smax} &= \rho_{max} b_w d \\ \rho_{max} &= 0.85 \beta_1 (f_c'/f_y) \left\{ \epsilon_u / (\epsilon_u + \epsilon_y) \right\} \\ \rho_{max} &= 0.85 \times 0.85 \times (3/40) \times \left\{ 0.003 / (0.003 + 0.005) \right\} = 0.0203 \end{aligned}$ 

 $A_{smax} = 0.0203 \times 18 \times 57 = 20.83 \text{ in}^2$  $A_{smin} = \rho_{min}b_w d = (200/40000) \times 18 \times 57 = 5.13 \text{ in}^2$ A<sub>smin</sub> < A<sub>s</sub> < A<sub>smax</sub>, O.K. Note that  $\rho_{min} \& \rho_{max}$  can also be found using table A.4, Nelson 13<sup>th</sup> Ed.

Beam (main reinforcement):

 $A_s = 9.38 \text{ in}^2$ Using #8, 1"  $\Phi$  {#25, 25 mm}, with bar area  $A_b = 0.79 \text{ in}^2$ No. of bars =  $A_s/A_b = 9.38/0.79 = 11.87 \approx 12$  bars Use 12 #8 bars (12 #25 bars, 25 mm).

Check the capacity of designed beam:

Area of 12 #8 Bars =  $12 \times 0.79 = 9.48$  in<sup>2</sup>  $a = A_s f_v / (0.85 f_c b_{eff}) = 9.48 \times 40 / (0.85 \times 3 \times 114) = 1.30''$ d' = 1.5 + (3/8) + 1 + (1/2) = 3.375''d = h - d' = 60 - 3.375 = 56.625''





 $M_d = \Phi A_s f_v (d - a/2) = 0.9 \times 9.48 \times 40 \times (56.625 - 1.30/2) = 19103.2$  in-k  $M_d > (M_u = 19034 \text{ in-k}), O.K.$ 

Skin Reinforcement:

According to ACI 10.6.7 "If the effective depth d of a beam or joist exceeds 36 in., longitudinal skin reinforcement shall be uniformly distributed along both side faces of the member for a distance d/2 nearest the flexural tension reinforcement. The spacing  $s_{sk}$  between longitudinal

bars or wires of the skin reinforcement shall not exceed the least of d/6, 12 in., and  $1000A_b/(d - 30)$ . It shall be permitted to include such reinforcement in strength computations if a strain compatibility analysis is made to determine stress in the individual bars or wires. The total area of longitudinal skin reinforcement in both faces need not exceed one-half of the required flexural tensile reinforcement".



Figure 11: Skin reinforcement for beams and joists with d > 36 inches.

Maximum area of skin reinforcement allowed by ACI:

 $A_{skin, max} = Main flexural reinforcement/2 = 9.38/2 = 4.69 in^2$ 

Range up to which skin reinforcement is provided:

d/2 = 56.625/2 = 28.3125''

For #6 bar used in skin reinforcement,

s<sub>sk</sub> is least of:

- d/6 = 56.625/6 = 9.44''
- 12"
- $1000A_b/(d-30) = 1000 \times 0.44/(56.625 30) = 16.53''$

Therefore  $s_{sk} = 9.44'' \approx 9''$ 

With this spacing, 3 bars on each face are required. And for #6 bar, the total area of skin reinforcement is:

$$A_{skin} = 6 \times 0.44 = 2.64 \text{ in}^2 < A_{skin, max} = 4.69 \text{ in}^2$$
, O.K

(B) Shear Design:

$$\begin{split} V_u &= 84.71 \text{ k} \\ \Phi V_c &= \Phi 2 \sqrt{(f_c')} b_w d = (0.75 \times 2 \times \sqrt{(3000)} \times 18 \times 57)/1000} = 84.29 \text{ k} \\ \Phi V_c &< V_u \text{ {Shear reinforcement is required} } \\ s_d &= \Phi A_v f_y d/(V_u - \Phi V_c) \\ \text{Using #3, 2 legged stirrups with } A_v &= 0.11 \times 2 = 0.22 \text{ in}^2 \text{ } \\ s_d &= 0.75 \times 0.22 \times 40 \times 57/(84.71 - 84.29) = 895'' \\ \text{Maximum spacing and minimum reinforcement requirement as permitted by} \\ \text{ACI 11.5.4 and 11.5.5.3 shall be minimum of:} \\ (i) \quad A_v f_y / (50b_w) = 0.22 \times 40000/(50 \times 18) \approx 9.5'' \\ (ii) \quad d/2 = 57/2 = 28.5'' \\ (iii) \quad 24'' \\ (iv) A_v f_y / 0.75 \sqrt{(f_c')} b_w = 0.22 \times 40000/ \left\{ (0.75 \times \sqrt{(3000)} \times 18 \right\} = 11.90'' \\ \hline \text{Other checks:} \\ (a) \quad \text{Check for depth of beam:} \\ \Phi V_c &\leq \Phi 8 \sqrt{(f_c')} b_v = d(A C L 115.6.0) \end{split}$$

$$\begin{split} \Phi V_s &\leq \Phi 8 \sqrt{(f_c')} b_w d \; (ACI\; 11.5.6.9) \\ \Phi 8 \sqrt{(f_c')} b_w d &= 0.75 \times 8 \times \sqrt{(3000)} \times 18 \times 57/1000 = 337.18 \; k \\ \Phi V_s &= (\Phi A_v f_y d)/s_d \\ &= (0.75 \times 0.22 \times 40 \times 57)/9.5 = 39.6 \; k < 337.18 \; k, \; O.K. \end{split}$$

So depth is O.K. If not, increase depth of beam.

(b) Check if " $\Phi V_s \le \Phi 4 \sqrt{(f_c')} b_w d$ " {ACI 11.5.4.3}:

If " $\Phi V_s \leq \Phi 4 \sqrt{(f_c')b_w}d$ ", the maximum spacing  $(s_{max})$  is O.K. Otherwise reduce spacing by one half.  $\Phi 4 \sqrt{(f_c')b_w}d = 0.75 \times 4 \times \sqrt{(3000)} \times 18 \times 57/1000 = 168.58 \text{ k}$  $\Phi V_s = (\Phi A_v f_v d)/s_d$ 

$$= (0.75 \times 0.22 \times 40 \times 57)/9.5 = 39.6 \text{ k} < 168.58 \text{ k}, \text{ O.K.}$$

<u>Arrangement of stirrups in the beam:</u> With #3, 2 legged vertical stirrups @ 9.5'' c/c (maximum spacing and minimum reinforcement requirement as permitted by ACI), the shear capacity ( $\Phi V_n$ ) of the beam will be equal to:

$$\Phi V_n = \Phi V_c + \Phi V_s$$

 $\Phi V_s = (\Phi A_v f_y d)/s_{max}$   $\Phi V_s = (0.75 \times 0.22 \times 40 \times 57/9.5) = 39.6 k$ Therefore  $\Phi V_n = 84.29 + 39.6 = 123.89 k > (V_u = 87.22 k)$ It means that theoretically, from a section at a distance equal to s/2 up to a section where shear is equal to  $\Phi V_c/2$ , #3, 2 legged vertical stirrups @ 9.5" c/c shall be provided. Beyond the value of  $\Phi V_c/2$ , no shear reinforcement is theoretically required. However # 3, 2 legged vertical stirrups @ 12" c/c are recommended to hold the flexural reinforcement bars.





# (3) DRAFTING:

(I) Slab (S1 and S2):



| Panel | Depth (in) | Mark | Bottom<br>Reinforcement | Mark | Top reinforcement |                    |
|-------|------------|------|-------------------------|------|-------------------|--------------------|
| S1    | 6"         | M1   | 3/8"                    | MT1  | 3/8"              | Non continuous End |
| S2    | 6"         | M1   | 3/8"                    | MT1  | 3/8" φ @ 9" c/c   | Continuous End     |



Section A-A. Refer to figure 5.15, chapter 5, Nelson 13<sup>th</sup> Ed for bar cutoff.



# Beam (B1) Details

(a) Use graph A2 to find location of points where bars can be bent up or cutoff for simply supported beams uniformly loaded.(b) Approximate locations of points where bars can be bent up or cotoff for continuous beams uniformly loaded and built integrally with their supports according to the coefficients in ACI code.



## Appendix A

# Comparison of ACI coefficients analysis with analysis of SAP2000 (finite element method based software): Assumptions made in SAP model are,

- a. Brick masonry walls are modeled as hinged support.
- b. Slab is modeled as shell element.
- c. Beams are modeled as frame elements.



Figure 13: Plan view of hall showing variation in slab moment (kip-in/in). Marked points show the locations picked for comparison purpose.

| Table 2.5: Slab moments |             |                        |           |                        |  |
|-------------------------|-------------|------------------------|-----------|------------------------|--|
|                         | ACI 318-02  | See figure SAP Results |           | Percentage Difference  |  |
|                         | (kip-in/in) | 9                      | (k-in/in) | I creentage Difference |  |
| M (at wall)             | 0           | MI                     | 0.02      | -                      |  |
|                         |             | $M_{\rm F}$            | 4.59      | 64                     |  |
| M (at ext. mid span)    | 1.66        | M <sub>G</sub>         | 3.40      | 51                     |  |
|                         |             | M <sub>H</sub>         | 1.55      | - 7                    |  |
|                         |             | M <sub>B</sub>         | 1.47      | -4                     |  |
| M (at int. support)     | 1.53        | M <sub>C</sub>         | 1.48      | -4                     |  |
|                         |             | M <sub>E</sub>         | 0.617     | -60                    |  |
| M                       | 0.97        | M <sub>A</sub>         | 1.04      | 7                      |  |
| M (at int. mid span)    | 0.97        | M <sub>D</sub>         | 1.2       | 19                     |  |

| Table 2.6: Simply supported beam moment.           |  |  |  |  |  |
|----------------------------------------------------|--|--|--|--|--|
| ACI 318-02 SAP Results Percentage Difference       |  |  |  |  |  |
| M <sub>,mid span</sub> (k-in) 19034 18987.253 0.25 |  |  |  |  |  |

## **Conclusions:**

- There is more variation between SAP and ACI in slab moments.
- Less variation in beam moment.

# Appendix B

## **Relevant Pictures**



Figure 14: Supporting chairs for slab reinforcement.



Figure 15: Reinforcement in slab.



Figure 16: Flexure and shear reinforcement in a beam.



Figure 16: Local arrangement for bar bending.

#### Appendix C

#### Minimum uniformly distributed live load:

Representative values of minimum live loads to be used in a wide variety of buildings are found in *Minimum Design Loads for Buildings and Other Structures, SEI/ASCE 7-02, American Society of Civil Engineers*, a portion of which is reproduced in table C1. The table gives uniformly distributed live loads for various types of occupancies; these include impact provisions where necessary. These loads are expected maxima and considerably exceed average values.

| Table C1: Min                                                   | imum un   | iformly distributed live loads.               |           |
|-----------------------------------------------------------------|-----------|-----------------------------------------------|-----------|
|                                                                 | Live      |                                               |           |
| Occupancy or Use                                                | Load,     |                                               | Live      |
| Apartments (see residential)                                    | psf       | Dining rooms and restaurants                  | Load, psf |
| Access floor systems                                            |           | Dwellings (see residential)                   | 100       |
| Office use                                                      | 50        |                                               | 100       |
|                                                                 | 30<br>100 | Fire escapes                                  | 40        |
| Computer use Armories and drill rooms                           | 150       | On single-family dwellings only               | 40        |
|                                                                 | 150       | Garages (passenger cars only)                 | 40        |
| Assembly areas and theaters                                     |           | Trucks and buses <i>(see foot note)</i>       |           |
| Fixed seats (fastened to floors)                                | 60        | Grandstands (see stadium and arena bleachers) |           |
| Lobbies                                                         | 100       | Gymnasiums, main floors, and balconies        | 100       |
| Movable seats                                                   | 100       | Hospitals                                     |           |
| Platforms (assembly)                                            | 100       | Operating rooms, laboratories                 | 60        |
| Stage floors                                                    | 150       | Private rooms                                 | 40        |
| Balconies (exterior)                                            | 100       | Wards                                         | 40        |
| On one and two family residences only, and not exceeding 100ft2 | 60        | Corridors above first floor                   | 80        |
| Bowling alleys, poolrooms, and similar recreational areas       | 75        | Hotels (see residential)                      |           |
| Catwalks for maintenance access                                 | 40        | Libraries                                     |           |
| Corridors                                                       |           | Reading rooms                                 | 60        |
| First floor                                                     | 100       | Stack rooms                                   | 150       |
| Other floors, same as occupancy served except as indicated      |           | Corridors above first floor                   | 80        |
| Dance halls and ballrooms                                       | 100       | Manufacturing                                 |           |
| Decks (patio and roof)                                          |           | Light                                         | 125       |
| Same as area served, or for the type of occupancy accommodated  |           | Heavy                                         | 250       |

| Tab                                                                                              | le C1: (Co           | ontinued)                                                                                             |                   |
|--------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------|-------------------|
| Occupancy or Use                                                                                 | Live<br>Load,<br>psf | Occupancy or Use                                                                                      | Live<br>Load, psf |
| Marquees and Canopies                                                                            | 75                   | Sidewaks, vehicular<br>driveways, and yards subject<br>to trucking                                    | 250               |
| Office Buildings                                                                                 |                      | Stadium and arenas                                                                                    |                   |
| File and computer rooms shall be<br>designed for heavier loads based on<br>anticipated occupancy |                      | Pleachers                                                                                             | 100               |
| Lobbies and first-floor corridors                                                                | 100                  | Fixed seats (fastened to floors)                                                                      | 60                |
| Offices                                                                                          | 50                   | Stairs and exitways                                                                                   | 100               |
| Corridors above first floor                                                                      | 80                   | One and two-family residences only                                                                    | 40                |
| Penal institutions                                                                               |                      | Storage areas above ceilings                                                                          | 20                |
| Cell blocks                                                                                      | 40                   | Storage warehouses (shall be<br>designed for heavier loads if<br>required for anticipated<br>storage) |                   |
| Corridors                                                                                        | 100                  | Light                                                                                                 | 125               |
| Residential                                                                                      |                      | Heavy                                                                                                 | 250               |
| Dwellings (one and two-family)                                                                   |                      | Stores                                                                                                |                   |
| Uninhabitable attics without storage                                                             | 10                   | Retail                                                                                                |                   |
| Uninhabitable attics with storage                                                                | 20                   | First floor                                                                                           | 100               |
| Habitable attics and sleeping areas                                                              | 30                   | Upper floors                                                                                          | 73                |
| All other areas except stairs and balconies                                                      | 40                   | Wholesale, all floors                                                                                 | 125               |
| Hotels and multifamily houses                                                                    |                      | Walkways and elevated<br>platforms (other than<br>exitways)                                           | 60                |
| Private rooms and corridors serving them                                                         | 40                   | Yards and terraces,<br>pedestrians                                                                    | 100               |
| Public rooms and corridors serving them                                                          | 100                  |                                                                                                       |                   |
| Reviewing stands, grandstands and bleachers                                                      | 100                  |                                                                                                       |                   |
| Schools                                                                                          |                      |                                                                                                       |                   |
| Classrooms                                                                                       | 40                   |                                                                                                       |                   |
| Corridors above first floor                                                                      | 80                   |                                                                                                       |                   |
| First-floor corridors                                                                            | 100                  |                                                                                                       |                   |
| <sup>a</sup> Garages accommodating trucks and buses shall be des<br>truck and bus loadings.      | igned in accord      | dance with an approved method that contains                                                           | provisions for    |





90' x 60' Hall







90 x 60 Hall











## Appendix **E**

# Cutoff or bend points for bars in approximately equal spans with uniformly distributed loads:







# References

- > Design of Concrete Structures by Nilson, Darwin and Dolan (13<sup>th</sup> ed.)
- ➤ ACI 318-02/05