DATAWAREHOUSING
LECTURE 4

ENGR. MADEHA MUSHTAQ
DEPARTMENT OF COMPUTER SCIENCE
IQRA NATIONAL UNIVERSITY



NORMALIZATION

« Normalization is fundamentally about not having the same information twice or
minimizing duplication.

« Normalization is to reduce and even eliminate data redundancy.
 Goals of normalization:

= Eliminate redundant data.

» Ensure data dependencies make sense.



NORMALIZATION

« Normalization is necessary to remove file maintenance anomalies, which are side
effects of deletion, updating and insertion.

« Update anomalies:

- |f data items are scattered and are not linked to each other properly, then it
could lead to strange situations.

« For example, when we try to update one data item having its copies scattered

over several places, a few instances get updated properly while a few others are
left with old values. Such instances leave the database in an inconsistent state.



NORMALIZATION

 Deletion anomalies:

* \We tried to delete a record, but parts of it was left undeleted because of
unawareness, the data Is also saved somewhere else.

* |nsert anomalies:
* \We tried to Insert data in a record that does not exist at all.

* Normalization is a method to remove all these anomalies and bring the
database to a consistent state.



NORMALIZATION

 Functional Dependency:

 Functional dependency (FD) is a set of constraints between two attributes in a
relation.

* Functional dependency is represented by an arrow sign (—) that is, X—Y,
where X functionally determines Y.

» The left-hand side attributes determine the values of attributes on the right-
hand side.



NORMALIZATION

« Partial Dependency:

« PD exists, when for a composite primary key, any attribute in the
table depends only on a part of the primary key and not on the
complete primary key.

* To remove Partial dependency, we can divide the table, remove the
attribute which is causing partial dependency, and move it to some
other table where it fits in well.



NORMALIZATION

 Transitive Dependency:

« \When a non-key attribute depends on other non-key attributes rather than
depending upon the primary key.

« Atransitive dependency Is when changing a non-key column, might cause
any of the other non-key columns to change.



NORMALIZATION

« Codd in 1971 in his seminal paper formulated a number of design principles
for a relational database that can be formalized into three normal forms:

* First Normal Form
 Second Normal Form
 Third Normal Form



NORMALIZATION :1INF

 All attributes must have a single(atomic) value, BUT it can contain redundant data.
 Each attribute must contain only a single value from its pre-defined domain.

» Table 1 is not in INF as each column is not containing single/atomic values.

roll_no subject

101 0S, CN
103 Java

102 C, C++

Table 1



NORMALIZATION :1INF

 Here is our updated table and it now satisfies the First Normal Form.

subject

0S

CN




NORMALIZATION: 2NF

Must be in First Normal Form and every non-key attribute is fully dependent on the
primary key.

This implies eliminating attributes which are not dependent on primary key.
There should be no Partial Dependency.

For student table, student_id Is the primary key.

For Subject table, subject_id is the primary key.

For score table, we have a composite primary key (student_id, subject_id).



NORMALIZATION: 2NF

student id name reg_no subject_id subject_name

Java

10 Akon 07-WY
C++

1 Akon 08-WY

Php

Student Subject

score_id student_id subject_id teacher

10 1 Java Teacher

10 C++ Teacher

11 Java Teacher




NORMALIZATION: 2NF

 Now if we look at the Score table, we have a column named teacher
which is only dependent on the subject.

* Now as we just discussed that the primary key for this table is a
composition of two columns which is student_id & subject_id but the
teacher's name only depends on subject, hence the subject_id, and has
nothing to do with student_id.

 This is Partial Dependency, where an attribute in a table depends on
only a part of the primary key and not on the whole key.



NORMALIZATION: 2NF

subject_id subject_name teacher

Java Java Teacher
C++ C++ Teacher

Php Php Teacher

Our Score table is now in the second normal form, with no partial dependency.

score_id student_id subject_id

10 1

10 2

11




NORMALIZATION: 3NF

« Must be in second normal form and every non-key attribute is dependent on
the primary key, the whole primary key and nothing but the primary key.

 This implies eliminating attributes which are dependent on a non-key
attribute.

* There should be no Transitive Dependency.



NORMALIZATION: 3NF

* |n the Score table, we need to store some more information, which is the
exam name and total marks, so let's add 2 more columns to the Score
table.

score_id student_id subject_id marks exam_name total_marks

Primary key for our Score table is a composite key, (student_id, subject_id)



NORMALIZATION: 3NF

Our new column exam_name is dependent on both student_id and
subject_id.

However, the other new column total marks depends on exam_name as
with exam type the total score changes.

But exam_name Is just another column in the score table. It Is not a primary
key.

This Is transitive dependency.



NORMALIZATION: 3NF

» To remove the transitive dependency, we can create a new table Exam and put
the columns exam_name and total _marks in this new table.

exam_id exam_name total_marks

Workshop 200
Mains 70

Practicals 30




NORMALIZATION

Conclusions:

Generally a good idea is to only ensure 2NF.

3NF is at the cost of simplicity and performance.
Normalization usually results in the formation of many tables.
Normalization is well suited for transactional processing.

But not for DSS as they aim at analyzing rather than processing.

The multitude of tables causes problems in many analysis technigues that are
designed to work in a DWH environment.



END OF SLIDES



