
DATA WAREHOUSING

LECTURE 4

ENGR. MADEHA MUSHTAQ

DEPARTMENT OF COMPUTER SCIENCE

IQRA NATIONAL UNIVERSITY



NORMALIZATION

• Normalization is fundamentally about not having the same information twice or 

minimizing duplication.

• Normalization is to reduce and even eliminate data redundancy.

• Goals of normalization:

▪ Eliminate redundant data. 

▪ Ensure data dependencies make sense. 



NORMALIZATION

• Normalization is necessary to remove file maintenance anomalies, which are side 

effects of deletion, updating and insertion.

• Update anomalies:

• If data items are scattered and are not linked to each other properly, then it 

could lead to strange situations. 

• For example, when we try to update one data item having its copies scattered 

over several places, a few instances get updated properly while a few others are 

left with old values. Such instances leave the database in an inconsistent state.



NORMALIZATION

• Deletion anomalies:

• We tried to delete a record, but parts of it was left undeleted because of 

unawareness, the data is also saved somewhere else. 

• Insert anomalies:

• We tried to insert data in a record that does not exist at all. 

• Normalization is a method to remove all these anomalies and bring the 

database to a consistent state.



NORMALIZATION

• Functional Dependency:

• Functional dependency (FD) is a set of constraints between two attributes in a 

relation. 

• Functional dependency is represented by an arrow sign (→) that is, X→Y, 

where X functionally determines Y. 

• The left-hand side attributes determine the values of attributes on the right-

hand side.



NORMALIZATION

• Partial Dependency: 

• PD exists, when for a composite primary key, any attribute in the 

table depends only on a part of the primary key and not on the 

complete primary key.

• To remove Partial dependency, we can divide the table, remove the 

attribute which is causing partial dependency, and move it to some 

other table where it fits in well.



NORMALIZATION

• Transitive Dependency: 

• When a non-key attribute depends on other non-key attributes rather than 

depending upon the primary key.

• A transitive dependency is when changing a non-key column, might cause 

any of the other non-key columns to change.



NORMALIZATION

• Codd in 1971 in his seminal paper formulated a number of design principles 

for a relational database that can be formalized into three normal forms:

• First Normal Form

• Second Normal Form

• Third Normal Form



9

• All attributes must have a single(atomic) value, BUT it can contain redundant data.

• Each attribute must contain only a single value from its pre-defined domain.

• Table 1 is not in 1NF as each column is not containing single/atomic values.

NORMALIZATION :1NF

Table 1



NORMALIZATION :1NF

• Here is our updated table and it now satisfies the First Normal Form.



NORMALIZATION: 2NF

• Must be in First Normal Form and every non-key attribute is fully dependent on the 

primary key.

• This implies eliminating attributes which are not dependent on primary key.

• There should be no Partial Dependency.

• For student table, student_id is the primary key.

• For Subject table, subject_id is the primary key.

• For score table, we have a composite primary key (student_id, subject_id).



NORMALIZATION: 2NF

Student Subject

Score



NORMALIZATION: 2NF

• Now if we look at the Score table, we have a column named teacher 

which is only dependent on the subject.

• Now as we just discussed that the primary key for this table is a 

composition of two columns which is student_id & subject_id but the 

teacher's name only depends on subject, hence the subject_id, and has 

nothing to do with student_id.

• This is Partial Dependency, where an attribute in a table depends on 

only a part of the primary key and not on the whole key.



NORMALIZATION: 2NF

Our Score table is now in the second normal form, with no partial dependency.



NORMALIZATION: 3NF

• Must be in second normal form and every non-key attribute is dependent on 

the primary key, the whole primary key and nothing but the primary key.

• This implies eliminating attributes which are dependent on a non-key 

attribute.

• There should be no Transitive Dependency.



• In the Score table, we need to store some more information, which is the 

exam name and total marks, so let's add 2 more columns to the Score 

table.

NORMALIZATION: 3NF

Primary key for our Score table is a composite key, (student_id, subject_id)



NORMALIZATION: 3NF

• Our new column exam_name is dependent on both student_id and 

subject_id.

• However, the other new column total_marks depends on exam_name as 

with exam type the total score changes.

• But exam_name is just another column in the score table. It is not a primary 

key.

• This is transitive dependency.



NORMALIZATION: 3NF

• To remove the transitive dependency, we can create a new table Exam and put 

the columns exam_name and total_marks in this new table.



NORMALIZATION

• Conclusions:

• Generally a good idea is to only ensure 2NF. 

• 3NF is at the cost of simplicity and performance. 

• Normalization usually results in the formation of many tables.

• Normalization is well suited for transactional processing.

• But not for DSS as they aim at analyzing rather than processing.

• The multitude of tables causes problems in many analysis techniques that are 

designed to work in a DWH environment.



END OF SLIDES


