
DATA WAREHOUSING

LECTURE 10

ENGR. MADEHA MUSHTAQ

DEPARTMENT OF COMPUTER SCIENCE

IQRA NATIONAL UNIVERSITY

DENORMALIZATION

• Denormalization is a strategy used on a previously-normalized database

to increase performance.

• Denormalization is used to improve query performance and speed up

reporting.

• Normalization is a rule of thumb in DBMS but in DSS ease of use is

achieved by way of Denormalization.

HOW DENORMALIZATION IMPROVES PERFORMANCE

• Denormalization specifically improves performance by either:

• Reducing the number of tables and hence the reliance on joins, which

consequently speeds up performance.

• Reducing the number of joins required during query execution, or

• Reducing the number of rows to be retrieved from the Primary Data Table.

WHEN AND WHY TO USE DENORMALIZATION

• Improving query performance.

• Speeding up reporting.

• Computing commonly-needed values up front: We want to have some values

ready-computed so we don’t have to generate them in real time.

DENORMALIZATION TECHNIQUES

• Storing Derivable Information

• Pre-Joining Tables

• Hard-Coded Values

• Keeping Detail with Master

• Short-Circuit Key

• Splitting Tables

STORING DERIVABLE VALUES

• When a calculation is frequently executed during queries, it can be

worthwhile storing the results of the calculation.

• If the calculation involves detail records, then store the derived calculation

in the master table.

• Make sure to write application code to re-calculate the value, each time that

DML is executed against the detail records.

STORING DERIVABLE VALUES

• Advantages:

• Source values do not need to be looked up every time the derivable

value is required.

• The calculation does not need to be performed during a query or report.

• Disadvantages:

• DML against the source data will require recalculation or adjustment of

the derivable data.

• Data duplication introduces the possibility of data inconsistencies.

STORING DERIVABLE VALUES

STORING DERIVABLE VALUES

• When a message is delivered to a recipient, the user only receives a pointer

to that message, which is recorded in RECEIVED_MESSAGES.

• The reason for this, of course, is to prevent the mail system from storing a

hundred copies of the same message when one message is sent to a hundred

recipients.

• Then, when someone deletes a message from their account, only the entry in

the RECEIVED_MESSAGES table is removed.

STORING DERIVABLE VALUES

• We could consider adding a de-normalized column to the MESSAGES table

to keep track of the total number of RECEIVED_MESSAGES that are still

kept for a particular message.

• Then each time users delete a row in RECEIVED_MESSAGES, in other

words, they delete a pointer to the message, the Number_of_times_received

column can be decremented.

• When the value of the de-normalized column equals zero, then we know the

message can also be deleted from the MESSAGES table.

PRE-JOINING TABLES

• You can pre-join tables by including a non-key column in a table, when

the actual value of the primary key, and the foreign key, has no business

meaning.

• By including a non-key column that has business meaning, you can avoid

joining tables, thus speeding up specific queries.

• We must include application code that updates the denormalized column,

each time the “master” column value changes in the referenced record.

PRE-JOINING TABLES

• Advantages:

• Time-consuming joins can be avoided.

• Disadvantages:

• Extra DML needed to update original non-denormalized column.

• Extra column and possibly larger indices require more working space

and disk.

PRE-JOINING TABLES

PRE-JOINING TABLES

• Example

• Suppose users often need to query RECEIVED_MESSAGES, using the

name of the folder where the received message is filed.

• In this case it saves time when the name of the folder is available in the

RECEIVED_MESSAGES table.

• Now, if a user needs to find all messages in a particular folder, only a query

on RECEIVED_MESSAGES is needed.

HARD-CODED VALUES

• If a reference table contains records that remain constant, then you can

consider hard- coding those values into the application code.

• This will mean that you will not need to join tables to retrieve the list of

reference values.

• This is a special type of denormalization, when values are kept outside a

table in the database.

HARD-CODED VALUES

• Advantages:

• Avoids implementing a look-up table.

• Avoids joins to a look-up table.

• Disadvantages:

• Changing look-up values requires recoding and retesting.

HARD-CODED VALUES

KEEPING DETAILS WITH MASTER

• In a situation where the number of detail records per master is a fixed value

(or has a fixed maximum) and where usually all detail records are queried

with the master, we may consider adding the detail columns to the master

table.

• This denormalization works best when the number of records in the detail

table are small.

• This way we can reduce the number of joins during queries.

KEEPING DETAILS WITH MASTER

• Advantages:

• No joins are required.

• Saves space, as keys are not propagated.

• Disadvantages:

• Increases complexity of data manipulation language (DML) and SELECTs

across detail values.

• Checks for Amount column must be repeated for Amount1, Amount2 and so

on.

KEEPING DETAILS WITH MASTER

SHORT-CIRCUIT KEYS

• For database designs that contain three (or more) levels of master detail,

and there is a need to query the lowest and highest level records only,

consider creating short-circuit keys.

• These new foreign key definitions directly link the lowest level detail

records to higher level grandparent records.

• The result can produce fewer table joins when queries execute.

SHORT-CIRCUIT KEYS

SHORT-CIRCUIT KEYS

• Advantages:

• Queries join fewer tables together

• Disadvantages:

• Extra foreign keys are required.

• A_id is consistent with the value you would find after a join with table B.

SPLITTING TABLES

• Rather than combining relations together, alternative approach is to decompose

them into a number of smaller and more manageable partitions.

• Two main types of partitioning/splitting:

• - horizontal and vertical.

HORIZONTAL SPLITTING

• The example shows how the authors table might be split to separate active

and inactive authors:

VERTICAL SPLITTING

Vertical splitting can

be used when some

columns are rarely

accessed rather than

other columns

RISKS OF DENORMALIZATION

• Disk space: This is expected, as we’ll have duplicate data.

• Data anomalies: We have to be very aware of the fact that data now can be

changed in more than one place. We must adjust every piece of duplicate

data accordingly.

• Documentation: We must properly document every denormalization rule that

we have applied. If we modify database design later, we’ll have to look at all

our exceptions and take them into consideration once again.

END OF SLIDES

