	Department of Electrical En Final Exam Assignme Date: 28/09/2020	0 0	
	Course Details		
Course Title: Instructor:	Digital Signal Processing	Module: Total Marks:	<u>6th</u> 50
	Student Details		
Name:		_ Student ID: _	

	(a)	Determine the response $y(n)$, $n \ge 0$, of the system described by the second order difference equation	Marks 8
		y(n) - 4y(n-1) + 4y(n-2) = x(n) - x(n-1)	
			CLO 2
		To the input $x(n) = (-1)^n u(n)$. And the initial conditions are $y(-1) = y(-2) = 0$.	2
Q1.			M
	(b)	Determine the impulse response and unit step response of the systems described by the difference equation.	Marks 7
			CLO
		y(n) - 0.7y(n-1) + 0.1y(n-2) = 2x(n) - x(n-2)	2
		Determine the causal signal x(n) having the z-transform	Marks
	(a)	1	8
		$x(z) = \frac{1}{(1 - 2z^{-1})(1 - z^{-1})^2}$	CLO
Q2.			2
Q2.		(Hint: Take inverse z-transform using partial fraction method)	
			Marks
	(b)	Perform the circular convolution of the following two sequences. Solve the problem step	7
	(0)	by step	CLO
		() $(2 + 2 + 1)$	
		$x_1(n) = \begin{cases} 2 \\ \uparrow' \end{cases} 1, 2, 1 \end{cases}$	
		1	
		$x_2(n) = \{ \frac{1}{1}, 2, 3, 4 \}$	
		A two- pole low pass filter has the system response	Marks
			12
Q.3	(a)		

		$H(z) = \frac{b_o}{(1 - pz^{-1})^2}$ Determine the values of b _o and p such that the frequency response H(ω) satisfies the condition H(0) = 1 and $\left H(\frac{\pi}{4})\right ^2 = \frac{1}{2}$.	CLO 3	
	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega = \pi/2$, zero in its frequency response characteristics at $\omega = 0$ and $\omega = \pi$ and its magnitude response in $\frac{1}{\sqrt{2}}$ at $\omega = 4\pi/9$.	Marks 8 CLO 3	
	(a)	A finite duration sequence of Length L is given as $x(n) = \begin{cases} 1, & 0 \le n \le L - 1 \\ 0, & otherwise \end{cases}$ Determine the N- point DFT of this sequence for N ≥ L	Marks 8 CLO 2	
Q 4	(b)	Evaluate the inverse z- transform using the complex inversion integral $X(z) = \frac{1}{1 - az^{-1}} \qquad z > a $	Marks 6	
			CLO 2	
Q5	(a)	Consider the following analog signal	Marks 8	
		$x_a(t) = 3cos100\pi t + 4sin200\pi t$		
		i. Determine the minimum sampling rate required to avoid aliasing. ii. Suppose that the signal is sampled at the rate $F_c = 100Hz$. What is the		
		 ii. Suppose that the signal is sampled at the rate F_s = 100Hz. What is the discrete-time signal obtained after sampling? Also explain the effect of this sampling rate on the newly generated discrete time signal. iii. What is the analog signal y_a(t) we can reconstruct from the samples if we use ideal interpolation? 	CLO 1	
	(b)	Consider a discrete time signal which is given by	Marks 8	
		$x(n) = \begin{cases} 0.5^n , n \ge 0\\ 0, n < 0 \end{cases}$		
		This is signal is sampled at the rate $F_s = 2Hz$.		
		 i. Draw the sampled signal. ii. The samples of the signals are intended to carry 3 bits per sample. Determine the quantization level and quantization resolution to quantized the sampled signal achieved in part i . iii. Perform the process of truncation and rounding off on all the values of the sampled signal and find the quantization error for each of the sampled data. Express your answer in tabular form. 	CLO 1	