Department of Electrical Engineering
 Final Exam Assignment
 Date: 27/06/2020

Course Details

Course Title:
Digital Signal Processing
\qquad Instructor:

Module:

6th
\qquad Total Marks: 50

Student Details

Name: \qquad Student ID: \qquad

Q1.	(a)	Determine the response $y(n), n \geq 0$, of the system described by the second order difference equation $y(n)-4 y(n-1)+4 y(n-2)=x(n)-x(n-1)$ To the input $x(n)=(-1)^{n} u(n)$. And the initial conditions are $\mathrm{y}(-1)=\mathrm{y}(-2)=0$.	Marks 7
			CLO
	(b)	Determine the impulse response and unit step response of the systems described by the difference equation.$y(n)-0.7 y(n-1)+0.1 y(n-2)=2 x(n)-x(n-2)$	Marks 7
			$\underset{2}{\text { CLO }}$
Q2.	(a)	Determine the causal signal $\mathrm{x}(\mathrm{n})$ having the z -transform $x(z)=\frac{1}{\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)^{2}}$ (Hint: Take inverse z-transform using partial fraction method)	Marks
			CLO
	(b)	Evaluate the inverse z- transform using the complex inversion integral$X(z)=\frac{1}{1-a z^{-1}} \quad\|z\|>\|a\|$	$\underset{6}{\text { Marks }}$
			${ }_{2}^{\text {CLO }}$
Q. 3	(a)	A two- pole low pass filter has the system response $H(z)=\frac{b_{o}}{\left(1-p z^{-1}\right)^{2}}$ Determine the values of b_{o} and p such that the frequency response $H(\omega)$ satisfies the condition $\mathrm{H}(0)=1$ and $\left\|H\left(\frac{\pi}{4}\right)\right\|^{2}=\frac{1}{2}$.	$\begin{gathered} \text { Marks } \\ 6 \end{gathered}$
			CLO

	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega=\pi / 2$, zero in its frequency response characteristics at $\omega=0$ and $\omega=\pi$ and its magnitude response in $\frac{1}{\sqrt{2}}$ at $\omega=4 \pi / 9$.	Marks 6
			$\begin{gathered} \text { CLO } \\ \hline \end{gathered}$
Q 4	(a)	A finite duration sequence of Length L is given as $x(n)=\left\{\begin{array}{c} 1, \quad 0 \leq n \leq L-1 \\ 0, \quad \text { otherwise } \end{array}\right.$ Determine the N - point DFT of this sequence for $\mathrm{N} \geq \mathrm{L}$	Marks 6
			${ }_{2}^{\text {CLO }}$
	(b)	Perform the circular convolution of the following two sequences. Solve the problem step by step	$\begin{gathered} \text { Marks } \\ 6 \end{gathered}$
		$\begin{aligned} & x_{1}(n)=\left\{\begin{array}{l} 2 \\ \uparrow, 1,2,1 \end{array}\right\} \\ & x_{2}(n)=\left\{\begin{array}{l} 1 \\ \uparrow \end{array}, 2,3,4\right\} \end{aligned}$	$\underset{2}{\text { CLO }}$

