	Department of Electrical Eng Final Exam Assignme Date: 27/06/2020					
Course Details						
Course Title: Instructor:	Digital Signal Processing	Module: Total Marks:	<u>6th</u> 50			
	Student Details					
Name:		Student ID:				

	(a)	Determine the response $y(n)$, $n \ge 0$, of the system described by the second order difference equation	Marks 7
		y(n) - 4y(n-1) + 4y(n-2) = x(n) - x(n-1)	CLO
Q1.		To the input $x(n) = (-1)^n u(n)$. And the initial conditions are $y(-1) = y(-2) = 0$.	2
	(b)	Determine the impulse response and unit step response of the systems described by the difference equation.	Marks 7
		y(n) - 0.7y(n-1) + 0.1y(n-2) = 2x(n) - x(n-2)	CLO 2
Q2.		Determine the causal signal $x(n)$ having the z-transform	Marks
	(a)	$x(z) = \frac{1}{(1 - 2z^{-1})(1 - z^{-1})^2}$	6 CLO
		$(1-2z^{-1})(1-z^{-1})^2$	2
		(Hint: Take inverse z-transform using partial fraction method)	
	(b)	Evaluate the inverse z- transform using the complex inversion integral	Marks 6
		$X(z) = \frac{1}{1 - az^{-1}} \qquad z > a $	CLO 2
Q.3		A two- pole low pass filter has the system response	Marks 6
	(a)	$H(z) = \frac{b_o}{(1 - nz^{-1})^2}$	
		Determine the values of b_0 and p such that the frequency response $H(\omega)$ satisfies the	CLO 3
		condition H(0) = 1 and $ H(\frac{\pi}{4}) ^2 = \frac{1}{2}$.	

	(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega = \pi/2$, zero in its frequency response characteristics at $\omega = 0$ and $\omega = \pi$ and its magnitude response in $\frac{1}{\sqrt{2}}$ at $\omega = 4\pi/9$.	Marks 6 CLO 3
Q 4	(a)	A finite duration sequence of Length L is given as	Marks 6
		$x(n) = \begin{cases} 1, & 0 \le n \le L - 1 \\ 0, & otherwise \end{cases}$	CLO 2
		Determine the N- point DFT of this sequence for $N \ge L$	
	(b)	Perform the circular convolution of the following two sequences. Solve the problem step by step	Marks 6
		$x_1(n) = \left\{ \begin{array}{l} 2 \\ \uparrow, 1, 2, 1 \end{array} \right\}$	CLO 2
		$x_2(n) = \{ \frac{1}{\uparrow}, 2, 3, 4 \}$	