	Department of Electrical En Final Exam Assignme Date: 28/09/2020	gineering nt					
Course Details							
Course Title: Instructor:	Digital Signal Processing	Module: Total Marks:	6th 50				
	Student Details						
Name:		_ Student ID: _					

	(a)	Determine the response $y(n), n \ge 0$, of the system described by the second order difference equation	Marks 8
		y(n) - 4y(n-1) + 4y(n-2) = x(n) - x(n-1)	
		To the input $r(n) = (-1)^n u(n)$ And the initial conditions are $v(-1) = v(-2) = 0$	2
Q1.		To the input $x(n) = (-1)^n u(n)$. Find the initial conditions are $y(-1) = y(-2) = 0$.	
	(b)	Determine the impulse response and unit step response of the systems described by the difference equation.	Marks 7
		y(n) - 0.7y(n-1) + 0.1y(n-2) = 2x(n) - x(n-2)	CLO 2
		Determine the causal signal x(n) having the z-transform	Maulua
	(a)	1	
		$x(z) = \frac{1}{(1 - 2z^{-1})(1 - z^{-1})^2}$	CLO
02.			2
~		(Hint: Take inverse z-transform using partial fraction method)	
	(b)	Perform the circular convolution of the following two sequences. Solve the problem step by step	Marks 7
			CLO
		$x_1(n) = \begin{cases} 2 \\ \uparrow, 1, 2, 1 \end{cases}$	2
		$()$ $(1 \circ \circ \cdot)$	
		$x_2(n) = \{\uparrow, 2, 3, 4\}$	
		A two- pole low pass filter has the system response	Marks 12
Q.3	(a)		

	$H(z) = \frac{b_o}{(1 - pz^{-1})^2}$ Determine the values of b _o and p such that the frequency response H(ω) satisfies the condition H(0) = 1 and $\left H(\frac{\pi}{4}) \right ^2 = \frac{1}{2}$.	CLO 3
(b)	Design a two-pole bandpass filter that has the center of its passband at $\omega = \pi/2$, zero in its frequency response characteristics at $\omega = 0$ and $\omega = \pi$ and its magnitude response in $\frac{1}{\sqrt{2}}$ at $\omega = 4\pi/9$	Marks 8 CLO 3