[bookmark: _GoBack]IQRA NATIONAL UNIVERSITY

Department of Electrical Engineering

[image:]

Digital Signal Processing
Instructor Lab Manual

Instructor Name: Engr.Khalil Muhammad

Contents
Lab 01	3
MATLAB BASIC COMMANDS	3
Lab 02	8
Signal Representation	8
Lab 03	13
Convolution	13
Lab 04	15
Sampling	15
Lab 05	16
Z Transform	16
Lab 06	18
Frequency and Phase Response of LTI Systems	18
Lab 07	20
Discrete Fourier Transform	20
Lab 08	22
Implementation of FIR Filters	22
Lab 09	25
Implementation of IIR Filters	25
Lab 10	27
Demonstration of Down Sampling and Up Sampling	27
Lab 11	28
Signal Plotting Using Simulink	28
Lab 12	30
Fourier Transform and Filters Demonstration Using Simulink	30
Lab 13	31
Mini Project	31

[bookmark: _Toc413408137]Lab 01
[bookmark: _Toc413408138]MATLAB BASIC COMMANDS

This lab is to familiarize the students with MATLAB environment through some preliminary MATLAB functions.

Basics:
1. To add a comment the following symbol is used “%”.
2. Help is provided by typing “help” or if you know the topic then “help function_name”.
3. If you don’t know the exact name of the topic or command you are looking for, type “lookfor keyword”.
4. Three dots “…” are used to continue a statement to next line (row).
5. If after a statement “;” is entered then MATLAB will not display the result of the statement.
6. MATLAB is case sensitive.

Basic commands in MATLAB:
1. Defining a scalar:
x = 1
Output:

2. Defining a column vector
v = [1;2;3]
Output:

3. X=Defining a row vector
w = [1 0 1]
Output:

4. Transpose of a vector
Y = w’
Output:

5. Defining range of a vector
X = 1:0.5:5
Output:

6. Empty vector
Y = []
Output:

7. Defining a matrix
M = [1 2 3;3 2 1]
Output:

8. Defining a zero matrix
M = zeros(2,3) % 1st parameter is row, 2nd parameter is column.
	Output:

9. Defining a ones matrix
M = ones(2,3)
Output:

10. Defining the identity matrix
I = eye(3)
Output:	

11. Defining random matrix or vectors
R = rand(1,3)
Output:

12. Access a vector or matrix
I(2,2)
Output:

13. Access a row or column of a matrix
I(2,:) % 2nd row
	Output:

	I(:,2) %2nd column
	Output:

14. Size and length
size(I)
Output:

length(I)
Output:

Operations on vectors and matrices in MATLAB

15. x = [1 2 3 4 5]
y = 2*x
Output:

16. z = y/2
Output:

17. w = [1 2 3 4 5]
v = x + y
Output:

18. Point by point multiply or divide
W = x.*w
Output:

	

19. Round of data
Round([1.5 2; 2.2 3.1])
Output:

20. Summation of a vector
a = [1 4 6 3]
sum(a)
Output:

Relational operators in MATLAB

21. a = [1 1 3 4 1]
ind = (a == 1)
Output:

	ind = (a<1)
	Output:

	ind = (a>1)
	Output:
	

	ind = (a<=1)
	Output:

	ind = (a>=1)
	Output:

	ind = (a~=1)
	Output:

	
		
Control Flow in MATLAB

To control the flow of commands, MATLAB provides four commands a programmer can use.
· FOR loops
· WHILE loops
· IF-ELSE-END constructions
· SWITCH-CASE constructions

22. Suppose one need values of the sine function at eleven evenly spaced points.

for n=0:10;
x(n+1) = sin(pi*n/10);
end
x
Output:

23. Suppose a number is divided by 2. The resulting quotient is divided by 2 again. This process must continue till the current quotient is less than or equal to 0.01.

q = pi;
while q>0.01;
q = q/2;
end
q
Output:

24. In the following example a random integer number x from the set {1,2,3…10} is generated. If x = 1 or x = 2, then the message probability = 20%. If x = 3 or 4 or 5, then the probability =30 % is displayed otherwise probability = 50% is generated.

x = ceil(10*rand);
switch x
case {1,2}
disp('Probability = 20%');
case {3,4,5}
disp('Probability = 30%');
otherwise
disp('Probability = 50%');
end

[bookmark: _Toc413408139]Lab 02
[bookmark: _Toc413408140]Signal Representation

This lab is to familiarize the students with MATLAB commands for the generation of elementary continuous time and discrete time signals.

Description
A signal is described by a function of one or more independent variables. The value of the function (dependent variable) can be a real valued scalar quantity, a complex valued quantity or a vector. For example:

The signals may be classified into different categories such as
· Analog
· Digital
· Continuous time discrete
· Discrete time continuous
A discrete time analog signal is denoted as . To emphasize the discrete time nature of a signal, a signal is represented as instead of .
A discrete time signal can be represented in any of the following forms:
1. Functional representation
1. Tabular representation
1. Sequence representation
1. Graphical representation
The set of rules for implementing the system by a program that performs the corresponding mathematical operations is called Algorithm. Some of the continuous discrete time signals have been discussed in this Lab.

Continuous Time Signals
Sinusoidal waveform:
clc;
clear all;
close all;
t = 0 : 0.001 : 15;
f = input ('Enter the value of frequency = ');
a = input ('Enter the value of amplitude = ');
y =a*sin(2*pi*f*t);
plot (t,y,'r');
xlabel ('time');
ylabel ('a');
title ('sine wave');
grid on;

Output:
Note: (Frequency = 2, Amplitude = 1)

Q 1. Solve and plot the signal for , compare your result with MATLAB output.

Square Waveform:
clc;
clear all;
close all;
t = 0 : 0.001 : 5;
f = input ('Enter the value of frequency');
a = input ('Enter the value of amplitude');
subplot (2,1,1);
y =a*square(2*pi*f*t);
plot (t,y,'r');
xlabel ('time');
ylabel ('amplitude');
title ('Square wave')
grid on;
	
Output:	
Note: (Frequency = 1, Amplitude = 1)

Complex Waveform:
clc;
clear all;	
close all;
t = 0 : 0.001 : 5;
f = input ('Enter the value of frequency');
a = input ('Enter the value of amplitude');
y = [exp((-0.2+2*i)*t)];
plot (t,y,'r');
xlabel ('time');
ylabel ('amplitude');
title ('Complex wave')
grid on;

Output:
Note: (Frequency = 2, Amplitude = 1)

Unit Step Waveform:
clc;
clear all;
close all;
t = 0 : 0.001 : 5;
a = input ('Enter the value of amplitude');
plot (t,a,'r');
xlabel ('time');
ylabel ('amplitude');
title ('Complex Wave')
grid on;

Output:
Note: (Amplitude = 1)

Exponential Singals:
clc;
clear all;
close all;
a=0.5;
t=0:0.1:10;
disp('EXPONENTIAL DECAYING SIGNAL');
x=a.^t;
subplot(2,1,1);
plot(t,x);
xlabel('Time');
ylabel('Amplitude');
title('Exponential Decaying Signal Response');
grid on;
disp('EXPONENTIAL GROWING SIGNAL');
x=a.^-t;
subplot(2,1,2);
plot(t,x);
xlabel('Time');
ylabel('Amplitude');
title('Exponential Growing Signal Response');
grid on;

Output:

Discrete Time Signals
Sinusoidal DT waveform:
clc;
clear all;
close all;
N = input('Enter Number of Samples : ');
n = 0:0.1:N;
x = sin(n);
stem (n,x);
xlabel ('Time');
ylabel ('Amplitude');
title ('Discrete Time Sine Signal');
grid on;

Output:
Note: (Number of Samples = 15)
Square DT Waveform:
clc;
clear all;
close all;
N = input('Enter the number of Samples: ');
n = 0:0.1:N;
s = square(2*n);
stem (n,s);
xlabel ('time');
ylabel ('amplitude');
title ('square wave')
grid on;
	

Output:
Note: (Number of Samples = 10)

Complex DT Waveform:	
clc;
clear all;
close all;
n = 0 : 0.1 : 15;
y = [exp((-0.2+2*i)*n)];
stem (n,y,'r');
xlabel ('time');
ylabel ('amplitude');
title ('Discrete Time Complex wave')
grid on;

Output:

Unit Step DT Waveform:
clc;
clear all;
close all;
N = input(' Enter the Number of Samples : ');
n = -N:1:N;
x = [zeros(1,N) 1 ones(1,N)];
subplot (2,1,1);
stem (n,x,'r');
xlabel ('Time');
ylabel ('Amplitude');
title ('Unit Step Response');
grid on;

Output:
Note: (Number of Samples = 10)

Exponential DT Signals:
clc;
clear all;
close all;
N = input('Enter Number of Samples : ');
% EXPONENTIAL DECAYING SIGNAL
a = 0.5; 	
n = 0:.1:N;
x = a.^n;
subplot (2,1,1);
stem (n,x,'r');
xlabel ('Time');
ylabel ('Amplitude');
title ('Exponential Decaying Signal Response');
grid on;
%EXPONENTIAL GROWING SIGNAL
subplot (2,1,2);
x = a.^-n;
stem (n,x,'r');
xlabel ('Time');
ylabel ('Amplitude');
title ('Exponential Growing Signal Response');
grid on;

Output:
Note: (Number of Samples = 10)

Exercise:
1. Using above mentioned knowledge, write a MATLAB program to find the sum of sinusoidal signals and understand the concept of harmonics. , generate five signals from to , such that etc.
1. Plot the Unit Impulse Discrete Time Signal using MATLAB, for N = -10 to 10.

[bookmark: _Toc413408141]Lab 03
[bookmark: _Toc413408142]Convolution

This lab is to familiarize the students with MATLAB commands for convolution.

Write a program to determine the discrete time convolution of x[n]=[1 2], h[n]=[2 3 4]:
clc;
clear all;
close all;
n = 0:1:1;
n1 = 0:1:2;
n2 = 0:1:3;
x = input('Enter x[n]: ');
h = input ('Enter h[n]: ');
y = conv(x,h);
subplot(3,1,1);
stem(n, x, 'r' , 'c*');
title('x[n]');
grid on;
subplot(3,1,2);
stem(n1, h, 'g');
title('h[n]');
grid on;
subplot(3,1,3);
stem(n2,y);
title('y[n]');
grid on;

Output:

Q. Confirm you answer by mathematically solving and plotting the out of y[n] = x[n]*h[n], when:
x[n]=[1 2], h[n]=[2 3 4]

Write a program to determine the discrete time convolution of

Verify the answer obtained using table view method as well.

Write a program to determine the discrete time convolution of
[image:]
Verify the answer obtained using table view method as well.

Write a program to determine the discrete time convolution of

[image:]
[bookmark: _Toc413408143]Lab 04
[bookmark: _Toc413408144]Sampling

This lab is to familiarize the students with the concept of sampling.

Write a program to plot

y=cos(2*pi*f1*t)+ cos(2*pi*f2*t);

where
f1=100
f2=200

Output:

Write a program to determine the highest value between f1 and f2, in continuation of the above problem.

Output:

Write a program to verify the Nyquist criteria when sampling frequency is less than 2fm, with original signal, sampled discrete time signal and recovered signal in the plot.

Output:

Write a program to verify the Nyquist criteria when sampling frequency is equal to 2fm, with original signal, sampled discrete time signal and recovered signal in the plot.

Output:

Write a program to verify the Nyquist criteria when sampling frequency is greater than 2fm, with original signal, sampled discrete time signal and recovered signal in the plot.

Output:

Post Lab Task:

1. Explain the process of sampling (fs=2fm) and aliasing using frequency domain representation of signals.
2. Explain the drawbacks of under sampling and over sampling.

[bookmark: _Toc413408145]Lab 05
[bookmark: _Toc413408146]Z Transform

This lab is to familiarize the students with MATLAB commands z-transform.

[bookmark: OLE_LINK1]Description
As analog filters are designed using the Laplace transform, recursive digital filters are developed with a parallel technique called the z-transform. The overall strategy of these two transforms is the same: probe the impulse response with sinusoids and exponentials to find the system's poles and zeros. The Laplace transforms deals with differential equations, the s-domain, and the s-plane. Correspondingly, the z-transform deals with difference equations, the z-domain, and the z-plane. However, the two techniques are not a mirror image of each other; the s-plane is arranged in a rectangular coordinate system, while the z-plane uses a polar format. Recursive digital filters are often designed by starting with one of the classic analog filters, such, Chebyshev, or elliptic. A series of mathematical conversions are then used to obtain the desired digital filter. The Z transform of a discrete time system X[n] is defined as Power Series.

Mathematically

As Z Transform is the infinite Power Series; it exits only for the region for which the series converges (Region of convergence). Inverse Z Transform is the method of inverting the Z Transform of a signal to obtain the time domain representation

Determine the Z Transform such that
(Note: Solve to confirm your answer)

Determine the poles and zero and plot the Poles and Zeros for the above two tasks.
(Note: Solve to confirm your answer)

Determine the Inverse Z-Transform of the system

Define vectors and create LTI systems in MATLAB for expressing the following transfer function
· Determine the poles and zero
· Plot the Poles and Zeros

Define vectors and create LTI systems in MATLAB for expressing the following transfer function
· Determine the poles and zero
· Plot the Poles and Zeros

Determine the output response of the system when

Define vectors and create LTI system in MATLAB for expressing the following transfer function
[bookmark: OLE_LINK2]

k = 4;
z = [0.5 2];
p = [-.03 0.4 -0.6];
sys2 = zpk(z,p,k,1)

[bookmark: _Toc413408147]Lab 06
[bookmark: _Toc413408148]Frequency and Phase Response of LTI Systems

This lab is to familiarize the students with MATLAB commands for the magnitude and phase response of LTI systems.

Determine the magnitude and phase response of LTI system

%prog for finding the magnitude and phase response of LTI system by
%h(n) =(0.9)^n*u(n)
w =[0:1:500]*pi/500; %[0,pi] axis divided into 501 points
h =exp(j*w)./(exp(j*w)-0.9*ones(1,501));
magh =abs(h); angh =angle(h);
subplot(2,1,1);plot(w/pi,magh);grid;
ylabel('|h|');
xlabel('(Frequency in pi units');
title('Magnitude Response');
subplot(2,1,2);plot(w/pi,angh/pi);grid;
ylabel('Phase in pi Radians');
xlabel('(Frequency in pi units');
title('Phase Response');
Output

Determine the magnitude and phase response of the given LTI System.

b = [1, 4]; 				% Numerator coefficients
a = [1, -5]; 			 % Denominator coefficients
w = -2*pi: pi/256: 2*pi; % Frequency Response of the LTI system
[h] = freqz(b, a, w);
subplot(2, 1, 1),
plot(w, abs(h));
xlabel ('Frequency \omega'),
ylabel ('Magnitude');
grid on;					% Phase Response of the LTI system
subplot(2, 1, 2),
plot(w, angle(h));
xlabel('Frequency \omega'),
ylabel('Phase - Radians');
grid on;
Output

Determine the magnitude and phase response of the given LTI System.

Output

Determine the magnitude and phase response of the given LTI System.

Output

[bookmark: _Toc413408149]Lab 07
[bookmark: _Toc413408150] Discrete Fourier Transform

This lab is to familiarize the students with MATLAB commands for Fourier Transform.

Description
Fourier analysis is a family of mathematical techniques, all based on decomposing singals into sinusoids. The discrete Fourier transform (DFT) is the family member used with digitized signals. A signal can be either continuous or discrete, and it can be wither periodic or Non-periodic. The combination of these two features generates the four categories given below:
· Period Continuous
This includes the sine wave, square waves, and any waveform that repeats itself in a regular pattern from negative to positive infinity. This version of the Fourier transform is called Fourier series.
· Non-periodic Continuous
This includes decaying exponentials and Gaussian curves. These signals extend to both positive and negative infinity without repeating in a periodic pattern. The Fourier Transform for this type of signal is simply called the Fourier Transform.
· Periodic Discrete
These discrete signals repeat themselves in a periodic fashion from negative to positive infinity. This class of Fourier transform is sometimes called Discrete Fourier Series, but is most often called the Discrete Fourier Transform. The Fourier Transform for this type of signal is simply called the Discrete Time Fourier Transform.
· Non-periodic Discrete
These signals are only defined at the discrete points between positive and negative infinity, and do not repeat themselves in a periodic fashion.

Determine the Fourier Transform of a simple sine wave:

fs = 150;
t = 0:1/fs:1;
f = 5;
x = sin(2*pi*f*t);
nfft = 1024;
X = fft(x,nfft);
X = X(1:nfft/2);
mx = abs(X);
%f_bins = 0:nfft/2-1;
f = (0:nfft/2-1)*fs/nfft;
subplot(2,1,1)
plot(t,x,'linewidth',2)
grid on
subplot(2,1,2)
plot(f,mx,'linewidth',2)
grid on

Output

Determine the Fourier Transform of the following signal:
x = cos(2*pi*f1*t)+2*cos(2*pi*f2*t);
let 	f1 = 10
	f2 = 20

Output

Determine the Fourier Transform of a square wave with F=5:

Output

Determine the Fourier Transform of a given pulse:
[image:]

Output

Determine the DTFT of [0 1 2 3 4 5 6 7]:

clc;
clear all;
close all;
x =input('Enter the sequence '); %x =[0 1 2 3 4 5 6 7]
n = input('Enter the length of Fourier Transform ') %n =8 has to be same as
%the length of sequence
x =fft(x,n);
stem(x);
ylabel('imaginary axis');
xlabel('real axis');
title('Exponential sequence');
disp('DFT is');

Output

[bookmark: _Toc413408151]Lab 08
[bookmark: _Toc413408152]Implementation of FIR Filters

This lab is to familiarize the students with MATLAB commands for FIR Filter Design.

Description
Digital filters refers to the hard ware and software implementation of the mathematical algorithm which accepts a digital signal as input and produces another digital signal as output whose wave shape, amplitude and phase response has been modified in a specified manner. Digital filter play very important role in DSP. Compare with analog filters they are preferred in number of application due to following advantages:
· Truly linear phase response
· Better frequency response Filtered
· Unfiltered data remains saved for further use.
There are two types of digital filters.
1. FIR (finite impulse response) filter
2. IIR (infinite impulse response) filter

FIR1 Command
FIR filters design using the window method. designs an order low pass FIR digital filter and returns the filter coefficients in length vector B. The cutoff frequency must be between , with 1.0 corresponding to half the sample rate. The filter B is real and has linear phase. The normalized gain of the filter at is .
 designs an N'th order highpass filter. You can also use B = FIR1(N,Wn,'low') to design a lowpass filter. If Wn is a two-element vector, Wn = [W1 W2], FIR1 returns an order N bandpass filter with passband W1 < W < W2. B = FIR1(N,Wn,'stop') is a bandstop filter if Wn = [W1 W2]. You can also specify If Wn is a multi-element vector, Wn = [W1 W2 W3 W4 W5 ... WN], FIR1 returns an order N multiband filter with bands 0 < W < W1, W1 < W < W2, ..., WN < W < 1.
B = FIR1(N,Wn,'DC-1') makes the first band a pass band.
B = FIR1(N,Wn,'DC-0') makes the first band a stop band.
By default, FIR1 uses a Hamming window. Other available windows, including Boxcar, Hann, Bartlett, Blackman, Kaiser and Chebwin can be specified with an optional trailing argument. For example, B = FIR1(N,Wn,kaiser(N+1,4)) uses a Kaiser window with beta=4. B = FIR1(N,Wn,'high',chebwin(N+1,R)) uses a Chebyshev window. For filters with a gain other than zero at Fs/2, e.g., high pass and bands top filters, N must be even. Otherwise, N will be incremented by one. In this case the window length should be specified as N+2.

Differentiate between Low Pass, High Pass, Band Pass and Band Stop Filters via proper diagrams.

Design a Low Pass FIR Filter:
N = input('Filter Order ');
wc = input('Cutoff Frequency ');
h = fir1(N,wc);
fvtool(h)

Output (N = 5, 25, 50) (wc = 0.5)

Q. What happens when you increase order of the filter and why?

Implement the FIR low Pass filter with N = 50 using Rectangular Window and Hamming Window commands

Output

Design a High Pass FIR Filter:

Output (N = 5, 25, 50) (wc = 0.5)

Design a Band Pass FIR Filter:

Output (N = 50) (wc = 0.3 and 0.7)

Output

Design a Band Stop FIR Filter:

Output (N = 50) (wc = 0.3 and 0.7)

Output

Design a Low Pass FIR Filter Using Rectangular Window Method:
N = 50;
wc = 0.5;
a = fir1(N,wc);
b = fir1(N,wc,rectwin(51));
fvtool(a)
fvtool(b)

Output

Demonstrate the filtering operation using a 10-point averaging low pass filter.
fs = 100;
t = 0:1/fs:1;
x = sin(2*pi*t*3)+.25*sin(2*pi*t*40);
b = ones(1,10)/10; % 10 point averaging filter
y = filter(b,1,x);
plot(t,x,'b',t,y,'r')

Output

Decrease the order of the filter and compare your result. What is the effect when we decrease the order of the filter?
[bookmark: _Toc413408153]Lab 09
[bookmark: _Toc413408154]Implementation of IIR Filters

This lab is to familiarize the students with MATLAB commands for IIR Filter Design.

Description
Matlab contains various routines for design and analyzing digital filter IIR. Most of these are part of the signal processing toolbox. A selection of these filters is listed below.
· Buttord (for calculating the order of filter)
· Butter (creates an IIR filter)
· Ellipord (for calculating the order of filter)
· Ellip (creates an IIR filter)
· Cheb1ord (for calculating the order of filter)
· Cheyb1 (creates an IIR filter)

Buttord
[N, Wn] = BUTTORD(Wp, Ws, Rp, Rs) returns the order N of the lowest order digital Butterworth filter that loses no more than Rp dB in the pass band and has at least Rs dB of attenuation in the stop band. Wp and Ws are the pass band and stop band edge frequencies, normalized from 0 to 1 (where 1 corresponds to pi radians/sample). For example
· Low pass: Wp = .1, Ws = .2
· High pass: Wp = .2, Ws = .1
· Band pass: Wp = [.2 .7], Ws = [.1 .8]
· Band stop: Wp = [.1 .8], Ws = [.2 .7]
BUTTORD also returns Wn, the Butterworth natural frequency (or, the "3 dB frequency") to use with BUTTER to achieve the specifications.
[N, Wn] = BUTTORD(Wp, Ws, Rp, Rs, 's') does the computation for an analog filter, in which case Wp and Ws are in radians/second. When Rp is chosen as 3 dB, the Wn in BUTTER is equal to Wp in BUTTORD.

Design a Low Pass Butterworth IIR Filter which pass frequencies below 1200 Hz with pass band ripples = 1 dB and minimum stop band attenuation of 50 dB at 1500 Hz:

fs=8000;
[n,w]=buttord(1200/4000,1500/4000,1,50); % finding the order of the filter
[b,a]=butter(n,w); % finding zeros and poles for filter
figure(1)
[h,q] = freqz(b,a,512,8000);
plot(q,abs(h)); % Normalized Magnitude plot
grid on

Output

Design a High Pass Butterworth IIR Filter which passes frequencies above 1200 Hz:

Output

Design a Band Pass filter to pass all frequencies between 1200 Hz and 2800 Hz with pass band ripples = 1 dB and minimum stop band attenuation of 50 dB. Sampling frequency is 8000 Hz.

Output

Design a Band Stop IIR Filter:

Output

Design an IIR Filter to suppress frequencies of 50 Hz from given signal:

x = sin(2*pi*5*t) + sin(2*pi*10*t) + sin(2*pi*30*t) + sin(2*pi*50*t);

[bookmark: _Toc413408155]Lab 10
[bookmark: _Toc413408156]Demonstration of Down Sampling and Up Sampling

This lab is to familiarize the students with MATLAB commands for Down sampling and Up sampling.

Determine the down sampling operation
x = 0:1:20;
y = downsample(x',n)'

Output (n = 2, 4, 6)

Plot the outputs

Determine the up sampling operation
x = 0:1:20;
y = upsample (x',n)'

Output (n = 2, 4)

Plot the outputs

Plot a signal x = cos(2*pi*100*t) and apply the down sampling operation by reducing the number of intervals in t.

[bookmark: _Toc413408157]Lab 11
[bookmark: _Toc413408158]Signal Plotting Using Simulink

This lab is to familiarize the students with Simulink Basics.

Plot a sine wave with amplitude 1 and frequency 1, 2 and 4.

[image:]
[image:]

[bookmark: OLE_LINK3][bookmark: OLE_LINK4]Outputs

[bookmark: OLE_LINK5][bookmark: OLE_LINK6]Plot a cosine wave with amplitude 1 and frequency 2.
[bookmark: OLE_LINK7][bookmark: OLE_LINK8]Output

[bookmark: OLE_LINK9][bookmark: OLE_LINK10]Plot a Unit Step Function with time starting from 0 to 10.
Output

Plot a simple Ramp Function with time starting from 0 to 10.
Output

Plot the sum of first 4 sinusoids.
Output

[bookmark: _Toc413408159]Lab 12
[bookmark: _Toc413408160]Fourier Transform and Filters Demonstration Using Simulink

This lab is to familiarize the students with Simulink Basics for frequency representation and filter design.

Plot a simple sine wave with 5 Hz frequency and determine its frequency component.

Plot a composite signal and determine its frequency components.

Design and Low pass filter and determine its output.

Design and High pass filter and determine its output.

[bookmark: _Toc413408161]Lab 13
[bookmark: _Toc413408162]Introduction to TMS320C5505 eZDSP Stick

This lab is designed to familiarize the students with the installation, interconnection and use of DSP kits.

1. Use the file in accompanied USB to install and configure eZDSP stick.
2. The C5505 eZDSP USB Stick must be connected in CCS before proceeding. If the board is not connected, please refer to section 4.0 of this guide.
3. Click “File->Import”.
4. When the new window appears, expand “CCS” and select “Existing CCS/CCE Eclipse Project”. Click “Next”.
5. Select “Select Root Directory” and click the “Browse” button. Browse to directory path “<Install_Dir>\ccsv4\emulation\boards\usbstk5505_v2\tests\led”. The default <Install_Dir> is “C:\programfiles\Texas Instruments”
6. Highlight the “LED” folder and click “OK”. Then click “finish”.
7. Click “View->C/C++Projects”. A new tab will appear in the CCS v4 window and there should be a LED project visible.
8. Click “Project->Build Active Project”.
9. When the build is complete, a message will print in the Console Window.
10. Look in the “C\C++Projects” tab again and expand the “binaries” folder. There now should be a “led.out” file listed.
11. Right click on “led.out” and click “Load Program”.
12. Click “Target->Run”. The C5505 eZDSP USB Stick “XF” LED should now blink.

1

image2.emf
0 1 2 3 4 5 6

0

2

4

6

X[n]

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

h[n]

image3.emf
0 1 2 3 4 5 6

0

2

4

6

X[n]

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.5

1

h[n]

0 5 10 15 20 25 30

0

10

20

30

Convolution Output

image4.png

image5.png
Sine Wave

Swope

image6.png
~Parameters

Sine type: [Time based

Time (): [Use simulation time

Amplitude:

B

Bias:

Frequency (rad/sec):

[z

Phase (rad):

¥ Interpret vector parameters as 1-D

image1.png

