Data Mining: Concepts and Techniques

Introduction

- Motivation: Why data mining?
- What is data mining?
- Data Mining: On what kind of data?
- Data mining functionality
- Are all the patterns interesting?
- Classification of data mining systems
- Major issues in data mining

Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras,
- We are drowning in data, but starving for knowledge!
- "Necessity is the mother of invention"—Data mining—Automated analysis of massive data sets

Evolution of Database Technology

- 1960s:
 - Data collection, database creation, IMS and network DBMS
- 1970s:
 - Relational data model, relational DBMS implementation
- 1980s:
 - RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
 - Application-oriented DBMS (spatial, scientific, engineering, etc.)
- 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases
- 2000s
 - Stream data management and mining
 - Data mining and its applications
 - Web technology (XML, data integration) and global information systems

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (non-trivial, implicit, previously unknown and

potentially useful) patterns or knowledge from huge amount of data

- Alternative name
 - Knowledge discovery in databases (KDD)
- Watch out: Is everything "data mining"?
 - Query processing
 - Expert systems or statistical programs

Why Data Mining?—Potential Applications

- Data analysis and decision support
 - Market analysis and management
 - Target marketing, customer relationship management (CRM), market basket analysis, market segmentation
 - Risk analysis and management
 - Forecasting, customer retention, quality control, competitive analysis
 - Fraud detection and detection of unusual patterns (outliers)

Why Data Mining?—Potential Applications

- Other Applications
 - Text mining (news group, email, documents) and Web mining
 - Stream data mining
 - Bioinformatics and bio-data analysis

Market Analysis and Management

- Where does the data come from?
 - Credit card transactions, discount coupons, customer complaint calls
- Target marketing
 - Find clusters of "model" customers who share the same characteristics: interest, income level, spending habits, etc.
 - Determine customer purchasing patterns over time

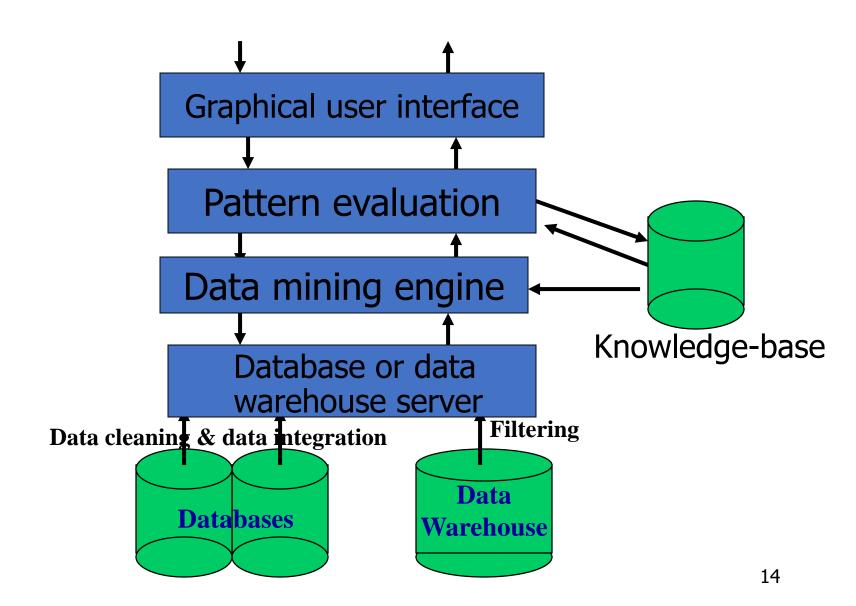
Market Analysis and Management

- Cross-market analysis
 - Associations/co-relations between product sales, & prediction based on such association
- Customer profiling
 - What types of customers buy what products
- Customer requirement analysis
 - Identifying the best products for different customers
 - Predict what factors will attract new customers

Fraud Detection & Mining Unusual Patterns

- Approaches: Clustering & model construction for frauds, outlier analysis
- Applications: Health care, retail, credit card service, telecomm.
 - Medical insurance
 - Professional patients, and ring of doctors
 - Unnecessary or correlated screening tests
 - Telecommunications:
 - Phone call model: destination of the call, duration, time of day or week. Analyze patterns that deviate from an expected norm
 - Retail industry
 - Analysts estimate that 38% of retail shrink is due to dishonest employees

Other Applications


- Internet Web Surf-Aid
 - IBM Surf-Aid applies data mining algorithms to Web access logs for marketrelated pages to discover customer preference and behavior pages, analyzing effectiveness of Web marketing, improving Web site organization, etc.

Data Mining: A KDD Process Data mining—core of knowledge Pattern Evaluation discovery process Data Mining **Task-relevant Data †**Selection Data Warehouse Data Cleaning Data Integration **Databases**

Steps of a KDD Process

- Learning the application domain
 - Relevant prior knowledge and goals of application
- Creating a target data set: data selection
- Data cleaning and preprocessing: (may take 60% of effort!)
- Data reduction and transformation
 - Find useful features, dimensionality/variable reduction.
- Choosing functions of data mining
 - Summarization, classification, regression, association, clustering.
- Choosing the mining algorithm(s)
- Data mining: search for patterns of interest
- Pattern evaluation and knowledge presentation
 - Visualization, transformation, removing redundant patterns, etc.
- Use of discovered knowledge

Architecture: Typical Data Mining System

Data Mining: On What Kinds of Data?

- Relational database
- Data warehouse
- Transactional database
- Advanced database and information repository
 - Spatial and temporal data
 - Time-series data
 - Stream data
 - Multimedia database
 - Text databases & WWW

Data Mining Functionalities

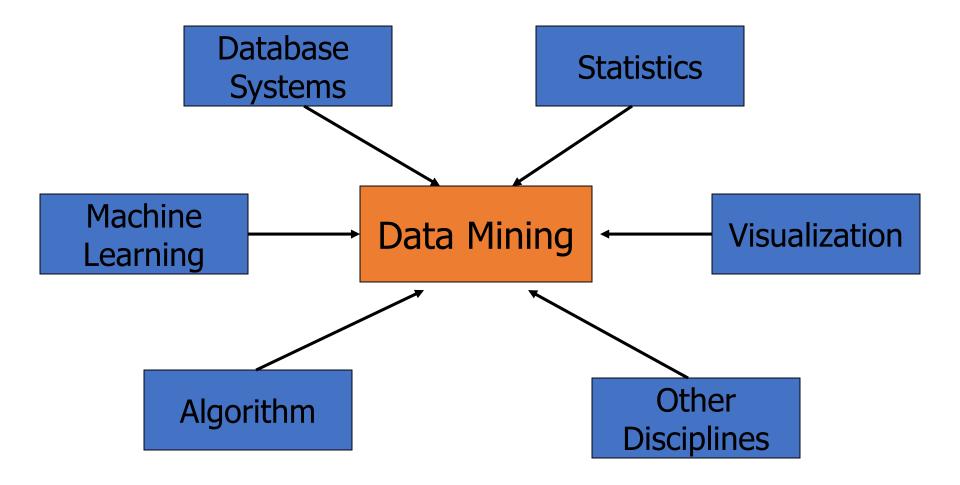
- Concept description: Characterization and discrimination
 - Generalize, summarize, and contrast data characteristics
- <u>Association</u> (correlation and causality)
 - Diaper → Beer [0.5%, 75%]
- <u>Classification and Prediction</u>
 - Construct models (functions) that describe and distinguish classes or concepts for future prediction
 - Presentation: decision-tree, classification rule, neural network

Data Mining Functionalities

- Cluster analysis
 - Class label is unknown: Group data to form new classes, e.g., cluster houses to find distribution patterns
 - Maximizing intra-class similarity & minimizing interclass similarity
- Outlier analysis
 - Outlier: a data object that does not comply with the general behavior of the data
 - Useful in fraud detection, rare events analysis
- Trend and evolution analysis
 - Trend and deviation: regression analysis
 - Sequential pattern mining, periodicity analysis

Are All the "Discovered" Patterns Interesting?

- Data mining may generate thousands of patterns: Not all of them are interesting
 - Suggested approach: Human-centered, query-based, focused mining


Interestingness measures

 A pattern is interesting if it is <u>easily understood</u> by humans, <u>valid</u> on new_or test data with some degree of certainty, <u>potentially useful</u>, <u>novel</u>, <u>or validates some</u> <u>hypothesis</u> that a user seeks to confirm

Objective vs. subjective interestingness measures

- Objective: based on statistics and structures of patterns, e.g., support, confidence, etc.
- Subjective: based on user's belief in the data, e.g., unexpectedness, novelty.

Data Mining: Confluence of Multiple Disciplines

Data Mining: Classification Schemes

- Different views, different classifications
 - Kinds of data to be mined
 - Kinds of knowledge to be discovered
 - Kinds of techniques utilized
 - Kinds of applications adapted

Multi-Dimensional View of Data Mining

Data to be mined

• Relational, data warehouse, transactional, stream, object-oriented/relational, active, spatial, time-series, text, multi-media, heterogeneous, WWW

• Knowledge to be mined

- Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.
- Multiple/integrated functions and mining at multiple levels

Multi-Dimensional View of Data Mining

Techniques utilized

- Database-oriented, data warehouse (OLAP), machine learning, statistics, visualization, etc.
- Applications adapted
 - Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, Web mining, etc.

OLAP Mining: Integration of Data Mining and Data Warehousing

- Data mining systems, DBMS, Data warehouse systems coupling
- On-line analytical mining data
 - Integration of mining and OLAP technologies
- Interactive mining multi-level knowledge
 - Necessity of mining knowledge and patterns at different levels of abstraction.
- Integration of multiple mining functions
 - Characterized classification, first clustering and then association

Major Issues in Data Mining

- Mining methodology
 - Mining different kinds of knowledge from diverse data types, e.g., bio, stream, Web
 - Performance: efficiency, effectiveness, and scalability
 - Pattern evaluation: the interestingness problem
 - Incorporation of background knowledge
 - Handling noise and incomplete data
 - Parallel, distributed and incremental mining methods
 - Integration of the discovered knowledge with existing one: knowledge fusion

Major Issues in Data Mining

- User interaction
 - Data mining query languages and ad-hoc mining
 - Expression and visualization of data mining results
 - Interactive mining of knowledge at multiple levels of abstraction
- Applications and social impacts
 - Domain-specific data mining & invisible data mining
 - Protection of data security, integrity, and privacy

Summary

- Data mining: discovering interesting patterns from large amounts of data
- A natural evolution of database technology, in great demand, with wide applications
- A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Mining can be performed in a variety of information repositories
- Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc.
- Data mining systems and architectures
- Major issues in data mining