
Half and Full Adders 6–1

6–2 Parallel Binary Adders

LECTURE OUTLINE

Digital Logic & Design (THeory)
Lecture No.8

6–1 Half and Full Adders

Adders are important in computers and also in other types of digital systems in which

numerical data are processed. An understanding of the basic adder operation is funda-

mental to the study of digital systems. In this section, the half-adder and the full-adder are

introduced.

The Half-Adder

Recall the basic rules for binary addition as stated in Chapter 2.

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 10

The operations are performed by a logic circuit called a half-adder.

The half-adder accepts two binary digits on its inputs and produces two binary

digits on its outputs—a sum bit and a carry bit.

A half-adder is represented by the logic symbol in Figure 6–1.

Σ

A

B Cout

Σ Sum

Carry

OutputsInput bits

FIGURE 6–1 Logic symbol for a half-adder. Open file F06-01 to verify

operation. A Multisim tutorial is available on the website.

1

2

Half-Adder Logic

From the operation of the half-adder as stated in Table 6–1, expressions can be derived for

the sum and the output carry as functions of the inputs. Notice that the output carry (Cout)

is a 1 only when both A and B are 1s; therefore, Cout can be expressed as the AND of the

input variables.

Cout � AB Equation 6–1

Now observe that the sum output (©) is a 1 only if the input variables, A and B, are not

equal. The sum can therefore be expressed as the exclusive-OR of the input variables.

π � A ¢ B Equation 6–2

From Equations 6–1 and 6–2, the logic implementation required for the half-adder func-

tion can be developed. The output carry is produced with an AND gate with A and B on the

TABLE 6–1

Half-adder truth table.

A B Cout π

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

© = sum

Cout = output carry

A and B = input variables (operands)

inputs, and the sum output is generated with an exclusive-OR gate, as shown in Figure 6–2.

Remember that the exclusive-OR can be implemented with AND gates, an OR gate, and

inverters.

Cout = AB

Σ = A ⊕ B = AB + AB

A

B

FIGURE 6–2 Half-adder logic diagram.

The Full-Adder

The second category of adder is the full-adder.

The full-adder accepts two input bits and an input carry and generates a sum output

and an output carry.

The basic difference between a full-adder and a half-adder is that the full-adder accepts an

input carry. A logic symbol for a full-adder is shown in Figure 6–3, and the truth table in

Table 6–2 shows the operation of a full-adder.

Σ
A

Cin

Cout

Σ Sum

Output carry

Input
bits

B

Input carry

FIGURE 6–3 Logic symbol for a full-adder. Open file F06-03 to verify operation.

3

TABLE 6–2

Full-adder truth table.

A B Cin Cout π

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Cin = input carry, sometimes designated as CI

Cout = output carry, sometimes designated as CO

© = sum

A and B = input variables (operands)

Full-Adder Logic

The full-adder must add the two input bits and the input carry. From the half-adder you

know that the sum of the input bits A and B is the exclusive-OR of those two variables,

A � B. For the input carry (Cin) to be added to the input bits, it must be exclusive-ORed

with A � B, yielding the equation for the sum output of the full-adder.

π � (A ¢ B) ¢ Cin Equation 6–3

This means that to implement the full-adder sum function, two 2-input exclusive-OR gates

can be used. The first must generate the term � and the second has as its inputs the

output of the first XOR gate and the input carry, as illustrated in Figure 6–4(a).

B

A

Σ = (A ⊕ B) ⊕ Cin

A ⊕ B

Cin

(a) Logic required to form the sum of three bits

Cin

B

A A ⊕ B

(A ⊕ B)Cin

AB

Cout = AB + (A ⊕ B)Cin

(b) Complete logic circuit for a full-adder (each half-adder is enclosed
by a shaded area)

Σ = (A ⊕ B) ⊕ Cin

FIGURE 6–4 Full-adder logic. Open file F06-04 to verify operation.

The output carry is a 1 when both inputs to the first XOR gate are 1s or when both inputs

to the second XOR gate are 1s. You can verify this fact by studying Table 6–2. The output

carry of the full-adder is therefore produced by input A ANDed with input B and A � B

4

A B,

(b) Full-adder logic symbol

Input
carry, Cin

AB + (A ⊕ B)Cin

(a) Arrangement of two half-adders to form a full-adder

A ⊕ B
Σ

A

B Cout

Σ
Sum

(A ⊕ B) ⊕ Cin

AB Output carry, Cout

Σ

A

B Cout

Σ

Half-adder Half-adder

(A ⊕ B)Cin

Σ
A

Cin

Cout

Σ

B

A

B

FIGURE 6–5 Full-adder implemented with half-adders.

ANDed with Cin. These two terms are ORed, as expressed in Equation 6–4. This function

is implemented and combined with the sum logic to form a complete full-adder circuit, as

shown in Figure 6–4(b).

Cout � AB � (A ¢ B)Cin Equation 6–4

Notice in Figure 6–4(b) there are two half-adders, connected as shown in the block

diagram of Figure 6–5(a), with their output carries ORed. The logic symbol shown in Fig-

ure 6–5(b) will normally be used to represent the full-adder.

Solution

(a) The input bits are A = 1, B = 0, and Cin = 0.

1 + 0 + 0 = 1 with no carry

Therefore, © = 1 and Cout = 0.

(b) The input bits are A = 1, B = 1, and Cin = 0.

1 + 1 + 0 = 0 with a carry of 1

Therefore, © = 0 and Cout = 1.

(c) The input bits are A = 1, B = 0, and Cin = 1.

1 + 0 + 1 = 0 with a carry of 1

Therefore, © = 0 and Cout = 1.

EXAMPLE 6–1

For each of the three full-adders in Figure 6–6, determine the outputs for the inputs shown.

(a)

Σ
A

Cin

Cout

Σ

B

1

0

0

(b)

Σ
A

Cin

Cout

Σ

B

1

0

1

(c)

Σ
A

Cin

Cout

Σ

B

1

1

0

FIGURE 6–6

5

6–2 Parallel Binary Adders

Two or more full-adders are connected to form parallel binary adders. In this section,

you will learn the basic operation of this type of adder and its associated input and output

functions.

As you learned in Section 6–1, a single full-adder is capable of adding two 1-bit num-

bers and an input carry. To add binary numbers with more than one bit, you must use

additional full-adders. When one binary number is added to another, each column gener-

ates a sum bit and a 1 or 0 carry bit to the next column to the left, as illustrated here with

2-bit numbers.

To add two binary numbers, a full-adder (FA) is required for each bit in the numbers. So

for 2-bit numbers, two adders are needed; for 4-bit numbers, four adders are used; and so

on. The carry output of each adder is connected to the carry input of the next higher-order

adder, as shown in Figure 6–7 for a 2-bit adder. Notice that either a half-adder can be used

for the least significant position or the carry input of a full-adder can be made 0 (grounded)

because there is no carry input to the least significant bit position.

1
1

1

+ 01

100
In this case, the

carry bit from

second column

becomes a sum bit.

Carry bit from right column

In Figure 6–7 the least significant bits (LSB) of the two numbers are represented by A1

and B1. The next higher-order bits are represented by A2 and B2. The three sum bits are

©1, ©2, and ©3. Notice that the output carry from the left-most full-adder becomes the

most significant bit (MSB) in the sum, ©3.

A2 B2 A1 B1

0

(MSB) Σ2Σ3 Σ
1 (LSB)

FA1FA2

General format, addition
of two 2-bit numbers:

A2A1

+ B2B1

Σ3Σ2Σ1

A

Σ

BA

Σ

B Cin
Cin

Cout Cout

FIGURE 6–7 Block diagram of a basic 2-bit parallel adder using two full-adders.

Open file F06-07 to verify operation.

6

EXAMPLE 6–2

Determine the sum generated by the 3-bit parallel adder in Figure 6–8 and show the

intermediate carries when the binary numbers 101 and 011 are being added.

1

Σ2 Σ1

0

1

0

Σ3Σ4

01

1001

11

A

Σ

BA

Σ

B Cin
Cin

Cout Cout

A

Σ

B Cin

Cout

FA1FA2FA3

FIGURE 6–8

Solution

The LSBs of the two numbers are added in the right-most full-adder. The sum bits and

the intermediate carries are indicated in blue in Figure 6–8.

Four-Bit Parallel Adders

A group of four bits is called a nibble. A basic 4-bit parallel adder is implemented with

four full-adder stages as shown in Figure 6–9. Again, the LSBs (A1 and B1) in each number

being added go into the right-most full-adder; the higher-order bits are applied as shown

to the successively higher-order adders, with the MSBs (A4 and B4) in each number being

applied to the left-most full-adder. The carry output of each adder is connected to the carry

input of the next higher-order adder as indicated. These are called internal carries.

A2 B2 A1 B1

Σ2 Σ1

(LSB)FA1FA2

A3 B3A4 B4

Σ3
Σ

C4

C0

C1C2C3

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4
Output
carry

Binary
number A

Input
carry

4-bit
sum

(b) Logic symbol

Binary
number B

A

Σ

BA

Σ

B Cin
Cin

Cout Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

(MSB) FA4 FA3

4

(a) Block diagram .

FIGURE 6–9 A 4-bit parallel adder.

In keeping with most manufacturers’ data sheets, the input labeled C0 is the input carry

to the least significant bit adder; C4, in the case of four bits, is the output carry of the most

significant bit adder; and ©1 (LSB) through ©4 (MSB) are the sum outputs. The logic

symbol is shown in Figure 6–9(b).

In terms of the method used to handle carries in a parallel adder, there are two types:

the ripple carry adder and the carry look-ahead adder. These are discussed in Section 6–3.

7

Truth Table for a 4-Bit Parallel Adder

Table 6–3 is the truth table for a 4-bit adder. On some data sheets, truth tables may be called

function tables or functional truth tables. The subscript n represents the adder bits and

can be 1, 2, 3, or 4 for the 4-bit adder. Cn-1 is the carry from the previous adder. Carries

C1, C2, and C3 are generated internally. C0 is an external carry input and C4 is an output.

Example 6–3 illustrates how to use Table 6–3.

Solution

For n = 1: A1 = 0, B1 = 0, and Cn-1 = 0. From the 1st row of the table,

©1 = 0 and C1 = 0

For n = 2: A2 = 0, B2 = 0, and Cn-1 = 0. From the 1st row of the table,

©2 = 0 and C2 = 0

For n = 3: A3 = 1, B3 = 1, and Cn-1 = 0. From the 4th row of the table,

©3 = 0 and C3 = 1

For n = 4: A4 = 1, B4 = 1, and Cn-1 = 1. From the last row of the table,

©4 = 1 and C4 = 1

C4 becomes the output carry; the sum of 1100 and 1100 is 11000.

Adder Expansion

The 4-bit parallel adder can be expanded to handle the addition of two 8-bit numbers by

using two 4-bit adders. The carry input of the low-order adder (C0) is connected to ground

because there is no carry into the least significant bit position, and the carry output of the

low-order adder is connected to the carry input of the high-order adder, as shown in Fig-

ure 6–11. This process is known as cascading. Notice that, in this case, the output carry is

designated C8 because it is generated from the eighth bit position. The low-order adder is

EXAMPLE 6–3

Use the 4-bit parallel adder truth table (Table 6–3) to find the sum and output carry for

the addition of the following two 4-bit numbers if the input carry (Cn-1) is 0:

A4A3A2A1 = 1100 and B4B3B2B1 = 1100

TABLE 6–3

Truth table for each stage of

a 4-bit parallel adder.

Cn� 1 An Bn πn Cn

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

8 5

1234Cout

A8 A7 A6 A5

1234

B8 B7 B6 B5

1234 Cin

4 3 2C8 Σ Σ Σ Σ Σ 7Σ Σ 6Σ 1

1234Cout

A4 A3 A2 A1

1234

B4 B3 B2 B1

1234 Cin

C0

AB

Σ

AB

Σ

FIGURE 6–11 Cascading of two 4-bit adders to form an 8-bit adder.

8

the one that adds the lower or less significant four bits in the numbers, and the high-order

adder is the one that adds the higher or more significant four bits in the 8-bit numbers.

Similarly, four 4-bit adders can be cascaded to handle two 16-bit numbers.

EXAMPLE 6–4

Show how two 74HC283 adders can be connected to form an 8-bit parallel adder. Show output bits for the following 8-bit

input numbers:

A8A7A6A5A4A3A2A1 = 10111001 and B8B7B6B5B4B3B2B1 = 10011110

Solution

Two 74HC283 4-bit parallel adders are used to implement the 8-bit adder. The only connection between the two 74HC283s

is the carry output (pin 9) of the low-order adder to the carry input (pin 7) of the high-order adder, as shown in Figure 6–12.

Pin 7 of the low-order adder is grounded (no carry input).

The sum of the two 8-bit numbers is

©9©8©7©6©5©4©3©2©1 = 101010111

Σ

A

1

2

3

4

1

0

0

1

B

1

2

3

4

0

1

1

1

C0

Σ

1

2

3

4

1

1

1

0

C40
1

Σ

A

1

2

3

4

1

1

0

1

B

1

2

3

4

1

0

0

1

C0

Σ

1

2

3

4

1

0

1

0

C4
1

Low-order adder High-order adder

(5)

(3)

(14)

(12)

(6)

(2)

(15)

(11)

(5)

(3)

(14)

(12)

(6)

(2)

(15)

(11)

(4)

(1)

(13)

(10)

(4)

(1)

(13)

(10)

(7)(9) (9)(7)

A1

A2

A3

A4

B1

B2

B3

B4

Σ1

Σ2

Σ3

Σ4

A5

A6

A7

A8

B5

B6

B7

B8

Σ5

Σ6

Σ7

Σ8

Σ9

FIGURE 6–12 Two 74HC283 adders connected as an 8-bit parallel adder

(pin numbers are in parentheses).

