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5–1 Basic Combinational Logic Circuits
You have learned that SOP expressions are implemented with an AND gate for each
product term and one OR gate for summing all of the product terms. As you know, this 

SOP implementation is called AND-OR logic and is the basic form for realizing standard 

Boolean functions. In this section, the AND-OR and the AND-OR-Invert are examined;
the exclusive-OR and exclusive-NOR gates, which are actually a form of AND-OR logic, 

are also covered.

AND-OR Logic
Figure 5–1 shows an AND-OR circuit consisting of two 2-input AND gates and one 2-

input OR gate. The Boolean expressions for the AND gate outputs and the resulting SOP 

expression for the output X are shown on the diagram. In general, an AND-OR circuit can 

have any number of AND gates, each with any number of inputs.

The truth table for a 4-input AND-OR logic circuit is shown in Table 5–1. The interme-

diate AND gate outputs (the AB and CD columns) are also shown in the table.

A

B

C

D CD

AB SOP

X = AB + CD

FIGURE 5–1 An example of AND-OR logic. Open file F05-01 to verify the operation. 
A Multisim tutorial is available on the website.

An AND-OR circuit directly implements an SOP expression, assuming the complements 

(if any) of the variables are available. The operation of the AND-OR circuit in Figure 5–1 

is stated as follows:

For a 4-input AND-OR logic circuit, the output X is HIGH (1) if both input A and 

input B are HIGH (1) or both input C and input D are HIGH (1).
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TABLE 5–1

Truth table for the AND-OR logic in Figure 5–1.
Inputs Output

A B C D AB CD X

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 1 1 0 1 1

0 1 0 0 0 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 1 1 0 1 1

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 1 1

1 1 0 0 1 0 1

1 1 0 1 1 0 1

1 1 1 0 1 0 1

1 1 1 1 1 1 1

AND-OR-Invert Logic
When the output of an AND-OR circuit is complemented (inverted), it results in an AND-OR-

Invert circuit. Recall that AND-OR logic directly implements SOP expressions. POS expres-

sions can be implemented with AND-OR-Invert logic. This is illustrated as follows, starting 

with a POS expression and developing the corresponding AND-OR-Invert (AOI) expression.

X = (A + B)(C + D) = (AB)(CD) = (AB)(CD) = AB + CD = AB + CD

The logic diagram in Figure 5–3 shows an AND-OR-Invert circuit with four inputs 

and the development of the POS output expression. In general, an AND-OR-Invert circuit 

can have any number of AND gates, each with any number of inputs.

The operation of the AND-OR-Invert circuit in Figure 5–3 is stated as follows:

For a 4-input AND-OR-Invert logic circuit, the output X is LOW (0) if both input 

A and input B are HIGH (1) or both input C and input D are HIGH (1).

A truth table can be developed from the AND-OR truth table in Table 5–1 by simply chang-

ing all 1s to 0s and all 0s to 1s in the output column.

A

B

C

D CD

AB POS

AB + CD  =  (A + B)(C + D)AB + CD

FIGURE 5–3 An AND-OR-Invert circuit produces a POS output. Open file F05-03 
to verify the operation.

Exclusive-OR Logic
The exclusive-OR gate was introduced in Chapter 3. Although this circuit is considered a 

type of logic gate with its own unique symbol, it is actually a combination of two AND 

gates, one OR gate, and two inverters, as shown in Figure 5–5(a). The ANSI standard 

exclusive-OR logic symbol is shown in part (b).
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A

X = AB + AB

(b) ANSI distinctive(a) Logic diagram

B

X
A

B

shape symbol

FIGURE 5–5 Exclusive-OR logic diagram and symbols.

The output expression for the circuit in Figure 5–5 is

X = AB + AB

Evaluation of this expression results in the truth table in Table 5–2. Notice that the output 

is HIGH only when the two inputs are at opposite levels. A special exclusive-OR opera-

tor � is often used, so the expression X = AB + AB can be stated as “X is equal to A 

exclusive-OR B” and can be written as

X = A � B

Exclusive-NOR Logic
As you know, the complement of the exclusive-OR function is the exclusive-NOR, which 

is derived as follows:

X = AB + AB = (AB) (AB) = (A + B)(A + B) = A B + AB

Notice that the output X is HIGH only when the two inputs, A and B, are at the same level.

The exclusive-NOR can be implemented by simply inverting the output of an exclusive-

OR, as shown in Figure 5–6(a), or by directly implementing the expression A B + AB, as 

shown in part (b).

TABLE 5–2

Truth table for an exclusive-
OR.

A B X

0 0 0

0 1 1

1 0 1

1 1 0

A

B

X

XOR

A

B X

AB

AB

(a) X = AB + AB (b) X = AB + AB

FIGURE 5–6 Two equivalent ways of implementing the exclusive-NOR.

EXAMPLE 5–3

Use exclusive-OR gates to implement an even-parity code generator for an original 

4-bit code.

Solution

Recall from Chapter 2 that a parity bit is added to a binary code in order to provide 

error detection. For even parity, a parity bit is added to the original code to make the 

total number of 1s in the code even. The circuit in Figure 5–7 produces a 1 output 

when there is an odd number of 1s on the inputs in order to make the total number of 

1s in the output code even. A 0 output is produced when there is an even number of 1s 

on the inputs.
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A0

A1

Data bits Even parity bit

Data bits

A2

A3

FIGURE 5–7 Even-parity generator.

EXAMPLE 5–4

Use exlusive-OR gates to implement an even-parity checker for the 5-bit code generated 

by the circuit in Example 5–3.

Solution

The circuit in Figure 5–8 produces a 1 output when there is an error in the five-bit code 

and a 0 when there is no error.

A0

A1

Data bits

Even parity bit
Error

A2

A3

FIGURE 5–8 Even-parity checker.

5–2 Implementing Combinational Logic
In this section, examples are used to illustrate how to implement a logic circuit from a 

Boolean expression or a truth table. Minimization of a logic circuit using the methods cov-

ered in Chapter 4 is also included.

From a Boolean Expression to a Logic Circuit
Let’s examine the following Boolean expression:

X = AB + CDE

A brief inspection shows that this expression is composed of two terms, AB and CDE, 

with a domain of five variables. The first term is formed by ANDing A with B, and the 

second term is formed by ANDing C, D, and E. The two terms are then ORed to form the 

output X. These operations are indicated in the structure of the expression as  follows:

AND

X = AB + CDE

OR

Note that in this particular expression, the AND operations forming the two individual 

terms, AB and CDE, must be performed before the terms can be ORed.

To implement this Boolean expression, a 2-input AND gate is required to form the term 

AB, and a 3-input AND gate is needed to form the term CDE. A 2-input OR gate is then 

required to combine the two AND terms. The resulting logic circuit is shown in Figure 5–9.
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As another example, let’s implement the following expression:

X = AB(CD + EF)

AB

B

X = AB + CDE

A

E
D

CDE

C

FIGURE 5–9 Logic circuit for X 5 AB 1 CDE.

A breakdown of this expression shows that the terms AB and (CD + EF) are ANDed. 

The term CD + EF is formed by first ANDing C and D and ANDing E and F, and 

then ORing these two terms. This structure is indicated in relation to the expression as 

follows:

AND

NOT

OR

X = AB(CD + EF)

AND

Before you can implement the final expression, you must create the sum term CD + EF; 

but before you can get this term; you must create the product terms CD and EF; but before 

you can get the term CD, you must create D. So, as you can see, the logic operations must 

be done in the proper order.

The logic gates required to implement X = AB(CD + EF) are as follows:

1. One inverter to form D

2. Two 2-input AND gates to form CD and EF

3. One 2-input OR gate to form CD + EF

4. One 3-input AND gate to form X

The logic circuit for this expression is shown in Figure 5–10(a). Notice that there is a 

maximum of four gates and an inverter between an input and output in this circuit (from 

input D to output). Often the total propagation delay time through a logic circuit is a major 

consideration. Propagation delays are additive, so the more gates or inverters between input 

and output, the greater the propagation delay time.

Unless an intermediate term, such as CD + EF in Figure 5–10(a), is required as an out-

put for some other purpose, it is usually best to reduce a circuit to its SOP form in order to 

reduce the overall propagation delay time. The expression is converted to SOP as follows, 

and the resulting circuit is shown in Figure 5–10(b).

AB(CD + EF) = ABCD + ABEF

E

A

D

B
C

C

D

A

B

E

F EF

CD  X = AB(CD + EF)

CD + EF

D

F
ABEF

ABCD

 X = ABCD + ABEF

(b) Sum-of-products implementation of the circuit in part (a)(a)

FIGURE 5–10 Logic circuits for X = AB(CD + EF) = ABCD + ABEF.
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TABLE 5–3

Inputs Output

Product TermA B C X

0 0 0 0

0 0 1 0
0 1 0 0

0 1 1 1 ABC

1 0 0 1 AB C
1 0 1 0
1 1 0 0
1 1 1 0

From a Truth Table to a Logic Circuit
If you begin with a truth table instead of an expression, you can write the SOP expression 

from the truth table and then implement the logic circuit. Table 5–3 specifies a logic function.

The Boolean SOP expression obtained from the truth table by ORing the product terms 

for which X 5 1 is

X = ABC + AB C

The first term in the expression is formed by ANDing the three variables A, B, and C. The 

second term is formed by ANDing the three variables A, B, and C.

The logic gates required to implement this expression are as follows: three inverters to 

form the A, B, and C variables; two 3-input AND gates to form the terms ABC and AB C; 

and one 2-input OR gate to form the final output function, ABC + AB C.

The implementation of this logic function is illustrated in Figure 5–11.

EXAMPLE 5–5

Design a logic circuit to implement the operation specified in the truth table of Table 5–4.

TABLE 5–4

Inputs Output

Product TermA B C X

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1 ABC

1 0 0 0

1 0 1 1 ABC

1 1 0 1 ABC

1 1 1 0

A

B X = ABC + ABC

C

A
ABC

B

C
ABC

FIGURE 5–11 Logic circuit for X = ABC + AB C. Open file F05-11 to verify 
the operation.

Solution

Notice that X 5 1 for only three of the input conditions. Therefore, the logic expression is

X = ABC + ABC + ABC
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EXAMPLE 5–6

Develop a logic circuit with four input variables that will only produce a 1 output when 

exactly three input variables are 1s.

Solution

Out of sixteen possible combinations of four variables, the combinations in which there are 

exactly three 1s are listed in Table 5–5, along with the corresponding product term for each.

TABLE 5–5

A B C D Product Term

0 1 1 1 ABCD

1 0 1 1 ABCD

1 1 0 1 ABCD

1 1 1 0 ABCD

The product terms are ORed to get the following expression:

X = ABCD + ABCD + ABCD + ABCD

This expression is implemented in Figure 5–13 with AND-OR logic.

A
ABC

ABC

C B A

ABC
X 

BC

FIGURE 5–12 Open file F05-12 to 
verify the operation.

ABCD

X

ABCD

ABCD

ABCD

D C B A FIGURE 5–13 Open file 
F05-13 to verify the operation.

The logic gates required are three inverters, three 3-input AND gates and one 3-input 

OR gate. The logic circuit is shown in Figure 5–12.
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EXAMPLE 5–8

Minimize the combinational logic circuit in Figure 5–16. Inverters for the comple-

mented variables are not shown.

X 

A

A
B
C

B

C

D

A

B

C

D

A

B

C

D

FIGURE 5–16 

EXAMPLE 5–7

Reduce the combinational logic circuit in Figure 5–14 to a minimum form.

A

B

C

D

X

FIGURE 5–14 

Open file F05-14 to verify that this 
circuit is equivalent to the gate  in 
Figure 5–15.

Solution

The expression for the output of the circuit is

X = (A B C)C + A B C + D

Applying DeMorgan’s theorem and Boolean algebra,

 X = (A + B + C)C + A + B + C + D

= AC + BC + CC + A + B + C + D

= AC + BC + C + A + B + C + D

= C(A + B + 1) + A + B + D

 X = A + B + C + D

The simplified circuit is a 4-input OR gate as shown in Figure 5–15.

A
B
C
D

X

Solution

The output expression is

X = AB C + ABC D + A B CD + A B C D

Expanding the first term to include the missing variables D and D,

 X = AB C(D + D) + ABC D + A B CD + A B C D

= AB CD + AB C D + ABC D + A B CD + A B C D

This expanded SOP expression is mapped and simplified on the 

Karnaugh map in Fig-  ure 5–17(a). The simplified implementation is 

shown in part (b). Inverters are not shown.

1

(a)

AB
CD

00 01 11 10

00

01

11

10

BC

ACD1

1

1

(b)

X

B

C

A
C
D

1

FIGURE 5–17 
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5–3 The Universal Property of NAND and NOR Gates
Up to this point, you have studied combinational circuits implemented with AND gates, 

OR gates, and inverters. In this section, the universal property of the NAND gate and the 

NOR gate is discussed. The universality of the NAND gate means that it can be used as 

an inverter and that combinations of NAND gates can be used to implement the AND, 

OR, and NOR operations. Similarly, the NOR gate can be used to implement the inverter 

(NOT), AND, OR, and NAND operations.

The NAND Gate as a Universal Logic Element
The NAND gate is a universal gate because it can be used to produce the NOT, the AND, 

the OR, and the NOR functions. An inverter can be made from a NAND gate by 

connecting all of the inputs together and creating, in effect, a single input, as shown in 

Figure 5–18(a) for a 2-input gate. An AND function can be generated by the use of NAND 

gates alone, as shown in Figure 5–18(b). An OR function can be produced with only 

NAND gates, as illustrated in part (c). Finally, a NOR function is produced as shown in 

part (d).

AAA A

(a) One NAND gate used as an inverter

AB
A

B

A

B
AB = AB

(b) Two NAND gates used as an AND gate

AB

A + B
A

B

A

B

A

B

(c) Three NAND gates used as an OR gate

AB = A + B

G
1

G
2

G
3

A + B
A

B

A

B
B

(d) Four NAND gates used as a NOR gate

A + B

A
G

1

G
2

G
3

G
4

AB = A + B

FIGURE 5–18 Universal application of NAND gates. Open files F05-18(a), (b), (c), and 
(d) to verify each of the equivalencies.

In Figure 5–18(b), a NAND gate is used to invert (complement) a NAND output to form 

the AND function, as indicated in the following equation:

X = AB = AB

In Figure 5–18(c), NAND gates G1 and G2 are used to invert the two input variables 

before they are applied to NAND gate G3. The final OR output is derived as follows by 

application of DeMorgan’s theorem:

X = A B = A + B

In Figure 5–18(d), NAND gate G4 is used as an inverter connected to the circuit of part (c) 

to produce the NOR operation A + B.
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The NOR Gate as a Universal Logic Element
Like the NAND gate, the NOR gate can be used to produce the NOT, AND, OR, and 

NAND functions. A NOT circuit, or inverter, can be made from a NOR gate by connecting 

all of the inputs together to effectively create a single input, as shown in Figure 5–19(a) 

with a 2-input example. Also, an OR gate can be produced from NOR gates, as illustrated 

in Figure 5–19(b). An AND gate can be constructed by the use of NOR gates, as shown in 

Figure 5–19(c). In this case the NOR gates G1 and G2 are used as inverters, and the final 

output is derived by the use of DeMorgan’s theorem as follows:

X = A + B = AB

Figure 5–19(d) shows how NOR gates are used to form a NAND function.

AAA A

(a) One NOR gate used as an inverter

A

B
A + B

(b) Two NOR gates used as an OR gate

A + B
A

B

A + B

A

B

(c) Three NOR gates used as an AND gate

AB
A

B
A + B = AB

A
G

1

B G
2

G
3

A

B

A

B
B

(d) Four NOR gates used as a NAND gate

AB

A

AB

G
1

G
2

G
4

G
3

AB

FIGURE 5–19 Universal application of NOR gates. Open files F05-19(a), (b), (c), and (d) 
to verify each of the equivalencies.

5–4 Combinational Logic Using NAND and NOR Gates
In this section, you will see how NAND and NOR gates can be used to implement a logic 

function. Recall from Chapter 3 that the NAND gate also exhibits an equivalent opera-

tion called the negative-OR and that the NOR gate exhibits an equivalent operation called 

the negative-AND. You will see how the use of the appropriate symbols to represent the 

equivalent operations makes “reading” a logic diagram easier.

NAND Logic

As you have learned, a NAND gate can function as either a NAND or a negative-OR 

because, by DeMorgan’s theorem,

AB = A + B

NAND  negative-OR
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Consider the NAND logic in Figure 5–20. The output expression is developed in the 

following steps:

 X = (AB)(CD)

= (A + B)(C + D)

= (A + B) + (C + D)

= A B + C D

= AB + CD

A

B

C

D

G2

G3

G1 X = AB + CD 

CD

AB

FIGURE 5–20 NAND logic for X 5 AB 1 CD.

As you can see in Figure 5–20, the output expression, AB 1 CD, is in the form of two 

AND terms ORed together. This shows that gates G2 and G3 act as AND gates and that 

gate G1 acts as an OR gate, as illustrated in Figure 5–21(a). This circuit is redrawn in 

part (b) with NAND symbols for gates G2 and G3 and a negative-OR symbol for gate G1.

Notice in Figure 5–21(b) the bubble-to-bubble connections between the outputs of 

gates G2 and G3 and the inputs of gate G1. Since a bubble represents an inversion, two 

�

A
G2B

G3
C

D

AB + CD

(c) AND-OR equivalent

G1

A
G2B

G3
C

D

G1 AB + CD

(b) Equivalent NAND/Negative-OR logic diagram

Bubbles cancel

Bubbles cancel

A
G2B

G3
C

D

G1

G2 acts as AND

AB + CD

G1 acts as OR

G3 acts as AND

(a) Original NAND logic diagram showing effective

gate operation relative to the output expression

FIGURE 5–21 Development of the AND-OR equivalent of the circuit in Figure 5–20.

connected bubbles represent a double inversion and therefore cancel each other. This 

inversion cancellation can be seen in the previous development of the output expres-

sion AB 1 CD and is indicated by the absence of barred terms in the output expres-

sion. Thus, the circuit in Figure 5–21(b) is effectively an AND-OR circuit, as shown in 

Figure 5–21(c).
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NAND Logic Diagrams Using Dual Symbols

All logic diagrams using NAND gates should be drawn with each gate represented by 

either a NAND symbol or the equivalent negative-OR symbol to reflect the operation of 

the gate within the logic circuit. The NAND symbol and the negative-OR symbol are 

called dual symbols. When drawing a NAND logic diagram, always use the gate symbols 

in such a way that every connection between a gate output and a gate input is either 

bubble-to-bubble or nonbubble-to-nonbubble. In general, a bubble output should not be 

connected to a nonbubble input or vice versa in a logic diagram.

Figure 5–22 shows an arrangement of gates to illustrate the procedure of using the 

appropriate dual symbols for a NAND circuit with several gate levels. Although using all 

NAND symbols as in Figure 5–22(a) is correct, the diagram in part (b) is much easier to 

“read” and is the preferred method. As shown in Figure 5–22(b), the output gate is repre-

sented with a negative-OR symbol. Then the NAND symbol is used for the level of gates 

right before the output gate and the symbols for successive levels of gates are alternated as 

you move away from the output.

(a) Several Boolean steps are required to arrive at final output expression.

D

E

F

C

A

B

=

=

=

=

AB
ABC

ABCD

EF

(ABCD)EF

(ABCD) + EF

ABCD + EF

(AB + C)D + EF

(AB + C)D + EF

D

E

F

(AB + C)D + EF

AND

(b) Output expression can be obtained directly from the function of each gate symbol in the diagram.

C

A

B

AND

OR

OR

(ABC)D

AND

Bubble cancels bar

Bubble
cancels
bar

Bubble
cancels bar

Bubble adds
bar to C

EF

AB + C
AB

FIGURE 5–22 Illustration of the use of the appropriate dual symbols in a NAND logic 

diagram.

The shape of the gate indicates the way its inputs will appear in the output expression 

and thus shows how the gate functions within the logic circuit. For a NAND symbol, the 

inputs appear ANDed in the output expression; and for a negative-OR symbol, the inputs 

appear ORed in the output expression, as Figure 5–22(b) illustrates. The dual-symbol dia-

gram in part (b) makes it easier to determine the output expression directly from the logic 

diagram because each gate symbol indicates the relationship of its input variables as they 

appear in the output expression.
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EXAMPLE 5–10

Implement each expression with NAND logic using appropriate dual symbols:

(a) ABC 1 DE (b) ABC + D + E

Solution

See Figure 5–25.

(b)

A
B

C
D
E

Bubble cancels bar

(a)

A
B

C
ABC + D + E

Bubbles add bars to D and E

D

E

Bubble cancels bar

ABC + DE

Bubble cancels bar

ABC

DE

ABC

FIGURE 5–25 

NOR Logic

A NOR gate can function as either a NOR or a negative-AND, as shown by DeMorgan’s 

theorem. A + B = A B

NOR  negative-AND

EXAMPLE 5–9

Redraw the logic diagram and develop the output expression for the circuit in Figure 5–23 using the appropriate dual symbols.

B

A

C

D

E

F

X

G2

G1

G4

G5

G3

FIGURE 5–23 

Solution

Redraw the logic diagram in Figure 5–23 with the use of equivalent negative-OR symbols as shown in Figure 5–24. Writing 

the expression for X directly from the indicated logic operation of each gate gives X = (A + B)C + (D + E )F.

B

A

C

D

E

F

A + B

D + E

(D + E)F

X = (A + B)C + (D + E)F

(A + B)CG
2

G
1

G
4

G
5

G
3

A

B
G2

C

D
G3

G1 X = (A + B)(C + D)

FIGURE 5–26 NOR logic for X 5 (A 1 B)(C 1 D).
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Consider the NOR logic in Figure 5–26. The output expression is developed as follows:

X = A + B + C + D = (A + B)(C + D) = (A + B)C + D)

As you can see in Figure 5–26, the output expression (A 1 B)(C 1 D) consists of two 

OR terms ANDed together. This shows that gates G2 and G3 act as OR gates and gate G1 

acts as an AND gate, as illustrated in Figure 5–27(a). This circuit is redrawn in part (b) with 

a negative-AND symbol for gate G1.

A

B
G2

C

D

(a)

acts as OR

acts as AND

acts as OR

G2

G1

G3

(A + B)(C + D)

A

B

C

D

(A + B)(C + D)

(b)

G1

Bubbles cancel

Bubbles cancel

G3

G1

G2

G3

FIGURE 5–27 

NOR Logic Diagram Using Dual Symbols

As with NAND logic, the purpose for using the dual symbols is to make the logic diagram 

easier to read and analyze, as illustrated in the NOR logic circuit in Figure 5–28. When the 

circuit in part (a) is redrawn with dual symbols in part (b), notice that all output-to-input 

D

E

F

OR

(b) Output expression can be obtained directly from the function of each gate symbol in the diagram.

(a) Final output expression is obtained after several Boolean steps.

C

A

B

OR

OR

AND

AND

D

E

F

C

A

B

=
=
=
=

A + B + C
A + B + C + D

E + F

A + B + C + D + E + F

(A + B + C + D)(E + F)

(A + B + C + D)(E + F)

((A + B)C + D)(E + F)

((A + B)C + D)(E + F)

(A + B)C
(A + B)C + D

[(A + B)C + D](E + F)

E + F

A + B

A + B

Bubble adds bar to C

Bubble
cancels
bar

Bubble
cancels bar

Bubble cancels bar

FIGURE 5–28 Illustration of the use of the appropriate dual symbols in a NOR logic 

diagram.

connections between gates are bubble-to-bubble or nonbubble-to-nonbubble. Again, you 

can see that the shape of each gate symbol indicates the type of term (AND or OR) that it 

produces in the output expression, thus making the output expression easier to determine 

and the logic diagram easier to analyze.



15

EXAMPLE 5–11

Using appropriate dual symbols, redraw the logic diagram and develop the output 

expression for the circuit in Figure 5–29.

E

D

F

G5

X

B

A

C

G3

G4

G2

G1

FIGURE 5–29 

Solution

Redraw the logic diagram with the equivalent negative-AND symbols as shown in 

Fig-ure 5–30. Writing the expression for X directly from the indicated operation of each 

gate, X = (A B + C)(D E + F)

B

A

C

D

E

F

AB

DE

DE + F

X = (AB + C)(DE + F) = (AB + C)(DE + F)

AB + C

G5

G3
G2

G1

G4

FIGURE 5–30 

5–5 Pulse Waveform Operation

General combinational logic circuits with pulse waveform inputs are examined in this sec-

tion. Keep in mind that the operation of each gate is the same for pulse waveform inputs as 

for constant-level inputs. The output of a logic circuit at any given time depends on the inputs 

at that particular time, so the relationship of the time-varying inputs is of primary importance.

The operation of any gate is the same regardless of whether its inputs are pulsed or 

constant levels. The nature of the inputs (pulsed or constant levels) does not alter the truth 

table of a circuit. The examples in this section illustrate the analysis of combinational logic 

circuits with pulse waveform inputs.

The following is a review of the operation of individual gates for use in analyzing com-

binational circuits with pulse waveform inputs:

1. The output of an AND gate is HIGH only when all inputs are HIGH at the same

time.

2. The output of an OR gate is HIGH only when at least one of its inputs is HIGH.

3. The output of a NAND gate is LOW only when all inputs are HIGH at the same

time.

4. The output of a NOR gate is LOW only when at least one of its inputs is HIGH.
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EXAMPLE 5–12

Determine the final output waveform X for the circuit in Figure 5–31, with input wave-

forms A, B, and C as shown.

B

A

C

X = A(B + C) = AB + AC

X
B

C

X

A

Y

Y

Inputs

FIGURE 5–31 

Solution

The output expression, AB + AC, indicates that the output X is LOW when both A and 
B are HIGH or when both A and C are HIGH or when all inputs are HIGH. The output 

waveform X is shown in the timing diagram of Figure 5–31. The intermediate wave-

form Y at the output of the OR gate is also shown.

EXAMPLE 5–13

Draw the timing diagram for the circuit in Figure 5–32 showing the outputs of G1, G2, 

and G3 with the input waveforms, A, and B, as indicated.

A

 X = AB + AB

B
G2

G3

G1

FIGURE 5–32 

Solution

When both inputs are HIGH or when both inputs are LOW, the output X is HIGH as 

shown in Figure 5–33. Notice that this is an exclusive-NOR circuit. The intermediate 

outputs of gates G2 and G3 are also shown in Figure 5–33.

A

B

X

G
2 

output

G
3 

output

FIGURE 5–33 
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EXAMPLE 5–14

Determine the output waveform X for the logic circuit in Figure 5–34(a) by first finding 

the intermediate waveform at each of points Y1, Y2, Y3, and Y4. The input waveforms are 

shown in Figure 5–34(b).

A

B

Y2

Y1

Y4

Y3

C

D

X

(a)

A

B

C

D

Y
1

Y
2

Y
3

Y
4

X

(b)

(c)

FIGURE 5–34 

Solution

All the intermediate waveforms and the final output waveform are shown in the timing 

diagram of Figure 5–34(c).
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