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2–10 Binary Coded Decimal (BCD)

Binary coded decimal (BCD) is a way to express each of the decimal digits with a binary 

code. There are only ten code groups in the BCD system, so it is very easy to convert 

between decimal and BCD. Because we like to read and write in decimal, the BCD code 

provides an excellent interface to binary systems. Examples of such interfaces are keypad 

inputs and digital readouts.

The 8421 BCD Code

The 8421 code is a type of BCD (binary coded decimal) code. Binary coded decimal 
means that each decimal digit, 0 through 9, is represented by a binary code of four bits. 

The desig-nation 8421 indicates the binary weights of the four bits (23, 22, 21, 20). The 
ease of conver-sion between 8421 code numbers and the familiar decimal numbers is the 

main advantage of this code. All you have to remember are the ten binary combinations 
that represent the ten decimal digits as shown in Table 2–5. The 8421 code is the 
predominant BCD code, and when we refer to BCD, we always mean the 8421 code 
unless otherwise stated.

TABLE 2–5

Decimal/BCD conversion.

Decimal Digit 0 1 2 3 4 5 6 7 8 9

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Invalid Codes

You should realize that, with four bits, sixteen numbers (0000 through 1111) can be repre-

sented but that, in the 8421 code, only ten of these are used. The six code combinations that 

are not used—1010, 1011, 1100, 1101, 1110, and 1111—are invalid in the 8421 BCD code.

To express any decimal number in BCD, simply replace each decimal digit with the 

appropriate 4-bit code, as shown by Example 2–33.
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EXAMPLE 2–33

Convert each of the following decimal numbers to BCD:

(a) 35  (b)  98  (c)  170  (d)  2469

Solution

(a) 3 5 (b) 9 8

00110101 10011000

(c) 1 7 0 (d) 2 4 6 9

000101110000 0010010001101001

f fT T f fT T

f f fT T T f f f fT T T T

Convert each of the following BCD codes to decimal:

(a) 10000110 (b)  001101010001 (c)  1001010001110000

Solution

(a) 10000110 (b)  001101010001 (c)  1001010001110000

8 6 3 5 1 9 4 7 0

e e e e
T T T T

e e

T T

e e e

T T T

EXAMPLE 2–34

It is equally easy to determine a decimal number from a BCD number. Start at the 

right-most bit and break the code into groups of four bits. Then write the decimal digit 

represented by each 4-bit group.

Applications

Digital clocks, digital thermometers, digital meters, and other devices with seven-segment 

displays typically use BCD code to simplify the displaying of decimal numbers. BCD is 

not as efficient as straight binary for calculations, but it is particularly useful if only limited 

processing is required, such as in a digital thermometer.

BCD Addition

BCD is a numerical code and can be used in arithmetic operations. Addition is the most 

important operation because the other three operations (subtraction, multiplication, and 

division) can be accomplished by the use of addition. Here is how to add two BCD 

numbers:

Step 1: Add the two BCD numbers, using the rules for binary addition in Section 2–4.

Step 2: If a 4-bit sum is equal to or less than 9, it is a valid BCD number.

Step 3: If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is generated, 

it is an invalid result. Add 6 (0110) to the 4-bit sum in order to skip the six 

invalid states and return the code to 8421. If a carry results when 6 is added, 

simply add the carry to the next 4-bit group.

Example 2–35 illustrates BCD additions in which the sum in each 4-bit column is equal 

to or less than 9, and the 4-bit sums are therefore valid BCD numbers. Example 2–36 illus-

trates the procedure in the case of invalid sums (greater than 9 or a carry).

An alternative method to add BCD numbers is to convert them to decimal, perform the 

addition, and then convert the answer back to BCD.
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EXAMPLE 2–35

Add the following BCD numbers:

(a) 0011 + 0100 (b)  00100011 + 00010101

(c) 10000110 + 00010011 (d)  010001010000 + 010000010111

Solution

The decimal number additions are shown for comparison.

(a) 0011

+  0100

0111

 

3

+  4

7

 

(b) 0010

+  0001

0011

0011

 0101

1000

 

23

+  15

38

(c) 1000

+  0001

1001

0110

 0011

1001

 

86

+  13

99

 

(d) 0100

+  0100

1000

0101

 0001

0110

0000

 0111

0111

 

450

+  417

867

Note that in each case the sum in any 4-bit column does not exceed 9, and the results are 

valid BCD numbers.

EXAMPLE 2–36

Add the following BCD numbers:

(a) 1001 + 0100 (b)  1001 + 1001

(c) 00010110 + 00010101 (d)  01100111 + 01010011

Solution

The decimal number additions are shown for comparison.

(a) 1001 9

1 0100 14

1101 13

1 0110  

0001 0011 

Invalid BCD number (.9) 

Add 6

Valid BCD number

T  T
1 3

(b) 1001 9

1 1001 1 9

1 0010 18

1 0110  

0001 1000 

Invalid because of carry 

Add 6

Valid BCD number

T  T
1 8

(c) 0001 0110 16

1 0001 0101 1 15

0010 1011 Right group is invalid (.9), 31

1 0110 

  left group is valid.

Add 6 to invalid code. Add

0011 0001 

  carry, 0001, to next group.

Valid BCD number

T  T
3 1

(d) 0110 0111 67

1 0101 0011 1 53

1011 1010  120

1 0110 1 0110 

0001 0010 0000 

Both groups are invalid (.9) 

 Add 6 to both groups 

Valid BCD number

T  T  T
1 2 0

ee
ee

ee
ee e
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2–11 Digital Codes

Many specialized codes are used in digital systems. You have just learned about the BCD 

code; now let’s look at a few others. Some codes are strictly numeric, like BCD, and oth-

ers are alphanumeric; that is, they are used to represent numbers, letters, symbols, and 

instructions. The codes introduced in this section are the Gray code, the ASCII code, and 

the Unicode.

The Gray Code

The Gray code is unweighted and is not an arithmetic code; that is, there are no specific 

weights assigned to the bit positions. The important feature of the Gray code is that it 

exhibits only a single bit change from one code word to the next in sequence. This property 

is important in many applications, such as shaft position encoders, where error suscepti-

bility increases with the number of bit changes between adjacent numbers in a sequence.

Table 2–6 is a listing of the 4-bit Gray code for decimal numbers 0 through 15. Binary 

numbers are shown in the table for reference. Like binary numbers, the Gray code can have 

any number of bits. Notice the single-bit change between successive Gray code words. 

For instance, in going from decimal 3 to decimal 4, the Gray code changes from 0010 to 

0110, while the binary code changes from 0011 to 0100, a change of three bits. The only 

bit change in the Gray code is in the third bit from the right: the other bits remain the same.

TABLE 2–6

Four-bit Gray code.

Decimal Binary Gray Code Decimal Binary Gray Code

0 0000 0000 8 1000 1100

1 0001 0001 9 1001 1101

2 0010 0011 10 1010 1111

3 0011 0010 11 1011 1110

4 0100 0110 12 1100 1010

5 0101 0111 13 1101 1011

6 0110 0101 14 1110 1001

7 0111 0100 15 1111 1000

Binary-to-Gray Code Conversion

Conversion between binary code and Gray code is sometimes useful. The following rules 

explain how to convert from a binary number to a Gray code word:

1. The most significant bit (left-most) in the Gray code is the same as the corresponding

MSB in the binary number.

2. Going from left to right, add each adjacent pair of binary code bits to get the next

Gray code bit. Discard carries.

For example, the conversion of the binary number 10110 to Gray code is as follows:

1-  + S 0-  + S 1-  + S 1-  + S 0 Binary

T T T T T
1 1 1 0 1 Gray

The Gray code is 11101.

Gray-to-Binary Code Conversion

To convert from Gray code to binary, use a similar method; however, there are some differ-

ences. The following rules apply:
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1. The most significant bit (left-most) in the binary code is the same as the correspond-

ing bit in the Gray code.

2. Add each binary code bit generated to the Gray code bit in the next adjacent position.

Discard carries.

For example, the conversion of the Gray code word 11011 to binary is as follows:

1 1 0 1 1 Gray

1 0 0 1 0 Binary

The binary number is 10010.

� ↓

↓

� ↓

↓

� ↓

↓

� ↓↓

↓

EXAMPLE 2–37

(a) Convert the binary number 11000110 to Gray code.

(b) Convert the Gray code 10101111 to binary.

Solution

(a) Binary to Gray code:

1-  + S 1-  + S 0-  + S 0-  + S 0-  + S 1-  + S 1-  + S 0

T T T T T T T T
1 0 1 0 0 1 0 1

(b) Gray code to binary:

1 0 1 0 1 1 1 1

1 1 0 0 1 0 1 0

↓� ↓

↓

�

↓

↓� ↓

↓

� ↓

↓

� ↓

↓

�

↓

↓�

↓

↓

An Application

The concept of a 3-bit shaft position encoder is shown in Figure 2–7. Basically, there are 

three concentric rings that are segmented into eight sectors. The more sectors there 

are, the more accurately the position can be represented, but we are using only eight 

to illustrate. Each sector of each ring is either reflective or nonreflective. As the rings 

rotate with the shaft, they come under an IR emitter that produces three separate IR 

beams. A 1 is indicated where there is a reflected beam, and a 0 is indicated where 

there is no reflected beam. The IR detector senses the presence or absence of reflected 

(a) Binary code (b) Gray code

000

001

111110

101

100

011 010

1

1

0

000

001

100101

111

110

010 011

1

1

1IR
emitter/detector

IR beams

Reflected Nonreflected

IR
emitter/detector

FIGURE 2–7 A simplified illustration of how the Gray code solves the error problem in 

shaft position encoders. Three bits are shown to illustrate the concept, although most shaft 

encoders use more than 10 bits to achieve a higher resolution.
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beams and produces a corresponding 3-bit code. The IR emitter/detector is in a fixed 

position. As the shaft rotates counterclockwise through 360°, the eight sectors move 

under the three beams. Each beam is either reflected or absorbed by the sector surface 

to represent a binary or Gray code number that indicates the shaft position.

In Figure 2–7(a), the sectors are arranged in a straight binary pattern, so that the detector 

output goes from 000 to 001 to 010 to 011 and so on. When a beam is aligned over a reflective 

sector, the output is 1; when a beam is aligned over a nonreflective sector, the output is 0. If 

one beam is slightly ahead of the others during the transition from one sector to the next, an 

erroneous output can occur. Consider what happens when the beams are on the 111 sector and 

about to enter the 000 sector. If the MSB beam is slightly ahead, the position would be incor-

rectly indicated by a transitional 011 instead of a 111 or a 000. In this type of application, it 

is virtually impossible to maintain precise mechanical alignment of the IR emitter/detector 

beams; therefore, some error will usually occur at many of the transitions between sectors.

The Gray code is used to eliminate the error problem which is inherent in the binary code. 

As shown in Figure 2–7(b), the Gray code assures that only one bit will change between 

adjacent sectors. This means that even though the beams may not be in precise alignment, 

there will never be a transitional error. For example, let’s again consider what happens when 

the beams are on the 111 sector and about to move into the next sector, 101. The only two 

possible outputs during the transition are 111 and 101, no matter how the beams are aligned. 

A similar situation occurs at the transitions between each of the other sectors.

Alphanumeric Codes

In order to communicate, you need not only numbers, but also letters and other symbols. 

In the strictest sense, alphanumeric codes are codes that represent numbers and 

alphabetic characters (letters). Most such codes, however, also represent other characters 

such as sym-bols and various instructions necessary for conveying information.

At a minimum, an alphanumeric code must represent 10 decimal digits and 26 letters of the 

alphabet, for a total of 36 items. This number requires six bits in each code combination because 

five bits are insufficient (25
= 32). There are 64 total combinations of six bits, so there are 

28 unused code combinations. Obviously, in many applications, symbols other than just num-

bers and letters are necessary to communicate completely. You need spaces, periods, colons, 

semicolons, question marks, etc. You also need instructions to tell the receiving system what to 

do with the information. With codes that are six bits long, you can handle decimal numbers, the 

alphabet, and 28 other symbols. This should give you an idea of the requirements for a basic 

alphanumeric code. The ASCII is a common alphanumeric code and is covered next.

ASCII

ASCII is the abbreviation for American Standard Code for Information Interchange. Pro-

nounced “askee,” ASCII is a universally accepted alphanumeric code used in most comput-

ers and other electronic equipment. Most computer keyboards are standardized with the 

ASCII. When you enter a letter, a number, or control command, the corresponding ASCII 

code goes into the computer.

ASCII has 128 characters and symbols represented by a 7-bit binary code. Actually, 

ASCII can be considered an 8-bit code with the MSB always 0. This 8-bit code is 00 

through 7F in hexadecimal. The first thirty-two ASCII characters are nongraphic com-

mands that are never printed or displayed and are used only for control purposes. Examples 

of the control characters are “null,” “line feed,” “start of text,” and “escape.” The other 

characters are graphic symbols that can be printed or displayed and include the letters of 

the alphabet (lowercase and uppercase), the ten decimal digits, punctuation signs, and other 

commonly used symbols.

Table 2–7 is a listing of the ASCII code showing the decimal, hexadecimal, and binary 

representations for each character and symbol. The left section of the table lists the names 

of the 32 control characters (00 through 1F hexadecimal). The graphic symbols are listed 

in the rest of the table (20 through 7F hexadecimal).
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EXAMPLE 2–38

Use Table 2–7 to determine the binary ASCII codes that are entered from the compu-

ter’s keyboard when the following C language program statement is typed in. Also 

express each code in hexadecimal.

if (x 7 5)

Solution

The ASCII code for each symbol is found in Table 2–7.

Symbol Binary Hexadecimal

i 1101001 6916

f 1100110 6616

Space 0100000 2016

( 0101000 2816

x 1111000 7816

> 0111110 3E16

5 0110101 3516

) 0101001 2916

The ASCII Control Characters

The first thirty-two codes in the ASCII table (Table 2–7) represent the control characters. 

These are used to allow devices such as a computer and printer to communicate with each 

other when passing information and data. The control key function allows a control char-

acter to be entered directly from an ASCII keyboard by pressing the control key (CTRL) 

and the corresponding symbol.

Extended ASCII Characters

In addition to the 128 standard ASCII characters, there are an additional 128 characters that 

were adopted by IBM for use in their PCs (personal computers). Because of the popularity 

of the PC, these particular extended ASCII characters are also used in applications other 

than PCs and have become essentially an unofficial standard.

The extended ASCII characters are represented by an 8-bit code series from hexadecimal 

80 to hexadecimal FF and can be grouped into the following general categories: foreign 

(non-English) alphabetic characters, foreign currency symbols, Greek letters, mathematical 

symbols, drawing characters, bar graphing characters, and shading characters.

Unicode

Unicode provides the ability to encode all of the characters used for the written languages 

of the world by assigning each character a unique numeric value and name utilizing the 

universal character set (UCS). It is applicable in computer applications dealing with multi-

lingual text, mathematical symbols, or other technical characters.

Unicode has a wide array of characters, and their various encoding forms are used in many 

environments. While ASCII basically uses 7-bit codes, Unicode uses relatively abstract “code 

points”—non-negative integer numbers—that map sequences of one or more bytes, using 

different encoding forms and schemes. To permit compatibility, Unicode assigns the first 128 

code points to the same characters as ASCII. One can, therefore, think of ASCII as a 7-bit 

encoding scheme for a very small subset of Unicode and of the UCS.

Unicode consists of about 100,000 characters, a set of code charts for visual reference, 

an encoding methodology and set of standard character encodings, and an enumeration 

of character properties such as uppercase and lowercase. It also consists of a number of 

related items, such as character properties, rules for text normalization, decomposition, 

collation, rendering, and bidirectional display order (for the correct display of text contain-

ing both right-to-left scripts, such as Arabic or Hebrew, and left-to-right scripts).
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2–12 Error Codes

In this section, three methods for adding bits to codes to detect a single-bit error are dis-

cussed. The parity method of error detection is introduced, and the cyclic redundancy 

check is discussed. Also, the Hamming code for error detection and correction is 

presented.

Parity Method for Error Detection

Many systems use a parity bit as a means for bit error detection. Any group of bits contain 

either an even or an odd number of 1s. A parity bit is attached to a group of bits to make 

the total number of 1s in a group always even or always odd. An even parity bit makes the 

total number of 1s even, and an odd parity bit makes the total odd.

A given system operates with even or odd parity, but not both. For instance, if a system 

operates with even parity, a check is made on each group of bits received to make sure the 

total number of 1s in that group is even. If there is an odd number of 1s, an error has occurred.

As an illustration of how parity bits are attached to a code, Table 2–8 lists the parity bits 

for each BCD number for both even and odd parity. The parity bit for each BCD number is in 

the P column.

TABLE 2–8

The BCD code with parity bits.

Even Parity Odd Parity

P BCD P BCD

0 0000 1 0000

1 0001 0 0001

1 0010 0 0010

0 0011 1 0011

1 0100 0 0100

0 0101 1 0101

0 0110 1 0110

1 0111 0 0111

1 1000 0 1000

0 1001 1 1001

The parity bit can be attached to the code at either the beginning or the end, depending 

on system design. Notice that the total number of 1s, including the parity bit, is always even 

for even parity and always odd for odd parity.

Detecting an Error

A parity bit provides for the detection of a single bit error (or any odd number of errors, which 

is very unlikely) but cannot check for two errors in one group. For instance, let’s assume that 

we wish to transmit the BCD code 0101. (Parity can be used with any number of bits; we are 

using four for illustration.) The total code transmitted, including the even parity bit, is

Even parity bit

00101

 BCD code

Now let’s assume that an error occurs in the third bit from the left (the 1 becomes a 0).

Even parity bit

00001

 Bit error

e



10

When this code is received, the parity check circuitry determines that there is only a single 

1 (odd number), when there should be an even number of 1s. Because an even number of 

1s does not appear in the code when it is received, an error is indicated.

An odd parity bit also provides in a similar manner for the detection of a single error in 

a given group of bits.

EXAMPLE 2–39

Assign the proper even parity bit to the following code groups:

(a) 1010 (b) 111000 (c) 101101

(d) 1000111001001 (e) 101101011111

Solution

Make the parity bit either 1 or 0 as necessary to make the total number of 1s even. The 

parity bit will be the left-most bit (color).

(c) 0101101(a) 01010 

(d) 0100011100101 

(b) 1111000 

(e) 1101101011111

EXAMPLE 2–40

An odd parity system receives the following code groups: 10110, 11010, 110011, 

110101110100, and 1100010101010. Determine which groups, if any, are in error.

Solution

Since odd parity is required, any group with an even number of 1s is incorrect. The 

following groups are in error: 110011 and 1100010101010.

Cyclic Redundancy Check

The cyclic redundancy check (CRC) is a widely used code used for detecting one- and 

two-bit transmission errors when digital data are transferred on a communication link. 

The communication link can be between two computers that are connected to a network 

or between a digital storage device (such as a CD, DVD, or a hard drive) and a PC. If it is 

properly designed, the CRC can also detect multiple errors for a number of bits in sequence 

(burst errors). In CRC, a certain number of check bits, sometimes called a checksum, are 

appended to the data bits (added to end) that are being transmitted. The transmitted data 

are tested by the receiver for errors using the CRC. Not every possible error can be identi-

fied, but the CRC is much more efficient than just a simple parity check.

CRC is often described mathematically as the division of two polynomials to generate a 

remainder. A polynomial is a mathematical expression that is a sum of terms with positive 

exponents. When the coefficients are limited to 1s and 0s, it is called a univariate polynomial. 

An example of a univariate polynomial is 1x3 + 0x2 + 1x1 + 1x0 or simply x3 + x1 + x0, 

which can be fully described by the 4-bit binary number 1011. Most cyclic redundancy checks 

use a 16-bit or larger polynomial, but for simplicity the process is illustrated here with four bits.

Modulo-2 Operations

Simply put, CRC is based on the division of two binary numbers; and, as you know, division 

is just a series of subtractions and shifts. To do subtraction, a method called modulo-2 addi-

tion can be used. Modulo-2 addition (or subtraction) is the same as binary addition with the 

carries discarded, as shown in the truth table in Table 2–9. Truth tables are widely used to 

describe the operation of logic circuits, as you will learn in Chapter 3. With two bits, there 

is a total of four possible combinations, as shown in the table. This particular table describes 

the modulo-2 operation also known as exclusive-OR and can be implemented with a logic 
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gate. A simple rule for modulo-2 is that the output is 1 if the inputs are different; otherwise, 
it is 0.

Figure 2–8 illustrates the CRC process.

Remainder � 0

(a) Transmitting end of communication link

Remainder � 0

Append data

bits with

remainder

(initially

with x zeros).

Divide using

modulo-2

subtraction.

Send.

Check

remainder.

Data bits plus

appended bitsData bits plus appended bits

y data bits

x-bit generator code

Remainder � 0

Remainder � 0

Divide using

modulo-2

subtraction.

Error(s).

Request

retransmission.

No errors.

Process the

data bits.

Check

remainder.

Data bits

x-bit generator code

Data bits plus appended bits

(b) Receiving end of communication link

FIGURE 2–8 The CRC process.

TABLE 2–9

Modulo-2 operation.

Input Bits Output Bit

0 0 0

0 1 1

1 0 1

1 1 0

CRC Process

The process is as follows:

1. Select a fixed generator code; it can have fewer bits than the data bits to be checked.

This code is understood in advance by both the sending and receiving devices and

must be the same for both.

2. Append a number of 0s equal to the number of bits in the generator code to the data bits.

3. Divide the data bits including the appended bits by the generator code bits using

modulo-2.



4. If the remainder is 0, the data and appended bits are sent as is.

5. If the remainder is not 0, the appended bits are made equal to the remainder bits in

order to get a 0 remainder before data are sent.

6. At the receiving end, the receiver divides the incoming appended data bit code by

the same generator code as used by the sender.

7. If the remainder is 0, there is no error detected (it is possible in rare cases for multi-

ple errors to cancel). If the remainder is not 0, an error has been detected in the trans-

mission and a retransmission is requested by the receiver.

EXAMPLE 2–41

Determine the transmitted CRC for the following byte of data (D) and generator code 

(G). Verify that the remainder is 0.

D: 11010011

G: 1010

Solution

Since the generator code has four data bits, add four 0s (blue) to the data byte. The 

appended data (D9) is

D� = 110100110000

Divide the appended data by the generator code (red) using the modulo-2 operation until 

all bits have been used.

D�

G
=

110100110000

1010

110100110000

1010

1110

1010

1000

1010

1011

1010

1000

1010

Remainder = 0100. Since the remainder is not 0, append the data with the four 

remainder bits (blue). Then divide by the generator code (red). The transmitted CRC is 

110100110100.

110100110100

1010

1110

1010

1000

1010

1011

1010

1010

1010

00

Remainder = 0

100

12
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EXAMPLE 2–42

During transmission, an error occurs in the second bit from the left in the appended data 

byte generated in Example 2–41. The received data is

D� = 100100110100

Apply the CRC process to the received data to detect the error using the same generator 

code (1010).

Solution

100100110100

1010

1100

1010

1101

1010

1111

1010

1010

1010

0100

Remainder = 0100. Since it is not zero, an error is indicated.

Hamming Code

The Hamming code is used to detect and correct a single-bit error in a transmitted code. 

To accomplish this, four redundancy bits are introduced in a 7-bit group of data bits. These 

redundancy bits are interspersed at bit positions 2n (n = 0, 1, 2, 3) within the original data 

bits. At the end of the transmission, the redundancy bits have to be removed from the data 

bits. A recent version of the Hamming code places all the redundancy bits at the end of the 

data bits, making their removal easier than that of the interspersed bits. A coverage of the 

classic Hamming code is available on the website.
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