Digital Logic \& Design/Digital Systems
Programs: BS (CS) /BS (SE) /BS (TELC)
Course Codes: CSC-201/ SEC-201/TSC-201
EDP Codes: 102007016
Instructor: Muhammad Amin
Examination: Final Term
Semester: Summer 2020
Date: Sep. 26, 2020
Timing: 3:00 pm - 7:00 pm

Question No.	Q.1	Q.2	Q. 3	Q.4	Q. 5	Q. 6	Q. 7	Q. 8	Q. 9	Q. 10	Q. 11	Q. 12	
Total Marks	7	7	7	7	6	6	6	6	7	7	7	7	80

Note: Attempt all questions.
Q. 1 Using Boolean algebra, simplify the following expression:

$$
X=(A+B+C)(\bar{A}+\bar{B}+\bar{C})(\bar{A}+B+\bar{C})(\bar{A}+\bar{B}+C)
$$

Q. 2 Use a Karnaugh map to find the minimum SOP form for the following expression:

$$
X=\bar{A} \bar{B} \bar{C} \bar{D}+A \bar{B} \bar{C} \bar{D}+\bar{A} B \bar{C} \bar{D}+\bar{A} \bar{B} C \bar{D}+\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} C D+A B \bar{C} \bar{D}+A B C D
$$

Q. 3 Implement the expression $X=\overline{(\bar{A}+\bar{B}+\bar{C}) D E}$ by using NAND logic.
Q. 4 Draw the logic circuit using the input (A, B, C, D) and output (X) waveforms in Figure 01.

FIGURE 01
Q. 5 For the 4-input multiplexer, data inputs are given as:
$D_{0}=0, D_{1}=1, D_{2}=0, D_{3}=1$
Find the output Y if the select inputs are given as:
a) $S_{0}=1, S_{1}=0$
b) $S_{0}=0, S_{1}=1$
c) $S_{0}=1, S_{1}=1$
d) $S_{0}=0, S_{1}=0$
Q. 6 For the circuit in Figure 02, assume the inputs are $\overline{A d d} /$ Subt. $=1, A=1010$, and $\mathrm{B}=1101$. What is the output?

FIGURE 02
Q. 7 Determine the $A=B, A>B$, and $A<B$ outputs for the input numbers shown on the comparator in Figure 03.

FIGURE 03
Q. 8 Show the logic required to convert a 4-bit Gray code to binary and use that logic to convert the following Gray code words to binary: 1011
Q. 9 Draw and explain the logic diagram for 4-bit active low decoder.
Q. 10 Draw and explain the logic diagram for frequency divider (Use 3 J-K flip-flops and assume 16 kHz frequency of the initial wave-form.)
Q. 11 Determine the Q waveform relative to the clock if the signals shown in Figure 04 are applied to the inputs of the $J-K$ flip-flop. Assume that Q is initially LOW.

FIGURE 04
Q. 12 Draw the logic diagram and timing diagram for the 4-stage synchronous binary counter. Verify that the waveforms of the Q outputs represent the proper binary number after each clock pulse.

