Department of Electrical Engineering
 Assignment

Date: 24/06/2020

Course Details

Course Title: Digital Logic Design (B Tech) Instructor:
\qquad
\qquad

Module:
Total Marks: \qquad

Student Details

Name: \qquad Student ID:

Note: Draw neat diagrams where necessary. Assume missing details if required.

Q1.	Simplify the 4 variables expression in SOP term using K Map: $\begin{aligned} & \bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} C \bar{D}+\bar{A} B C \bar{D}+A B C \bar{D}+A \bar{B} \bar{C} \bar{D}+A \bar{B} \bar{C} \mathrm{D}+ \\ & A \bar{B} \subset \bar{D} \end{aligned}$	Marks 10
Q2.	Simplify 4 variables expression in POS term using K Map: F (A, B, C D $)=$ Maxterms at $(2,4,5,7,9,10,11,13,15)$ with don't care at $(0,8,12)$	Marks 10
Q3.	Implement the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,2,4,5,7,9,12,14)$ using MUX.	Marks 10
Q4.	Design a combinational circuit with three inputs A, B, and C, and three outputs X, Y, and Z. When the binary input is $\mathbf{0 , 1}, 2$, or 3 , the binary output is one greater than the input. When the binary input is $\mathbf{4 , 5 , 6}$, or 7 , the binary output is one less than the input.	Marks 10
Q5.	Draw the logic diagram of a 2 to 4 line decoder using NOR gates only. Also Include an enable input.	Marks 10

