	Department of Electrical Engin Assignment Date: 24/06/2020	neering	
Course Title: Instructor:	Digital Logic Design (B Tech)	Module:	50
	Student Details		
Name:		Student ID:	

Note: Draw neat diagrams where necessary. Assume missing details if required.

-		
Q1.	Simplify the 4 variables expression in SOP term using K Map: $\overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ D + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ D + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ D + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D}$	Marks 10
Q2.	Simplify 4 variables expression in POS term using K Map: F (A, B, C, D) =Maxterms at(2, 4, 5, 7, 9, 10, 11, 13, 15) with don't care at (0, 8, 12)	Marks 10
Q3.	Implement the function F (A, B, C, D) = Σ (1, 2, 4, 5, 7, 9, 12, 14) using MUX.	Marks 10
Q4.	Design a combinational circuit with three inputs A, B, and C, and three outputs X, Y, and Z. When the binary input is 0, 1, 2, or 3, the binary output is one greater than the input. When the binary input is 4, 5, 6, or 7, the binary output is one less than the input.	Marks 10
Q5.	Draw the logic diagram of a 2 to 4 line decoder using NOR gates only. Also Include an enable input.	Marks 10