## Digital Logic \& Design (Theory) <br> Final-Term Assignment <br> Instructor: Muhammad Amin <br> Program: BS (CS) <br> Course Codes: CSC-201 <br> EDP Codes: 102002077 <br> Semester: Spring 2020 <br> Total Marks: 50 <br> Date: June 26, 2020 <br> Timing: 12:00pm to 6:00pm

Note: Attempt all questions. Use examples and diagrams where necessary.
Q. 1 Draw and explain the logic diagram for each of the following:
a) A circuit for adding or subtracting two 4-bit numbers
b) 4-bit active low decoder
c) Decimal to BCD encoder
d) Frequency divider (Use 3 J-K flip-flops and assume 16 kHz frequency of the initial wave-form.)
Q. 2 For the 4-input multiplexer, data inputs are given as:
$D_{0}=0, D_{1}=1, D_{2}=0, D_{3}=1$
Find the output $Y$ if the select inputs are given as:
a) $S_{0}=1, S_{1}=0$
b) $S_{0}=0, S_{1}=1$
c) $S_{0}=1, S_{1}=1$
d) $S_{0}=0, S_{1}=0$
Q. 3 Timing diagram in Figure 01 shows inputs to a 9-bit parity checker. Draw the $\Sigma$ Even and $\Sigma$ Odd output for the even parity checking.
Q. 4 The waveforms in Figure 02 are applied to the J, K, CLK, $\overline{P R E}$, and $\overline{C L R}$ inputs as indicated. Determine the Q output, if the flip-flop is initially RESET.
Q. 5 Use the waveforms in Figure 03 to draw the timing diagram for the parallel outputs ( $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ ) for the shift register. Assume that register is initially cleared.
Q. 6 Draw the logic diagram and timing diagram for the 4-stage synchronous binary counter. Verify that the waveforms of the $Q$ outputs represent the proper binary number after each clock pulse.


Figure 01


Figure 02


Figure 03

