
Introduction to Database

Systems(Lab)

Engr. Madeha Mushtaq

Department of Computer Science

Iqra National University

Structured Query Language(SQL)

• SQL stands for Structured Query Language.

• SQL is a standard language for storing, manipulating and
retrieving data in databases.

• Softwares:

• MySQL,

• SQL Server,

• Oracle,

• Sybase,

• Informix,

• Postgres, and other database systems.

What Can SQL do?

• SQL can execute queries against a database

• SQL can retrieve data from a database

• SQL can insert records in a database

• SQL can update records in a database

• SQL can delete records from a database

• SQL can create new databases

• SQL can create new tables in a database

• SQL can create stored procedures in a database

• SQL can create views in a database

• SQL can set permissions on tables, procedures, and views

SQL Statements

• Most of the actions you need to perform on a database are
done with SQL statements.

• SELECT Statement:

• The SELECT statement is used to select data from a database.

• The data returned is stored in a result table, called the result-
set.

• SELECT Syntax

• SELECT column1, column2, ...
FROM table_name;

• Here, column1, column2, ... are the field names of the table
you want to select data from.

SELECT Statement

• If you want to select all the fields available in the table, use
the following syntax:

• SELECT * FROM table_name;

• SELECT Statement Example:

• The following SQL statement selects the "CustomerName"
and "City" columns from the "Customers" table:

• SELECT CustomerName,City FROM Customers;

• The following SQL statement selects all the columns from the
"Customers" table:

• SELECT * FROM Customers;

SELECT DISTINCT Statement

• The SELECT DISTINCT statement is used to return only distinct
(different) values.

• Inside a table, a column often contains many duplicate values;
and sometimes you only want to list the different (distinct)
values.

• SELECT DISTINCT Syntax

• SELECT DISTINCT column1, column2, ...
FROM table_name;

SELECT DISTINCT Statement

• SELECT DISTINCT Examples

• The following SQL statement selects only the DISTINCT values
from the "Country" column in the "Customers" table:

• SELECT DISTINCT Country FROM Customers;

• The following SQL statement lists the number of different
(distinct) customer countries:

• SELECT COUNT(DISTINCT Country) FROM Customers;

The SQL WHERE Clause

• The WHERE clause is used to filter records.

• The WHERE clause is used to extract only those records that
fulfill a specified condition.

• The WHERE clause is not only used in SELECT statement, it is
also used in UPDATE, DELETE statement, etc.

• WHERE Syntax

• SELECT column1, column2, ...
FROM table_name
WHERE condition;

The SQL WHERE Clause

• Example:

• The following SQL statement selects all the customers from
the country "Mexico", in the "Customers" table:

• SELECT * FROM Customers
WHERE Country='Mexico';

The SQL WHERE Clause

• Text Fields vs. Numeric Fields:

• SQL requires single quotes around text values (most database
systems will also allow double quotes).

• However, numeric fields should not be enclosed in quotes:

• SELECT * FROM Customers
WHERE CustomerID=1;

SQL AND, OR and NOT Operators

• The WHERE clause can be combined with AND, OR, and NOT

operators.

• The AND and OR operators are used to filter records based on
more than one condition:

• The AND operator displays a record if all the conditions
separated by AND are TRUE.

• The OR operator displays a record if any of the conditions
separated by OR is TRUE.

• The NOT operator displays a record if the condition(s) is NOT
TRUE.

SQL AND, OR and NOT Operators

• AND Syntax

• SELECT column1, column2, ...
FROM table_name
WHERE condition1 AND condition2 AND condition3 ...;

• OR Syntax

• SELECT column1, column2, ...
FROM table_name
WHERE condition1 OR condition2 OR condition3 ...;

• NOT Syntax

• SELECT column1, column2, ...
FROM table_name
WHERE NOT condition;

SQL AND, OR and NOT Operators

• AND Example

• The following SQL statement selects all fields from
"Customers" where country is "Germany" AND city is "Berlin":

• SELECT * FROM Customers
WHERE Country='Germany' AND City='Berlin';

• OR Example

• The following SQL statement selects all fields from
"Customers" where country is "Germany" OR "Spain":

• Example

• SELECT * FROM Customers
WHERE Country='Germany' OR Country='Spain';

SQL AND, OR and NOT Operators

• NOT Example

• The following SQL statement selects all fields from
"Customers" where country is NOT "Germany":

• Example

• SELECT * FROM Customers
WHERE NOT Country='Germany';

SQL AND, OR and NOT Operators

• Combining AND, OR and NOT

• You can also combine the AND, OR and NOT operators.

• The following SQL statement selects all fields from
"Customers" where country is "Germany" AND city must be
"Berlin" OR "München" (use parenthesis to form complex
expressions):

• Example

• SELECT * FROM Customers
WHERE Country='Germany' AND (City='Berlin' OR City='Münc
hen');

SQL AND, OR and NOT Operators

• The following SQL statement selects all fields from
"Customers" where country is NOT "Germany" and NOT
"USA":

• Example

• SELECT * FROM Customers
WHERE NOT Country='Germany' AND NOT Country='USA';

The SQL ORDER BY Keyword

• The ORDER BY keyword is used to sort the result-set in

ascending or descending order.

• The ORDER BY keyword sorts the records in ascending order
by default.

• To sort the records in descending order, use the DESC
keyword.

• ORDER BY Syntax

• SELECT column1, column2, ...
FROM table_name
ORDER BY column1, column2, ... ASC|DESC;

The SQL ORDER BY Keyword

 • Example

• The following SQL statement selects all customers from the
"Customers" table, sorted by the "Country" column:

• SELECT * FROM Customers
ORDER BY Country;

• DESC Example

• The following SQL statement selects all customers from the
"Customers" table, sorted DESCENDING by the "Country"
column:

• Example

• SELECT * FROM Customers
ORDER BY Country DESC;

The SQL ORDER BY Keyword

• The following SQL statement selects all customers from the
"Customers" table, sorted by the "Country" and the
"CustomerName" column.

• This means that it orders by Country, but if some rows have
the same Country, it orders them by CustomerName:

• SELECT * FROM Customers
ORDER BY Country, CustomerName;

SQL INSERT INTO Statement

• The INSERT INTO statement is used to insert new records in a
table.

• INSERT INTO Syntax

• It is possible to write the INSERT INTO statement in two ways.

• The first way specifies both the column names and the values
to be inserted:

• INSERT INTO table_name (column1, column2, column3, ...)
VALUES (value1, value2, value3, ...);

SQL INSERT INTO Statement

• If you are adding values for all the columns of the table, you
do not need to specify the column names in the SQL query.

• However, make sure the order of the values is in the same
order as the columns in the table.

• The INSERT INTO syntax would be as follows:

• INSERT INTO table_name
VALUES (value1, value2, value3, ...);

SQL INSERT INTO Statement

• Example:

• The following SQL statement inserts a new record in the
"Customers" table:

• INSERT INTO Customers (CustomerName, ContactName,
Address, City, PostalCode, Country)
VALUES ('Cardinal', 'Tom B. Erichsen', 'Skagen
21', 'Stavanger', '4006', 'Norway');

SQL INSERT INTO Statement

• Insert Data Only in Specified Columns

• It is also possible to only insert data in specific columns.

• The following SQL statement will insert a new record, but only
insert data in the "CustomerName", "City", and "Country"
columns (CustomerID will be updated automatically):

• INSERT INTO Customers (CustomerName, City, Country)
VALUES ('Cardinal', 'Stavanger', 'Norway');

End of Slides

