Introduction to Database Systems Lecture 9

Engr. Madeha Mushtaq
Department of Computer Science
Iqra National University

Relational Algebra

- Relational algebra operations work on one or more relations to define another relation leaving the original intact.
- Both operands and results are relations, so output from one operation can become input to another operation.
- Allows expressions to be nested, just as in arithmetic. This property is called closure.

Relational Algebra

- There are 5 basic operations in relational algebra:
- Selection,
- Projection,
- Cartesian product,
- Union and
- Set Difference.

Five Basic Operators

- These 5 operations perform most of the data retrieval operations needed.
- Also we have Join, Intersection, and Division operations, which can be expressed in terms of 5 basic operations.

Five Basic Operators

- Unary Operators
- Select
- Project

Select

- The SELECT operation is used to choose a subset of the tuples from a relation that satisfies a selection condition.
- One can consider the SELECT operation to be a filter that keeps only those tuples that satisfy a qualifying condition.
- In general, the SELECT operation is denoted by
- $\sigma<$ selection condition $>(R)$
- where the symbol σ (sigma) is used to denote the SELECT operator
- The selection condition is a Boolean expression (condition) specified on the attributes of relation R.

Select

- For example, to select the EMPLOYEE tuples whose department is 4 , or those whose salary is greater than $\$ 30,000$, we can individually specify each of these two conditions with a SELECT operation as follows:
- σ Dno=4(EMPLOYEE)
- σ Salary>30000(EMPLOYEE)

Project

- If we think of a relation as a table, The PROJECT operation, selects certain columns from the table and discards the other columns.
- If we are interested in only certain attributes of a relation, we use the PROJECT operation to project the relation over these attributes only.
- The general form of the PROJECT operation is
- $\pi<$ attribute list>(R)
- where π (pi) is the symbol used to represent the PROJECT operation, and <attribute list> is the desired sublist of attributes from the attributes of relation R.

Project

- For example, to list each employee's first and last name and salary, we can use the PROJECT operation as follows:
- π Lname, Fname, Salary(EMPLOYEE)
- If the attribute list includes only nonkey attributes of R, duplicate tuples are likely to occur.
- The PROJECT operation removes any duplicate tuples, so the result of the PROJECT operation is a set of distinct tuples, and hence a valid relation.
- This is known as duplicate elimination.

Project

Results of SELECT and PROJECT operations. (a) $\sigma_{(\text {Dno }=4 ~ A N D ~ S a l a r y ~}^{25000)}$) OR (Dno $=5$ AND Salary >30000) (EMPLOYEE). (b) $\pi_{\text {Lname, Fname, Salary }}$ (EMPLOYEE). (c) $\pi_{\text {Sex, Salary }}$ (EMPLOYEE).
(a)

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Franklin	T	Wong	333445555	$1955-12-08$	638 Voss, Houston, TX	M	40000	888665555	5
Jennifer	S	Wallace	987654321	$1941-06-20$	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	$1962-09-15$	975 Fire Oak, Humble, TX	M	38000	333445555	5

(b)

Lname	Fname	Salary
Smith	John	30000
Wong	Franklin	40000
Zelaya	Alicia	25000
Wallace	Jennifer	43000
Narayan	Ramesh	38000
English	Joyce	25000
Jabbar	Ahmad	25000
Borg	James	55000

(c)

Sex	Salary
M	30000
M	40000
F	25000
F	43000
M	38000
M	25000
M	55000

Binary Operators

- Union, Intersection
- Set Difference
- Cartesian Product

UNION

- The result of this operation, denoted by $R \cup S$, is a relation that includes all tuples that are either in R or in S or in both R and S.
- Duplicate tuples are eliminated.
- Union is Commutative:

$$
R \cup S=S \cup R
$$

UNION

RESULT1

Ssn
123456789
333445555
666884444
453453453

RESULT2

Ssn
333445555
888665555

RESULT

Ssn
123456789
333445555
666884444
453453453
888665555

Result of the UNION operation RESULT \leftarrow RESULT1 \cup RESULT2.

INTERSECTION

- The result of this operation, denoted by $R \cap S$, is a relation that includes all tuples that are in both R and S.
- Intersection is Commutative

$$
R \cap S=S \cap R
$$

(a) STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUCTOR

Fname	Lname
John	Smith
Ricardo	Browne
Susan	Yao
Francis	Johnson
Ramesh	Shah

Fn	Ln
Susan	Yao
Ramesh	Shah

STUDENT \cap INSTRUCTOR

Set Difference(Minus)

- The result of this operation, denoted by $R-S$, is a relation that includes all tuples that are in R but not in S.
- The MINUS operation is not commutative; that is, in general,
- $R-S \neq S-R$
(a) STUDENT

Fn	Ln
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

INSTRUCTOR

Fname	Lname
John	Smith
Ricardo	Browne
Susan	Yao
Francis	Johnson
Ramesh	Shah

Fn	Ln
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

STUDENT - INSTRUCTOR

Cartesian Product

- The CARTESIAN PRODUCT operation-also known as CROSS PRODUCT or CROSS JOIN—which is denoted by \times.
- If R has C tuples and S has D tuples, the result is $C^{*} D$ tuples.
- Example:
- FEMALE_EMPS $\leftarrow \sigma S e x={ }^{\prime} F^{\prime}(E M P L O Y E E)$
- EMPNAMES $\leftarrow \pi$ Fname, Lname, Ssn(FEMALE_EMPS)
- EMP_DEPENDENTS $\leftarrow E M P N A M E S \times$ DEPENDENT
- ACTUAL_DEPENDENTS $\leftarrow \sigma$ Ssn=Essn(EMP_DEPENDENTS)
- RESULT $\leftarrow \pi$ Fname, Lname, Dependent_name(ACTUAL_DEPENDENTS)

Cartesian Product

FEMALE EMPS

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Alicia	J	Zelaya	999887777	$1968-07-19$	3321Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	$1941-06-20$	291Berry, Bellaire, TX	F	43000	888665555	4
Joyce	A	English	453453453	$1972-07-31$	5631 Rice, Houston, TX	F	25000	333445555	5

EMPNAMES

Fname	Lname	Ssn
Alicia	Zelaya	999887777
Jennifer	Wallace	987654321
Joyce	English	453453453

Cartesian Product

EMP_DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	\ldots
Alicia	Zelaya	999887777	333445555	Alice	F	$1986-04-05$	\ldots
Alicia	Zelaya	999887777	333445555	Theodore	M	$1983-10-25$	\ldots
Alicia	Zelaya	999887777	333445555	Joy	F	$1958-05-03$	\ldots
Alicia	Zelaya	999887777	987654321	Abner	M	$1942-02-28$	\ldots
Alicia	Zelaya	999887777	123456789	Michael	M	$1988-01-04$	\ldots
Alicia	Zelaya	999887777	123456789	Alice	F	$1988-12-30$	\ldots
Alicia	Zelaya	999887777	123456789	Elizabeth	F	$1967-05-05$	\ldots
Jennifer	Wallace	987654321	333445555	Alice	F	$1986-04-05$	\ldots
Jennifer	Wallace	987654321	333445555	Theodore	M	$1983-10-25$	\ldots
Jennifer	Wallace	987654321	333445555	Joy	F	$1958-05-03$	\ldots
Jennifer	Wallace	987654321	987654321	Abner	M	$1942-02-28$	\ldots
Jennifer	Wallace	987654321	123456789	Michael	M	$1988-01-04$	\ldots
Jennifer	Wallace	987654321	123456789	Alice	F	$1988-12-30$	\ldots
Jennifer	Wallace	987654321	123456789	Elizabeth	F	$1967-05-05$	\ldots
Joyce	English	453453453	333445555	Alice	F	$1986-04-05$	\ldots
Joyce	English	453453453	333445555	Theodore	M	$1983-10-25$	\ldots
Joyce	English	453453453	333445555	Joy	F	$1958-05-03$	\ldots
Joyce	English	453453453	987654321	Abner	M	$1942-02-28$	\ldots
Joyce	English	453453453	123456789	Michael	M	$1988-01-04$	\ldots
Joyce	English	453453453	123456789	Alice	F	$1988-12-30$	\ldots
Joyce	English	453453453	123456789	Elizabeth	F	$1967-05-05$	\ldots

Cartesian Product

ACTUAL_DEPENDENTS

Fname	Lname	Ssn	Essn	Dependent_name	Sex	Bdate	\ldots
Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	\ldots

RESULT

Fname	Lname	Dependent_name
Jennifer	Wallace	Abner

End of Slides

