
Introduction to Database Systems

Lecture 7

Engr. Madeha Mushtaq

Department of Computer Science

Iqra National University

Relational Model Concepts

• The relational model represents the database as a collection
of relations.

• Informally, each relation resembles a table of values or, to
some extent, a flat file of records.

• When a relation is thought of as a table of values, each row in
the table represents a collection of related data values.

• A row represents a fact that typically corresponds to a real-
world entity or relationship.

• The table name and column names are used to help to
interpret the meaning of the values in each row.

Relational Model Concepts

• For example, the following table is called STUDENT because
each row represents facts about a particular student entity.

• All values in a column are of the same data type.

Relational Model Concepts

• In the formal relational model terminology, a row is called a
tuple.

• A column header is called an attribute, and the table is called
a relation.

• The data type describing the types of values that can appear
in each column is represented by a domain of possible values.

Basics of RDM

• RDM used mainly for external, conceptual, and to some extent

physical schema.

• Separation of conceptual and physical levels makes manipulation

much easier, contrary to previous data models.

• The basic structure is relation.

• Both entities and relationships are modeled using

tables/relations.

Basics of RDM

• Relations physically represented as tables.

• Table is a two dimensional representation of a relation.

• Consists of rows and columns.

• Columns represent attributes and rows represent records.

• Rows, records and tuples all these terms are used

interchangeably.

Basic Properties of a Table

• Each cell of a table contains atomic/single value

• Each column has a distinct name; the name of the attribute it
represents.

• The values of the attributes come from the same domain

• The order of the columns is immaterial.

• The order of the rows is immaterial.

• Each row/tuple/record is distinct, no two rows can be same.

Mathematical Relations

• Consider two sets:

– A = {x, y} B = {2, 4, 6}

• Cartesian product of these sets

– A X B= {(x,2), (x,4), (x,6), (y,2), (y,4), (y,6)}

• A relation is some subset of this Cartesian product, For
example,

– R1= {(x,2), (y,2),(x,6),(x,4)}

– R2 = {(x,4), (y,6), (y,4)}

Database Relations

• The same notion of Cartesian product and relations can be
applied to more than two sets, e.g. in case of three sets, we
will have a relation of ordered triplets.

• Examples of some real world scenario

– Name = {Ali, Sana, Ahmed, Sara}

– Age = {15,16,17,18,…….,25}

Database Relations

• Cartesian product of Name & Age:

• Name X Age= {(Ali,15), (Sana,15), (Ahmed,15), (Sara,15), ….,
(Ahmed,25), (Sara,25)}

• CLASS = {(Ali, 18), (Sana, 17), (Ali, 20), (Ahmed, 19)}

Database Relations

• A domain D is a set of atomic values.

• By atomic we mean that each value in the domain is
indivisible.

• A common method of specifying a domain is to specify a data
type from which the data values forming the domain are
drawn.

• It is also useful to specify a name for the domain, to help in
interpreting its values.

Database Relations

• Some examples of domains follow:

• Phone_numbers: The set of ten-digit phone numbers.

• Names: The set of character strings that represent names of
persons.

• Grade_point_averages: Possible values of computed grade
point averages, each must be a real (floating-point) number
between 0 and 4.

• Employee_ages: Possible ages of employees in a company;
each must be an integer value between 15 and 80.

Database Relations

• A data type or format is also specified for each domain.

• The data type for Employee_ages is an integer number
between 15 and 80.

• For Academic_department_names, the data type is the set of
all character strings that represent valid department names.

• A domain is thus given a name, data type, and format.

Relation Scheme

• Let A1, A2, A3, …, An be some attributes and D1, D2, D3,…, Dn be
their domains.

• A relation scheme relates certain attributes with their domain in
context of a relation.

• Relation Scheme can be represented as

– R = (A1:D1, A2:D2, ……, An:Dn)

– STD = (stId:Text, stName: text, stAdres:Text, doB:Date) OR

– STD(stId, stName, stAdres, doB)

Relation Scheme

• A relation schema is used to describe a relation; R is called the
name of this relation.

• The degree of a relation is the number of attributes n of its
relation schema.

• A relation of degree seven, which stores information about
university students, would contain seven attributes describing
each student as follows:

Relation Scheme

• STUDENT(Name, Ssn, Home_phone, Address, Office_phone,
Age, Gpa)

• Using the data type of each attribute, the definition is
sometimes written as:

• STUDENT(Name: string, Ssn: string, Home_phone: string,
Address: string, Office_phone: string, Age: integer, Gpa: real)

Relation Scheme

• According to this scheme we can have a relation (instance of

this scheme), like

– STD={(stId:S001, stName:Ali, stAdres: Lahore,

doB:12/12/76), (stId:S003, stName:A. Rehman, stAdres:

RWP, doB:2/12/77)}

Relation Scheme

• STD={(S001, Ali, Lahore, 12/12/76), (S002, A. Rehman, RWP,
2/12/77)}

stId stName stAdres doB

S001 Ali Lahore 12/12/76

S002 A. Rehman RWP 2/12/77

Characteristics of Relations

• Ordering of Tuples in a Relation:

– A relation is defined as a set of tuples.

– Mathematically, elements of a set have no order among
them; hence, tuples in a relation do not have any
particular order.

• Ordering of Values within a Tuple:

• Values and NULLs in the Tuples :

– NULL values are used to represent the values of attributes
that may be unknown or may not apply to a tuple. A
special value, called NULL, is used in these cases.

Domain Constraints

• Domain constraints specify that within each tuple, the value

of each attribute A must be an atomic value from the domain
dom(A).

• The data types associated with domains typically include
standard numeric data types for integers (such as short
integer, integer, and long integer) and real numbers (float and
double precision float).

• Characters, Booleans, fixed-length strings, and variable-length
strings are also available, as are date, time, timestamp, and
money, or other special data types.

Key Constraints

• Primary Key

• Foreign Key

• Unique Key

• Super Key

Constraints on NULL Values

• Another constraint on attributes specifies whether NULL
values are or are not permitted.

• For example, if every STUDENT tuple must have a valid, non-
NULL value for the Name attribute, then Name of STUDENT is
constrained to be NOT NULL.

• For Example:

– Create Table STUDENT (ID int NOT NULL, LastName
varchar(255), FirstName varchar(255) NOT NULL);

Entity Integrity Constraint

• The entity integrity constraint states that no primary key value
can be NULL.

• This is because the primary key value is used to identify
individual tuples in a relation.

• Having NULL values for the primary key implies that we
cannot identify some tuples.

Referential Integrity

• The referential integrity constraint is specified between two
relations and is used to maintain the consistency among
tuples in the two relations.

• In relationships, data is linked between two or more tables.

• This is achieved by having the foreign key (in the child table)
reference a primary key value (in the primary – or parent –
table).

• Because of this, we need to ensure that data on both sides of
the relationship remain intact.

Referential Integrity

• So, referential integrity requires that, whenever a foreign key
value is used it must reference a valid, existing primary key in
the parent table.

• Thus, any primary key field changes must be applied to all
foreign keys, or not at all.

• The same restriction also applies to foreign keys in that any
updates (but not necessarily deletions) must be propagated to
the primary parent key.

Referential Integrity Example

Referential Integrity Example

• In the above example, if we delete record number 15 in
primary table, we need to be sure that there’s no foreign key
in any related table with the value of 15.

• We should only be able to delete a primary key if there are no
associated records.

• Otherwise, we would end up with an orphaned record.

Referential Integrity

• So referential integrity will prevent users from:

– Adding records to a related table if there is no associated
record in the primary table.

– Changing values in a primary table that result in orphaned
records in a related table.

– Deleting records from a primary table if there are matching
related records.

Integrity Constraints

• All integrity constraints should be specified on the relational
database schema (i.e., defined as part of its definition) if we
want to enforce these constraints on the database states.

• Most relational DBMSs support key, entity integrity, and
referential integrity constraints.

• These constraints are specified as a part of data definition in
the DDL.

End of Slides

