
Database Systems

Engr. Madeha Mushtaq

Department of Computer Science

Iqra National University

SQL NULL Values

• A field with a NULL value is a field with no value.

• If a field in a table is optional, it is possible to insert a new
record or update a record without adding a value to this field.

• Then, the field will be saved with a NULL value.

• It is not possible to test for NULL values with comparison
operators, such as =, <, or <>.

• We will have to use the IS NULL and IS NOT NULL operators
instead.

SQL NULL Values

• IS NULL Syntax:

• SELECT column_names
FROM table_name
WHERE column_name IS NULL;

• IS NOT NULL Syntax:

• SELECT column_names
FROM table_name
WHERE column_name IS NOT NULL;

SQL NULL Values

• IS NULL Example:

• SELECT CustomerName, ContactName, Address
FROM Customers
WHERE Address IS NULL;

• IS NOT NULL Example:

• SELECT CustomerName, ContactName, Address
FROM Customers
WHERE Address IS NOT NULL;

SQL UPDATE Statement

• The UPDATE statement is used to modify the existing records
in a table.

• UPDATE Syntax:
• UPDATE table_name

SET column1 = value1, column2 = value2, ...
WHERE condition;

• UPDATE Example:
• The following SQL statement updates the first customer

(CustomerID = 1) with a new contact person and a new city.
– UPDATE Customers

SET ContactName = 'Alfred Schmidt', City= 'Frankfurt'
WHERE CustomerID = 1;

SQL UPDATE Statement

• UPDATE Multiple Records:

• It is the WHERE clause that determines how many records
that will be updated.

• The following SQL statement will update the contactname to
"Juan" for all records where country is "Mexico":

– UPDATE Customers
SET ContactName='Juan'
WHERE Country='Mexico';

SQL UPDATE Statement

• Example:

• UPDATE Customers
SET ContactName='Juan';

• Be careful when updating records. If you omit the WHERE
clause, ALL records will be updated.

SQL DELETE Statement

• The DELETE statement is used to delete existing records in a
table.

• DELETE Syntax:

• DELETE FROM table_name WHERE condition;

• SQL DELETE Example:

• The following SQL statement deletes the customer "Alfreds
Futterkiste" from the "Customers" table:

– DELETE FROM Customers WHERE CustomerName='Alfreds
Futterkiste';

SQL DELETE Statement

• Delete All Records:

• It is possible to delete all rows in a table without deleting the
table. This means that the table structure, attributes, and
indexes will be intact:

• DELETE FROM table_name;

• The following SQL statement deletes all rows in the
"Customers" table, without deleting the table:

– DELETE FROM Customers;

SQL MIN() and MAX() Functions

• The MIN() function returns the smallest value of the selected
column.

• The MAX() function returns the largest value of the selected
column.

• MIN() Syntax:
• SELECT MIN(column_name)

FROM table_name
WHERE condition;

• MAX() Syntax:
• SELECT MAX(column_name)

FROM table_name
WHERE condition;

SQL MIN() and MAX() Functions

• MIN() Example:

• The following SQL statement finds the price of the cheapest
product:

– SELECT MIN(Price) AS SmallestPrice
FROM Products;

• MAX() Example:

• The following SQL statement finds the price of the most
expensive product:

– SELECT MAX(Price) AS LargestPrice
FROM Products;

SQL COUNT(), AVG() and SUM() Functions

• The COUNT() function returns the number of rows that
matches a specified criteria.

• The AVG() function returns the average value of a numeric
column.

• The SUM() function returns the total sum of a numeric
column.

• COUNT() Syntax:

• SELECT COUNT(column_name)
FROM table_name
WHERE condition;

SQL COUNT(), AVG() and SUM() Functions

• AVG() Syntax:
• SELECT AVG(column_name)

FROM table_name
WHERE condition;

• SUM() Syntax:
• SELECT SUM(column_name)

FROM table_name
WHERE condition;

• COUNT() Example:
• The following SQL statement finds the number of products:

– SELECT COUNT(ProductID)
FROM Products;

SQL COUNT(), AVG() and SUM() Functions

• AVG() Example:

• The following SQL statement finds the average price of all
products:

– SELECT AVG(Price)
FROM Products;

• SUM() Example:

• The following SQL statement finds the sum of the "Quantity"
fields in the "OrderDetails" table:

– SELECT SUM(Quantity)
FROM OrderDetails;

SQL LIKE Operator

• The LIKE operator is used in a WHERE clause to search for a

specified pattern in a column.

• There are two wildcards often used in conjunction with the
LIKE operator:

• % - The percent sign represents zero, one, or multiple
characters

• _ - The underscore represents a single character.

• LIKE Syntax:

• SELECT column1, column2, ...
FROM table_name
WHERE columnN LIKE pattern;

SQL LIKE Operator

LIKE Operator Description

WHERE CustomerName LIKE 'a%' Finds any values that start with "a"

WHERE CustomerName LIKE '%a' Finds any values that end with "a"

WHERE CustomerName LIKE '%or%' Finds any values that have "or" in any
position

WHERE CustomerName LIKE '_r%' Finds any values that have "r" in the
second position

WHERE CustomerName LIKE 'a_%_%' Finds any values that start with "a" and
are at least 3 characters in length

WHERE ContactName LIKE 'a%o' Finds any values that start with "a" and
ends with "o"

• Here are some examples showing different LIKE operators
with '%' and '_' wildcards:

SQL LIKE Operator

• SQL LIKE Examples:

• The following SQL statement selects all customers with a
CustomerName starting with "a":

– SELECT * FROM Customers
WHERE CustomerName LIKE 'a%';

• The following SQL statement selects all customers with a
CustomerName ending with "a":

– SELECT * FROM Customers
WHERE CustomerName LIKE '%a';

SQL LIKE Operator

• The following SQL statement selects all customers with a
CustomerName that have "or" in any position:

– SELECT * FROM Customers
WHERE CustomerName LIKE '%or%';

• The following SQL statement selects all customers with a
CustomerName that have "r" in the second position:

– SELECT * FROM Customers
WHERE CustomerName LIKE '_r%';

SQL LIKE Operator

• The following SQL statement selects all customers with a

CustomerName that starts with "a" and are at least 3
characters in length:
– SELECT * FROM Customers

WHERE CustomerName LIKE 'a_%_%';
• The following SQL statement selects all customers with a

ContactName that starts with "a" and ends with "o":
– SELECT * FROM Customers

WHERE ContactName LIKE 'a%o';
• The following SQL statement selects all customers with a

CustomerName that does NOT start with "a":
– SELECT * FROM Customers

WHERE CustomerName NOT LIKE 'a%';

End of Slides

