Problem-1 Terzaghi BC equation

Compute the allowable bearing pressure using the Terzaghi equation for the square footing of width $B=1.5 \mathrm{~m}$ shown in figure below. The soil data are obtained from a series of undrained U triaxial tests. Is the soil saturated?

The Soil is not saturated, since a U test gives a ϕ angle. A CU test might give similar data for a saturated soil.

Solution:

Terzaghi BC equation is

$$
\mathrm{qu}=\mathrm{cNc}_{\mathrm{c}}+\gamma \mathrm{DNq}+1 / 2 \gamma \mathrm{BN} \gamma \mathrm{~s}_{\gamma}
$$

$$
\mathrm{BC} \text { factors: For } \mathbb{C}=20^{\circ}, \mathrm{Nc}=17.7, \mathrm{Nq}=7.4
$$

$$
\text { and } \mathrm{N} \gamma=5
$$

Shape factors: $\mathrm{sc}=1.3$, and $\mathrm{s} \gamma=0.8$
qu $=20 \times 17.7 \times 1.3+$
$17.3 \times 1.2 \times 7.4+$
$0.5 \times 17.3 \times 1.5 \times 5 \times 0.8$
$=460.2+153.6+51.9$
$\mathbf{q u}=665 \mathbf{k N} / \mathbf{m}^{\mathbf{2}}$

Problem-2, Effect of WT

A footing $2.5 \times 2.5 \mathrm{~m}$ carries a pressure of $400 \mathrm{kN} / \mathrm{m}^{2}$ at a depth of 1 m in a sand. The saturated unit weight of the sand is $20 \mathrm{kN} / \mathrm{m}^{3}$ and the unit weight above the water table is $17 \mathrm{kN} / \mathrm{m}^{3}$. The design shear strength parameters are $c^{\prime}=0$ and $\phi^{\prime}=40^{\circ}$. Determine the factor of safety with respect to shear failure for the following cases:
(a) the water table is 5 m below ground level,
(b) the water table is 1 m below ground level,
(c) the water table is at ground level and there is seepage vertically upwards under a hydraulic gradient of 0.2.

Solution:

$\mathrm{q}_{\text {app }}=400 \mathrm{kPa}$ [Note that it is gross pressure acting at a depth of 1 m]
BC factors: For $\oplus=40^{\circ}, \mathrm{Nq}=81.3$ and $\mathrm{N} \gamma$ $=100.4$
Shape factors: $\mathrm{sc}=1.3$, and $\mathrm{s} \gamma=0.8$
Find H, height of the soil wedge below footing:
$\mathrm{H}=\mathrm{B} / 2 \tan (45+\phi / 2)=2.5 / 2$
$\tan (65)=2.68 \mathrm{~m}$

Problem-2, Effect of WT

Solution(a):

Effect of W.T

The W.T is 5 m below ground level:
There is no effect of because W.T zw $>\mathrm{H}$, use bulk unit weight $\gamma=17 \mathrm{kN} / \mathrm{m}^{3}$.
Terzaghi BC equation is
$\mathrm{qu}=\mathrm{c} \mathrm{Nc} \mathrm{s} \mathrm{s}_{\mathrm{c}}+\gamma \mathrm{DNq}+1 / 2 \gamma \mathrm{BN} \gamma \mathrm{s}_{\gamma} \mathrm{qu}=0$
$+1382.1+1706.8=3088 \mathrm{kN} / \mathrm{m} 2$
FOS $=$ qu $/$ qapp $=3088 / 400=7.7$
Note: 1- If net applied pressure were given than convert the qu into qu(net) i.e.
use FOS $=(q u-\gamma D) / q a p p(n e t)$

Solution(b):

Effect of W.T

The W.T is 1 m below ground level:
Only $3^{\text {rd }}$ term of BC will be affected as zw < H,
For $2^{\text {nd }}$ term use $\gamma=17 \mathrm{kN} / \mathrm{m}^{3}$.
For 3 ${ }^{\text {rd }}$ term use $\gamma=\gamma$ sat $-\gamma \mathrm{w}=20-9.8=10.2$ kN/m3.

Terzaghi BC equation is

$\mathrm{qu}=\mathrm{c} \mathrm{Nc} \mathrm{s} \mathrm{s}_{\mathrm{c}}+\hat{\mathrm{DNq}}+1 / 2 \gamma \mathrm{BN} \gamma \mathrm{s}_{\gamma} \mathrm{qu}=$
$0+1382.1+1024=2406 \mathrm{kN} / \mathrm{m} 2$
FOS = qu $/$ qapp $=2406 / 400=6$

$$
\begin{aligned}
& \text { Note: 1- If net applied pressure were given than convert the qu into } \\
& \text { qu(net) i.e. } \\
& \text { use FOS }=(q u-\gamma D) / \text { qapp(net })
\end{aligned}
$$

Problem-2, Effect of WT

Solution(a):

In this case both $2^{\text {nd }}$ and $3^{\text {rd }}$ terms will be affected. In addition to submergence of soil due to W.T, there will be further reduction in unit weight of soil due to vertical seepage.
$\gamma=\gamma_{\text {sub }}-\mathrm{i} \gamma_{\mathrm{w}}=10.2-0.2 \times 9.8=8.24 \mathrm{kN} / \mathrm{m}^{3}$.
Terzaghi BC equation is
$\mathrm{qu}=\mathrm{c} \mathrm{Nc} \mathrm{s} \mathrm{c}+\hat{\mathrm{D} \mathrm{Nq}}+1 / 2 \boldsymbol{1} \boldsymbol{\mathrm { B }} \mathrm{~N} \gamma \mathrm{~s}_{\gamma}$
$\mathrm{qu}=0+8.24 \times 1 \times 81.3+0.5 \times 8.24 \times 2.5 \times$ 100.4×0.8
$=669.9+827.3=1497 \mathrm{kN} / \mathrm{m}^{2}$
FOS $=$ qu $/$ qapp $=1497 / 400=3.7$

Problem-3, Effect of WT

A strip footing is to be designed to support a dead load of $500 \mathrm{kN} / \mathrm{m}$ and live load of $300 \mathrm{kN} / \mathrm{m}$ at a depth of 0.7 m in a gravelly sand. Characteristic values of the shear strength parameters are $\mathrm{c}=0$ and $\varphi=40^{\circ}$. Determine the required width of the footing if the factor of safety of 3.0 against shear failure of the soil is specified.

Assuming that the WT may rise to foundation leve. The unit weight of the sand above the W.T. is is $17 \mathrm{kN} / \mathrm{m}^{3}$ and below the WT the saturated unit weight is $20 \mathrm{kN} / \mathrm{m}^{3}$.

Solution:

FOS $=q_{u} / q_{\text {app }}$
$\mathrm{qu}=\mathrm{FOS} \times \mathrm{q}_{\text {app }}=3 \times 800 / \mathrm{B}=2400 / \mathrm{B}$
For $\omega=40^{\circ}$ the Terzaghi BC factors are
$\mathrm{Nq}=81.3$ and $\mathrm{N} \gamma=100.4$.
$\mathrm{qu}=\mathrm{cNc}+\gamma \mathrm{DNq}+1 / 2 \gamma \mathrm{BN} \gamma$
Use bulk unit weight ($17 \mathrm{kN} / \mathrm{m}^{3}$) in 2 nd Term and submerged unit weight $\left(\gamma^{\prime}=\gamma s a t-\gamma \mathrm{w}\right)=20-$ $9.8=10.2 \mathrm{kN} / \mathrm{m}^{3}$) in 3 rd term of BC equation.
$\mathrm{qu}=0+17 \times 0.7 \times 81.3+0.5 \times 10.2 \times B$
x100.4
$2400 / \mathrm{B}=967.5+512 \mathrm{~B}$
$2400=967.5 B+512 B^{2}$
$B=\mathbf{2 . 8} \mathbf{m}$
$B=1.42 \mathrm{~m}$

Problem-4 Meyerhof BC equation: Review Problem

The base of a long retaining wall is 3 m wide and is 1 m below the ground surface in front of the wall: the water table is well below base level. The vertical and horizontal components of the base reaction are 282 and $102 \mathrm{kN} / \mathrm{m}$, respectively. The eccentricity of the base reaction is 0.36 m . Appropriate shear strength parameter for the foundation soil are $c^{\prime}=0$ and $\phi^{\prime}=35^{\circ}$, and the unit weight of the soil is $\not 18 \mathrm{kN} / \mathrm{m}^{3}$. Determine the factor of safety against shear failure.

Problem-4 Meyerhof BC equation: Review Problem

Solution:

Eccentricity: $\mathrm{e}_{\mathrm{B}}=0.36 \mathrm{~m}$
Effective Footing Dimensions:
$\mathrm{B}^{\prime}=\mathrm{B}-2 \mathrm{e}_{\mathrm{B}}=2.28 \mathrm{~m}$
Meyerhof's BC factors for $\phi=35^{\circ}$
$\mathrm{Nq}=33, \mathrm{~N} \gamma=41$
$\mathrm{Kp}=\tan ^{2}(45+\phi / 2)=3.69$
Shape factors:
this is both effective
Since $L \gg B$ (long retaining wall),
$\mathrm{B}^{\prime} /$ E 든 $\mathrm{os} \mathrm{sc}=\mathrm{sq}=\mathrm{s} \gamma=1$
Depth factors:
$\mathrm{dc}=\left(1+0.2 \sqrt{ } \mathrm{Kp}\left(\mathrm{D} / \mathrm{B}^{\prime}\right)=1.168\right.$
$\mathrm{dq}=\mathrm{d} \gamma=\left(1+0.1 \sqrt{ } \mathrm{Kp}\left(\mathrm{D} / \mathrm{B}^{\prime}\right)=1.084\right.$

Inclination factors:
$\theta=\tan ^{-1}(\mathrm{H} / \mathrm{V})=19.8^{\circ}$
$\mathrm{ic}=\mathrm{iq}=(1-\theta / 90)^{2}=0.6084$
$\mathrm{i} \gamma=(1-\theta / \phi)^{2}=0.1886$
Applying Meyrhof BC equation $\mathrm{qu}=\mathrm{cNcs}_{\mathrm{c}} \mathrm{d}_{\mathrm{c}} \mathrm{i}_{\mathrm{c}}+\gamma^{\prime} \mathrm{DNqs}_{q} \mathrm{~d}_{\mathrm{q}} \mathrm{i}_{\mathrm{q}}+0.5 \gamma^{\prime} \mathrm{BN} \gamma \mathrm{s}_{\gamma} \mathrm{d}_{\gamma} \mathrm{i}_{\gamma}$ qu $=0+18 \times 1 \times 33 \times 1 \times 1.084 \times 0.6084+$
$0.5 \times 18 \times 2.28 \times 41 \times 1.084 \times 0.1886$
$=391+172=563 \mathrm{kPa}$
Ultimate Load $=\mathrm{Pu}=563 \times 2.28=1283 \mathrm{kN} / \mathrm{m}$
FOS $=\mathrm{Pu} / \mathrm{Papp}=1283 / 282=4.5$

Problem-4 Meyerhof BC equation: Review Problem

What is the allowable soil pressure ($\mathrm{FOS}=3$) using Meyerhof's Bearing capacity equation.

Problem-4 Meyerhof BC equation: Review Problem

```
sq= s\gamma=(1+0.1Kp(B'/L'月.358
Depth factors:
dc=}(1+0.2\sqrt{}{}\textrm{Kp}(\textrm{D}/\mp@subsup{\textrm{B}}{}{\prime})=1.54
dq}=\textrm{d}\gamma=(1+0.1\checkmark\textrm{Kp}(\textrm{D}/\mp@subsup{\textrm{B}}{}{\prime})=1.27
Inclination factors:
0=tan-1(H/V)=0 (no inclination of loads), so all
Ic=iq=i
Applying Meyrhof BC equation
```



```
qu=2678.6+2112+897.5=5688 kPa
qs=qu/FOS = 5674/3=1896 kPa >1800
```


Problem-5 Meyerhof BC
 equation: Design Problem

Find the size of rectangular footing using Meyerhof's equation. The footing is subjected to both horizontal and moment as shown in the figure. Assume B in the direction of M , and H
$600 \mathrm{kN}-\mathrm{m}$

Solution:

Assume footing dimensions $\mathrm{B} \times \mathrm{L}=2.5 \mathrm{~m} \times 3 \mathrm{~m}$. Assuming B in the direction of H and M as shown in figure:

Eccentricities:

$$
\mathrm{e}_{\mathrm{B}}=\mathrm{M}_{\mathrm{B}} \mathrm{~V}=600 / 2500=0.24 \mathrm{~m}, \mathrm{e}_{\mathrm{L}} 0
$$

Effective Footing Dimensions:

$\mathrm{B}^{\prime}=\mathrm{B}-2 \mathrm{e}_{\mathrm{B}}=2.02 \mathrm{~m}, \mathrm{~L}^{\prime} \mathrm{L}_{\mathrm{L}}-2 \mathrm{e}_{\mathrm{L}}=3 \mathrm{mB}$
LOK
Meyerhof's BC factors for $\phi=25^{\circ}$
$\mathrm{Nq}=10.7, \mathrm{Nc}=20.7, \mathrm{~N} \gamma=6.8$
Shape factors:
$K p=\tan ^{2}(45+\phi / 2)=1.966$
$\mathrm{sc}=\left(1+0.2 \mathrm{Kp}\left(\mathrm{B}^{\prime} / \mathrm{L}\right.\right.$ 月 .331
$\mathrm{sq}=\mathrm{s} \gamma=\left(1+0.1 \mathrm{Kp}\left(\mathrm{B}^{\prime} / \mathrm{L}\right.\right.$ 半 .354
Depth factors:
$\mathrm{dc}=\left(1+0.2 \sqrt{ } \mathrm{Kp}\left(\mathrm{D} / \mathrm{B}^{\prime}\right)=1.233\right.$
$\mathrm{dq}=\mathrm{d} \gamma=\left(1+0.1 \sqrt{ } \mathrm{Kp}\left(\mathrm{D} / \mathrm{B}^{\prime}\right)=1.116\right.$
Inclination factors:
$\theta=\tan -1(\mathrm{H} / \mathrm{V})=13.5^{\circ}$
$\mathrm{ic}=\mathrm{iq}=(1-\theta / 90)^{2}=0.7226$
$\mathrm{i} \gamma=(1-\theta / \phi)^{2}=0.2117$

Problem-5, Meyerhof BC equation Design Problem

Applying Meyrhof BC equation

 $\mathrm{qu}=\mathrm{cNcs}_{\mathrm{c}} \mathrm{d}_{\mathrm{c}} \mathrm{i}_{\mathrm{c}}+\gamma^{\prime} \mathrm{DNqs}_{\mathrm{q}} \mathrm{d}_{\mathrm{q}} \mathrm{i}_{\mathrm{q}}+0.5 \gamma^{\prime} \mathrm{BN} \gamma \mathrm{s}_{\gamma} \mathrm{d}_{\gamma} \mathrm{i}_{\gamma}$ $\mathrm{qu}=983.5+263.2+32.9=1280 \mathrm{kPa}$ Effective Area of footing $A^{\prime}=\mathrm{B}^{\prime} \mathrm{L}^{\prime}=6.06 \mathrm{~m} 2$ Applied stress: qapp $=$ V/A' $=412.5 \mathrm{kPa}$
FOS = qu/qapp $=3.1<5$ (required)

One way is to assume larger dimensions and recalculate FOS. Another easy approach is as follow:
$\mathrm{qu}=1280 \mathrm{kPa}, \mathrm{qs}=\mathrm{qu} / \mathrm{FOS}=1280 / 5=255.9 \mathrm{kPa}$ ${ }^{\prime}=\mathrm{BE}^{\prime}=\mathrm{V} / \mathrm{qs}=2500 / 255.9=9.769 \mathrm{~m} 2$
Assume
$(\mathrm{B} / \mathrm{L})=((\mathrm{B} / \mathrm{L})$ previous $=(2.02 / 3)=0.673$
Solving for Band $\mathrm{LB}^{\prime}=2.56 \mathrm{~m}, \mathrm{~L}^{\prime}=3.81 \mathrm{~m}$
$B=B^{\prime}+2 \mathrm{e}_{\mathrm{B}}=3.04 \mathrm{~m}, \mathrm{~L}=\mathrm{L}$ ' $+2 \mathrm{e}_{\mathrm{L}}=3.81 \mathrm{~m}$
Are the required size of footing.
Solution is over here!

Notes:

- If these new dimensions (3.04mx3.81m) are used and FOS recalculated, the FOS will be very closed to 5 .
- Because in recalculations, the BC factors will remain same as previous, shape factors will also remain unchanged as (B Uis kept equal to previous ratio, inclination factors are also unchanged. The only change will occur in depth factors, and $3^{\text {rd }}$ term of BC because they will use new value of BBut these two will not greatly affect qu, and hence FOS will be closed to 5.
- Unless there is large difference in the old (2.5×3) and new footing dimensions, recalculating FOS is not necessary.
- Let us recycle the calculations $\mathrm{FOS}=4.84$ for new dimensions, fairly closed to 5 .
- More refined dimensions giving exactly $\mathrm{FOS}=5$ are 3.08 mx 3.87 m

Problem-5 Meyerhof BC equation: Design Problem

Find the size of rectangular footing using Meyerhof's equation. The footing is subjected to both horizontal and moment as shown in the figure. Assume L in the direction of M , and H
$600 \mathrm{kN}-\mathrm{m}$

Solution:

Assume footing dimensions $\mathrm{B} \times \mathrm{L}=2.5 \mathrm{~m} \times 3 \mathrm{~m}$. Assuming L in the direction of H and M as shown in figure:

Eccentricities:

$\mathrm{e}_{\mathrm{B}}=\mathrm{M}_{\mathrm{L}} / \mathrm{V}=600 / 2500=0.24 \mathrm{~m}, \mathrm{e}_{\overline{\mathrm{B}}} 0$
Effective Footing Dimensions: $\mathrm{B}^{\prime}=\mathrm{B}-$
$2 \mathrm{e}_{\mathrm{B}}=2.5 \mathrm{~m}, \mathrm{~L}^{2}-2 \mathrm{e}_{\mathrm{L}}=2.52 \mathrm{~m}$ BKLDK
Meyerhof's BC factors for $\phi=25^{\circ}$
$\mathrm{Nq}=10.7, \mathrm{Nc}=20.7, \mathrm{~N} \gamma=6.8$
Shape factors:
$K p=\tan ^{2}(45+\phi / 2)=1.966$
$\mathrm{sc}=\left(1+0.2 \mathrm{Kp}\left(\mathrm{B}^{\prime} / \mathrm{L}\right.\right.$ 月 .489
$\mathrm{sq}=\mathrm{s} \gamma=\left(1+0.1 \mathrm{Kp}\left(\mathrm{B}^{\prime} / \mathrm{L}\right.\right.$ 겨 .244
Depth factors:
$\mathrm{dc}=\left(1+0.2 \sqrt{ } \mathrm{Kp}\left(\mathrm{D} / \mathrm{B}^{\prime}\right)=1.188\right.$
$\mathrm{dq}=\mathrm{d} \gamma=\left(1+0.1 \sqrt{ } \mathrm{Kp}\left(\mathrm{D} / \mathrm{B}^{\prime}\right)=1.094\right.$
Inclination factors:
$\theta=\tan -1(\mathrm{H} / \mathrm{V})=13.5^{\circ}$
$\mathrm{ic}=\mathrm{iq}=(1-\theta / 90)^{2}=0.7226$
$\mathrm{i} \gamma=(1-\theta / \phi)^{2}=0.2117$

Problem-5, Meyerhof BC equation Design Problem

Applying Meyrhof BC equation $\mathrm{qu}=\mathrm{cNcs}_{\mathrm{c}} \mathrm{d}_{\mathrm{c}} \mathrm{i}_{\mathrm{c}}+\gamma^{\prime} \mathrm{DNqs}_{\mathrm{q}} \mathrm{d}_{\mathrm{q}} \mathrm{i}_{\mathrm{q}}+0.5 \gamma^{\prime} \mathrm{BN} \gamma \mathrm{s}_{\gamma} \mathrm{d}_{\gamma} \mathrm{i}_{\gamma}$ $\mathrm{qu}=1059.6+275.4+42.7=1377 \mathrm{kPa}$ Effective Area of footing $A^{\prime}=B^{\prime} x^{\prime}=63 \mathrm{~m}^{2}$ Applied stress: qapp $=$ V/A' $=396.8 \mathrm{kPa}$
FOS= qu/qapp $=3.47<5$ (required)
One way is to assume larger dimensions and recalculate FOS. Another easy approach is as follow:
$\mathrm{qu}=1377 \mathrm{kPa}, \mathrm{qs}=\mathrm{qu} / \mathrm{FOS}=1377 / 5=275.5 \mathrm{kPa}$
$\mathrm{A}^{\prime}=\mathrm{BE}^{\prime}=\mathrm{V} / \mathrm{qs}=2500 / 255.9=9.073 \mathrm{~m} 2$
Assume
$\left(\mathrm{B}^{\prime} / \mathrm{L}^{\prime}\right)=\left(\left(\mathrm{B}^{\prime} / \mathrm{L}^{\prime}\right)\right.$ previous $=(2.5 / 2.52)=0.992$
Solving for Band $\mathrm{LB}^{\prime}=3 \mathrm{~m}, \mathrm{~L}^{\prime}=3.024 \mathrm{~m}$
$B=B^{\prime}+2 \mathrm{e}_{\mathrm{B}}=3 \mathrm{~m}, \mathrm{~L}=\mathrm{L}{ }^{\prime}+2 \mathrm{e}_{\mathrm{L}}=3.5 \mathrm{~m}$ Are the required size of footing. Solution is over here!

Notes:

- Same notes apply as for previous example.
- Just for interest: Let us recycle the calculations FOS=4.9 for new dimensions, fairly closed to 5 .
- More refined dimensions giving exactly FOS=5 are 3.03 mx 3.53 m
- Total area of footing for previous example is $3.04 \times 3.81=11.58 \mathrm{~m} 2$.
- Total area of footing in the present example is $3 \times 3.5=10.5 \mathrm{~m} 2$.
- Note the economy gained in using L in the direction of M and H .

Problem-6

A strip footing will be constructed on a nonplastic silty sand deposit that has the shear strength properties $c=0, \phi=30^{\circ}$).
Groundwater table is located 1.2 m below the ground surface. Saturated unit weight of the soil both above and below the W.T is $19.7 \mathrm{kN} / \mathrm{m}^{3}$. The proposed strip footing will be 1.2 m wide and embedded 0.6 m below the ground surface. Using FOS=3 against shear failure of the soil, determine the safe bearing pressure and the maximum concentric load the strip footing can support for the nonplastic silty sand. Use Terzaghi equation with Meyerhof BC factors.

Solution:

Effect of W.T: zw (depth of WT below the footing level) $=1.2-0.6=0.6 \mathrm{~m}$
$\mathrm{H}=\mathrm{B} / 2 \tan (45+\phi / 2)=1.04 \mathrm{~m}>\mathrm{zw}$
so WT will affect the $3^{\text {rd }}$ term. $\mathrm{jin} 3^{\text {rd }}$ term will be $=[(19.7 \times 0.6)+(19.7-9.8)(1.04-$ $0.6)] / 1.04=15.5 \mathrm{kN} / \mathrm{m}^{3}$
Terzaghi BC equation
$\mathrm{qu}=\mathrm{cNcs}_{\mathrm{c}}+\gamma^{\prime} \mathrm{DNq}+0.5 \gamma^{\prime} \mathrm{BN} \gamma \mathrm{s}_{\gamma}$
Meyerhof's BC factors for $\phi=30^{\circ}$
$\mathrm{Nq}=18.4, \mathrm{Nc}=30, \mathrm{~N} \gamma=15.6$
Shape factors: $\mathrm{sc}=\mathrm{s} \gamma=1$ (for strip footing)
qu $=0+217.9+146=363 \mathrm{kPa}$
$\mathrm{qs}=\mathrm{qu} / \mathrm{FOS}=363 / 3=121 \mathrm{~Pa}$
Psafe $=q \mathrm{q} \times(\mathrm{Bx} 1)=145 \mathrm{kN} / \mathrm{m}$

Problem-8, Drained and Undrained Analyses

A strip footing will be constructed over heavily over-consolidated clay that has an undrained shear strength su $=200 \mathrm{kPa}$ (i.e. $\mathrm{cu}=200 \mathrm{kPa}, \phi \mathrm{u}=0$), and a drained shear strength of $\phi^{\prime}=28^{\circ}, \mathrm{c}=5 \mathrm{kPa}$. The proposed strip footing will be 1.2 m wide, and embedded 0.6 m below the ground surface. Assume the W.T is located at a depth of 1.2 m below the ground surface. The saturated unit weight of the clay is $19.7 \mathrm{kN} / \mathrm{m}^{3}$ both above and below the W.T. Perform both a total stress analysis and an effective stress analysis, determine the allowable load using Terzaghi equation with Meyerhof BC factors.
8.1 A load of $425 \mathrm{kN} / \mathrm{m}$ is carried on a strip footing 2 m wide at a depth of 1 m in a stiff clay of saturated unit weight $21 \mathrm{kN} / \mathrm{m}^{3}$, the water table being at ground level. Determine the factor of safety with respect to shear failure (a) when $c_{\mathrm{u}}=105 \mathrm{kN} / \mathrm{m}^{2}$ and $\phi_{\mathrm{u}}=0$ and (b) when $c^{\prime}=10 \mathrm{kN} / \mathrm{m}^{2}$ and $\phi^{\prime}=28^{\circ}$.

$$
q_{\mathrm{f}}=c N_{\mathrm{c}}+\gamma D N_{\mathrm{q}}+\frac{1}{2} \gamma B N_{\gamma}
$$

For $\phi_{\mathrm{u}}=0$:

$$
N_{\mathrm{c}}=5.14, N_{\mathrm{q}}=1, N_{\gamma}=0
$$

$$
\therefore q_{\mathrm{f}}=(105 \times 5.14)+(21 \times 1 \times 1)=540+21 \mathrm{kN} / \mathrm{m}^{2}
$$

The net ultimate bearing capacity is
$q_{\mathrm{nf}}=q_{\mathrm{f}}-\gamma D=540 \mathrm{kN} / \mathrm{m}^{2}$
The net foundation pressure is

$$
q_{\mathrm{n}}=q-\gamma D=\frac{425}{2}-(21 \times 1)=192 \mathrm{kN} / \mathrm{m}^{2}
$$

The factor of safety (Equation 8.6) is

$$
F=\frac{q_{\mathrm{nf}}}{q_{\mathrm{n}}}=\frac{540}{192}=2.8
$$

