Department of Electrical Engineering Final Assignment Summer 2020 Subject: Communication Systems

Max Marks: 50

Question 1 (10)

A signal x(t) band limited by 250 Hz is sampled by an impulse train with angular frequency of $f_{
m s}$

- a. Determine the Nyquist rate required for perfect reconstruction of signal.
- b. Considering x(t) and impulse train in figure below, construct all the signals involved in sampling.
- c. Determine the cut off frequency of reconstruction filter H(f) to be used for the signal given in question.
- d. If the frequency of sampler is $f_s = 800 Hz$, draw the resulting sampled signal s(f)

Question 2 (10)

- a. Let x(t) be a signal with Nyquist rate f_s determine the Nyquist rate for following
 - i. x(t) + x(t-1)
 - ii. $\frac{dx(t)}{dt}$
- b. Let $m(t) = 10\sin 400\pi t$ is sampled at 300Hz and reconstructed using an ideal low pass filter with a cut off frequency of 150Hz. What are the frequency/frequencies present in the reconstructed signal y(t)

Question 3 (15)

Consider the bit sequence (0 1 1 0 1 1 0 0 0 1 1) and draw the PCM waveform for following modulation schemes

- a. NRZ-S
- b. Polar-RZ
- c. Split Phase Manchester
- d. Bi-φ-L
- e. Dicode NRZ

Question 4 (15)

- a. A carrier wave is represented by the equation $e_c(t) = 7.5\sin 20 \times 10^3 \, \pi t$. If the modulation index of wave is 0.5, draw the waveform of AM modulated waveform.
- b. A sinusoidal carrier $10\cos 50\times 10^5 t$ is amplitude modulated by the sinusoidal voltage of $5\cos 628\times 10^3 t$ over a load resistance of 50Ω
 - a. Find the depth of modulation and calculate the transmission efficiency
 - b. Plot the AM wave in time domain as well as its frequency domain spectrum
 - c. Calculate the total power in spectrum
 - d. Calculate the percentage power in USB