

Chapter # 9

Deflection of Beams

Deflection of Beams

- <u>Deformation of a Beam Under Transverse</u> <u>Loading</u>
- Equation of the Elastic Curve
- Direct Determination of the Elastic Curve From the Load Di...
- **Statically Indeterminate Beams**
- Sample Problem 9.1
- Sample Problem 9.3
- Method of Superposition
- Sample Problem 9.7
- <u>Application of Superposition to Statically</u> <u>Indeterminate ...</u>

Sample Problem 9.8

Moment-Area Theorems

Application to Cantilever Beams and Beams With Symmetric ...

Bending Moment Diagrams by Parts

Sample Problem 9.11

Application of Moment-Area Theorems to Beams With Unsymme...

Maximum Deflection

Use of Moment-Area Theorems With Statically Indeterminate...

 \mathbb{R}

Deformation of a Beam Under Transverse Loading

• Relationship between bending moment and curvature for pure bending remains valid for general transverse loadings.

$$\frac{1}{\rho} = \frac{M(x)}{EI}$$

• Cantilever beam subjected to concentrated load at the free end,

$$\frac{1}{\rho} = -\frac{Px}{EI}$$

• Curvature varies linearly with *x*

• At the free end A,
$$\frac{1}{\rho_A} = 0$$
, $\rho_A = \infty$

• At the support *B*,
$$\frac{1}{\rho_B} \neq 0$$
, $|\rho_B| = \frac{EI}{PL}$

Deformation of a Beam Under Transverse Loading

- Overhanging beam
- Reactions at A and C
- Bending moment diagram
- Curvature is zero at points where the bending moment is zero, i.e., at each end and at *E*.
 - $\frac{1}{\rho} = \frac{M(x)}{EI}$
- Beam is concave upwards where the bending moment is positive and concave downwards where it is negative.
- Maximum curvature occurs where the moment magnitude is a maximum.
- An equation for the beam shape or *elastic curve* is required to determine maximum deflection and slope.

Equation of the Elastic Curve

• From elementary calculus, simplified for beam parameters,

$$\frac{1}{\rho} = \frac{\frac{d^2 y}{dx^2}}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}} \approx \frac{d^2 y}{dx^2}$$

• Substituting and integrating, $EL^{1} = EL^{d^{2}y} = M(x)$

$$EI\frac{1}{\rho} = EI\frac{d^2y}{dx^2} = M(x)$$

$$EI \theta \approx EI \frac{dy}{dx} = \int_{0}^{x} M(x) dx + C_{1}$$

$$EI \ y = \int_{0}^{x} dx \int_{0}^{x} M(x) dx + C_{1}x + C_{2}$$

) 2002 The McGraw-Hill Companies, Inc. All rights reserved

Equation of the Elastic Curve

• Constants are determined from boundary conditions

$$EI \ y = \int_{0}^{x} dx \int_{0}^{x} M(x) dx + C_{1}x + C_{2}$$

- Three cases for statically determinant beams,
 - Simply supported beam y = 0

$$y_A = 0, \quad y_B = 0$$

- Overhanging beam $y_A = 0$, $y_B = 0$
- Cantilever beam $y_A = 0$, $\theta_A = 0$
- More complicated loadings require multiple integrals and application of requirement for continuity of displacement and slope.

Beer • Johnston • DeWolf

Direct Determination of the Elastic Curve From the Load Distribution

 $\begin{bmatrix} y_A = 0 \end{bmatrix} \qquad \begin{bmatrix} y_B = 0 \end{bmatrix} \\ \begin{bmatrix} M_A = 0 \end{bmatrix} \qquad \begin{bmatrix} M_B = 0 \end{bmatrix}$

(b) Simply supported beam

• For a beam subjected to a distributed load,

$$\frac{dM}{dx} = V(x) \qquad \frac{d^2M}{dx^2} = \frac{dV}{dx} = -w(x)$$

• Equation for beam displacement becomes

$$\frac{d^2M}{dx^2} = EI\frac{d^4y}{dx^4} = -w(x)$$

- Integrating four times yields $EI \ y(x) = -\int dx \int dx \int dx \int w(x) dx$ $+ \frac{1}{6}C_1 x^3 + \frac{1}{2}C_2 x^2 + C_3 x + C_4$
 - Constants are determined from boundary conditions.

Statically Indeterminate Beams

- Consider beam with fixed support at *A* and roller support at *B*.
- From free-body diagram, note that there are four unknown reaction components.
- Conditions for static equilibrium yield $\Sigma F_x = 0$ $\Sigma F_y = 0$ $\Sigma M_A = 0$

The beam is statically indeterminate.

• Also have the beam deflection equation,

$$EI \ y = \int_{0}^{x} dx \int_{0}^{x} M(x) dx + C_{1}x + C_{2}$$

which introduces two unknowns but provides three additional equations from the boundary conditions:

At
$$x = 0$$
, $\theta = 0$ $y = 0$ At $x = L$, $y = 0$

Sample Problem 9.1

 $W14 \times 68 \qquad I = 723 \text{ in}^{4} \qquad E = 29 \times 10^{6} \text{ psi}$ $P = 50 \text{ kips} \qquad L = 15 \text{ ft} \qquad a = 4 \text{ ft}$

For portion *AB* of the overhanging beam, (*a*) derive the equation for the elastic curve, (*b*) determine the maximum deflection, (*c*) evaluate y_{max} .

SOLUTION:

- Develop an expression for M(x) and derive differential equation for elastic curve.
- Integrate differential equation twice and apply boundary conditions to obtain elastic curve.
- Locate point of zero slope or point of maximum deflection.
- Evaluate corresponding maximum deflection.

Sample Problem 9.1

SOLUTION:

- Develop an expression for M(x) and derive differential equation for elastic curve.
 - Reactions:

$$R_A = \frac{Pa}{L} \downarrow \quad R_B = P\left(1 + \frac{a}{L}\right) \uparrow$$

- From the free-body diagram for section *AD*,

$$M = -P\frac{a}{L}x \quad (0 < x < L)$$

- The differential equation for the elastic curve,

$$EI\frac{d^2y}{dx^2} = -P\frac{a}{L}x$$

Beer • Johnston • DeWolf

Sample Problem 9.1

• Integrate differential equation twice and apply boundary conditions to obtain elastic curve.

$$EI\frac{dy}{dx} = -\frac{1}{2}P\frac{a}{L}x^{2} + C_{1}$$
$$EIy = -\frac{1}{6}P\frac{a}{L}x^{3} + C_{1}x + C_{2}$$

at
$$x = 0$$
, $y = 0$: $C_2 = 0$

at
$$x = L$$
, $y = 0$: $0 = -\frac{1}{6}P\frac{a}{L}L^3 + C_1L$ $C_1 = \frac{1}{6}PaL$

Substituting,

$$EI\frac{dy}{dx} = -\frac{1}{2}P\frac{a}{L}x^{2} + \frac{1}{6}PaL \quad \frac{dy}{dx} = \frac{PaL}{6EI} \left[1 - 3\left(\frac{x}{L}\right)^{2}\right]$$
$$EIy = -\frac{1}{6}P\frac{a}{L}x^{3} + \frac{1}{6}PaLx \quad y = \frac{PaL^{2}}{6EI} \left[\frac{x}{L} - \left(\frac{x}{L}\right)^{3}\right]$$

Beer • Johnston • DeWolf

Sample Problem 9.1

$$y = \frac{PaL^2}{6EI} \left[\frac{x}{L} - \left(\frac{x}{L} \right)^3 \right]$$

• Locate point of zero slope or point of maximum deflection.

$$\frac{dy}{dx} = 0 = \frac{PaL}{6EI} \left[1 - 3\left(\frac{x_m}{L}\right)^2 \right] \quad x_m = \frac{L}{\sqrt{3}} = 0.577L$$

• Evaluate corresponding maximum deflection.

$$y_{\text{max}} = \frac{PaL^2}{6EI} \left[0.577 - (0.577)^3 \right]$$
$$y_{\text{max}} = 0.0642 \frac{PaL^2}{6EI}$$

$$y_{\text{max}} = 0.0642 \frac{(50 \text{ kips})(48 \text{ in})(180 \text{ in})^2}{6(29 \times 10^6 \text{ psi})(723 \text{ in}^4)}$$

 $y_{\text{max}} = 0.238$ in

Sample Problem 9.3

For the uniform beam, determine the reaction at *A*, derive the equation for the elastic curve, and determine the slope at *A*. (Note that the beam is statically indeterminate to the first degree)

SOLUTION:

- Develop the differential equation for the elastic curve (will be functionally dependent on the reaction at *A*).
- Integrate twice and apply boundary conditions to solve for reaction at *A* and to obtain the elastic curve.
- Evaluate the slope at *A*.

Beer • Johnston • DeWolf

Sample Problem 9.3

• Consider moment acting at section *D*,

0

$$\sum M_D = 0$$

$$R_A x - \frac{1}{2} \left(\frac{w_0 x^2}{L} \right) \frac{x}{3} - M =$$

$$M = R_A x - \frac{w_0 x^3}{6L}$$

• The differential equation for the elastic curve,

$$EI\frac{d^2y}{dx^2} = M = R_A x - \frac{w_0 x^3}{6L}$$

Sample Problem 9.3

$$EI\frac{d^2y}{dx^2} = M = R_A x - \frac{w_0 x^3}{6L}$$

• Integrate twice

$$EI\frac{dy}{dx} = EI\theta = \frac{1}{2}R_A x^2 - \frac{w_0 x^4}{24L} + C_1$$
$$EIy = \frac{1}{6}R_A x^3 - \frac{w_0 x^5}{120L} + C_1 x + C_2$$

• Apply boundary conditions:

at x = 0, y = 0: $C_2 = 0$

at
$$x = L$$
, $\theta = 0$: $\frac{1}{2}R_A L^2 - \frac{w_0 L^3}{24} + C_1 = 0$
at $x = L$, $y = 0$: $\frac{1}{6}R_A L^3 - \frac{w_0 L^4}{120} + C_1 L + C_2 = 0$

Λ

• Solve for reaction at A

$$\frac{1}{3}R_A L^3 - \frac{1}{30}w_0 L^4 = 0$$

$$R_A = \frac{1}{10} w_0 L \uparrow$$

<u>MECHANICS OF MATERIALS</u>

Sample Problem 9.3

• Substitute for C₁, C₂, and R_A in the elastic curve equation,

$$EI \ y = \frac{1}{6} \left(\frac{1}{10} w_0 L \right) x^3 - \frac{w_0 x^5}{120L} - \left(\frac{1}{120} w_0 L^3 \right) x$$

$$y = \frac{w_0}{120EIL} \left(-x^5 + 2L^2 x^3 - L^4 x \right)$$

• Differentiate once to find the slope,

$$\theta = \frac{dy}{dx} = \frac{w_0}{120EIL} \left(-5x^4 + 6L^2x^2 - L^4 \right)$$

at
$$x = 0$$
, $\theta_A = \frac{w_0 L^3}{120EI}$

2002 The McGraw-Hill Companies, Inc. All rights reserve

Method of Superposition

Principle of Superposition:

- Deformations of beams subjected to combinations of loadings may be obtained as the linear combination of the deformations from the individual loadings
- Procedure is facilitated by tables of solutions for common types of loadings and supports.

Sample Problem 9.7

For the beam and loading shown, determine the slope and deflection at point *B*.

SOLUTION:

Superpose the deformations due to *Loading I* and *Loading II* as shown.

Beer • Johnston • DeWolf

Sample Problem 9.7

Loading I

$$(\theta_B)_I = -\frac{wL^3}{6EI} \qquad (y_B)_I = -\frac{wL^4}{8EI}$$

Loading II $(\theta_C)_{II} = \frac{wL^3}{48EI} \qquad (y_C)_{II} = \frac{wL^4}{128EI}$

Loading II

Мc

In beam segment CB, the bending moment is zero and the elastic curve is a straight line.

$$(\theta_B)_{II} = (\theta_C)_{II} = \frac{wL^3}{48EI}$$

$$(y_B)_{II} = \frac{wL^4}{128EI} + \frac{wL^3}{48EI} \left(\frac{L}{2}\right) = \frac{7wL^4}{384EI}$$

Sample Problem 9.7

Combine the two solutions,

Мс

$$\theta_B = (\theta_B)_I + (\theta_B)_{II} = -\frac{wL^3}{6EI} + \frac{wL^3}{48EI} \qquad \qquad \theta_B = \frac{7wL^3}{48EI}$$

$$y_B = (y_B)_I + (y_B)_{II} = -\frac{wL^4}{8EI} + \frac{7wL^4}{384EI} \qquad y_B = \frac{41wL^4}{384EI}$$

Beer • Johnston • DeWolf

Application of Superposition to Statically Indeterminate Beams

- Method of superposition may be applied to determine the reactions at the supports of statically indeterminate beams.
- Designate one of the reactions as redundant and eliminate or modify the support.

- Determine the beam deformation without the redundant support.
- Treat the redundant reaction as an unknown load which, together with the other loads, must produce deformations compatible with the original supports.

Sample Problem 9.8

For the uniform beam and loading shown, determine the reaction at each support and the slope at end A.

SOLUTION:

- Release the "redundant" support at B, and find deformation.
- Apply reaction at *B* as an unknown load to force zero displacement at *B*.

Sample Problem 9.8

• Distributed Loading:

$$(y_B)_w = -\frac{w}{24EI} \left[\left(\frac{2}{3}L\right)^4 - 2L\left(\frac{2}{3}L\right)^3 + L^3\left(\frac{2}{3}L\right) \right]$$
$$= -0.01132 \frac{wL^4}{EI}$$

• Redundant Reaction Loading:

$$(y_B)_R = \frac{R_B}{3EIL} \left(\frac{2}{3}L\right)^2 \left(\frac{L}{3}\right)^2 = 0.01646 \frac{R_B L^3}{EI}$$

- For compatibility with original supports, $y_B = 0$ $0 = (y_B)_w + (y_B)_R = -0.01132 \frac{wL^4}{EI} + 0.01646 \frac{R_B L^3}{EI}$ $R_B = 0.688 wL \uparrow$
- From statics,

$$R_A = 0.271 wL \uparrow \qquad R_C = 0.0413 wL \uparrow$$

© 2002 The McGraw-Hill Companies, Inc. All rights reserved

Sample Problem 9.8

Slope at end *A*,

Мc

$$(\theta_A)_w = -\frac{wL^3}{24EI} = -0.04167 \frac{wL^3}{EI}$$
$$(\theta_A)_R = \frac{0.0688wL}{6EIL} \left(\frac{L}{3}\right) \left[L^2 - \left(\frac{L}{3}\right)^2\right] = 0.03398 \frac{wL^3}{EI}$$
$$\theta_A = (\theta_A)_w + (\theta_A)_R = -0.04167 \frac{wL^3}{EI} + 0.03398 \frac{wL^3}{EI}$$

EI

$$\theta_A = -0.00769 \frac{wL^3}{EI}$$

EI

Moment-Area Theorems

- В 000 $\frac{M}{E1}$ B D C
 - Geometric properties of the elastic curve can be used to determine deflection and slope.
 - Consider a beam subjected to arbitrary loading,

• First Moment-Area Theorem:

area under (M/EI) diagram between C and D.

Moment-Area Theorems

• Tangents to the elastic curve at *P* and *P*' intercept a segment of length *dt* on the vertical through *C*.

= tangential deviation of Cwith respect to D

• Second Moment-Area Theorem:

The tangential deviation of *C* with respect to *D* is equal to the first moment with respect to a vertical axis through *C* of the area under the (*M*/*EI*) diagram between *C* and *D*.

Application to Cantilever Beams and Beams With Symmetric Loadings

• Cantilever beam - Select tangent at *A* as the reference.

• Simply supported, symmetrically loaded beam - select tangent at *C* as the reference.

Bending Moment Diagrams by Parts

- Determination of the change of slope and the tangential deviation is simplified if the effect of each load is evaluated separately.
- Construct a separate (*M/EI*) diagram for each load.
 - The change of slope, $\theta_{D/C}$, is obtained by adding the areas under the diagrams.
 - The tangential deviation, $t_{D/C}$ is obtained by adding the first moments of the areas with respect to a vertical axis through D.
- Bending moment diagram constructed from individual loads is said to be *drawn by parts*.

Sample Problem 9.11

For the prismatic beam shown, determine the slope and deflection at E.

SOLUTION:

- Determine the reactions at supports.
- Construct shear, bending moment and (*M/EI*) diagrams.
- Taking the tangent at *C* as the reference, evaluate the slope and tangential deviations at *E*.

Sample Problem 9.11

SOLUTION:

• Determine the reactions at supports.

$$R_B = R_D = wa$$

• Construct shear, bending moment and (*M/EI*) diagrams.

$$A_{1} = -\frac{wa^{2}}{2EI} \left(\frac{L}{2}\right) = -\frac{wa^{2}L}{4EI}$$
$$A_{2} = -\frac{1}{3} \left(\frac{wa^{2}}{2EI}\right) (a) = -\frac{wa^{3}}{6EI}$$

<u>MECHANICS OF MATERIALS</u>

Sample Problem 9.11

• Slope at E:

•

$$\theta_E = \theta_C + \theta_{E/C} = \theta_{E/C}$$

$$= A_1 + A_2 = -\frac{wa^2 L}{4EI} - \frac{wa^3}{6EI}$$
$$\theta_E = -\frac{wa^2}{12EI}(3L + 2a)$$

Deflection at E: $y_E = t_{E/C} - t_{D/C}$ $= \left[A_1 \left(a + \frac{L}{4} \right) + A_2 \left(\frac{3a}{4} \right) \right] - \left[A_1 \left(\frac{L}{4} \right) \right]$ $= \left[-\frac{wa^3 L}{4EI} - \frac{wa^2 L^2}{16EI} - \frac{wa^4}{8EI} \right] - \left[-\frac{wa^2 L^2}{16EI} \right]$ $y_E = -\frac{wa^3}{8EI} (2L + a)$

Application of Moment-Area Theorems to Beams With Unsymmetric Loadings

• Define reference tangent at support *A*. Evaluate θ_A by determining the tangential deviation at *B* with respect to *A*.

• The slope at other points is found with respect to reference tangent.

 $\theta_D = \theta_A + \theta_{D/A}$

• The deflection at *D* is found from the tangential deviation at *D*.

Beer • Johnston • DeWolf

MECHANICS OF MATERIALS

Maximum Deflection

• Maximum deflection occurs at point *K* where the tangent is horizontal.

- Point *K* may be determined by measuring an area under the (*M*/*EI*) diagram equal to $-\theta_A$.
- Obtain y_{max} by computing the first moment with respect to the vertical axis through *A* of the area between *A* and *K*.

Use of Moment-Area Theorems With Statically Indeterminate Beams

- Reactions at supports of statically indeterminate beams are found by designating a redundant constraint and treating it as an unknown load which satisfies a displacement compatibility requirement.
- The (*M/EI*) diagram is drawn by parts. The resulting tangential deviations are superposed and related by the compatibility requirement.
- With reactions determined, the slope and deflection are found from the moment-area method.

