Chapter # 7

Transformations of Stress and Strain
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Introduction

« The most general state of stress at a point may
be represented by 6 components,

Ox,0y,0,  hormalstresses

Tyys Tyz» Tz Shearing stresses

(Note: Tyy = Tyxs Tyz = Tzys Tgx = Tyz)

« Same state of stress is represented by a
different set of components if axes are rotated.

The first part of the chapter is concerned with
how the components of stress are transformed
under a rotation of the coordinate axes. The
second part of the chapter is devoted to a
similar analysis of the transformation of the
components of strain.
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Introduction

e Plane Stress - state of stress in which two faces of
the cubic element are free of stress. For the
illustrated example, the state of stress is defined by

Ox, Oy, Txy and O =Tz =Ty =0.

« State of plane stress occurs in a thin plate subjected
to forces acting in the midplane of the plate.

o State of plane stress also occurs on the free surface
of a structural element or machine component, i.e.,
at any point of the surface not subjected to an
external force.
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Transformation of Plane Stress

 Consider the conditions for equilibrium of a
prismatic element with faces perpendicular to
the x, y, and x’ axes.

Bl Y . XFy =0=0y,AA-0,(AACOSO)COSO — Ty (AACOSH)siNG
72y (A cos 6) —oy(AAsing)sing -z, (AAsing)cosd
> Fyr =0 =14y AA+ 0y (AACOSH)sinG — 7y, (AACOSH)cOSH
— oy (AAsING)cosd + 7y, (AAsing)sing

Tyy (AA sin 6)

a, (AA sin 0)

The equations may be rewritten to yield
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Principal Stresses

T

s  The previous equations are combined to
yield parametric equations for a circle,

(oy _O'ave)z "‘T)%’y’ =R?

Oin

where

Oy +0y
Cave = 45
2

 Principal stresses occur on the principal
planes of stress with zero shearing stresses.

2
Oin O-max’mln - —2 i \/(2 + Txy

Note : defines two angles separated by 90°

Omin
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Maximum Shearing Stress

Ty’

Maximum shearing stress occurs for oy =oaye

2
Oy —O
Oin / ’Z'max = R = (%j + ’Z')%y

Oy —O
tan 26, = ——Y

Note : defines two angles separated by 90° and

offsetfromd, by 45°
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Example 7.01

10 MPa SOLUTION:

‘  Find the element orientation for the principal
e stresses from

2T
tan 20p = Xy

. I  Determine the principal stresses from
Fig. 7.13

2

2
Omax,min = as ( T Txy

For the state of plane stress shown, 2
determine (a) the principal panes, . cajculate the maximum shearing stress with
(b) the principal stresses, (c) the 5
maximum shearing stress and the o (O'x - Gy] 42
corresponding normal stress. max 2 Y
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Example 7.01

SOLUTION:

10 MPa

 Find the element orientation for the principal
4 ke stresses from
2
tan20, =Y - 2A+40) _; 433

I 26, =53.1°, 233.1°
Fig. 7.13

Qp =26.6°,116.6°
ox =+50MPa 7,y = +40MPa
oy =—-10MPa « Determine the principal stresses from

2
oy t+o Oy —O
B o N S AT I A 72
Tmin = 30 MPa maX, min 2 2 Xy

= 20++/(30)2 + (40)?

Omax = TOMPa
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Example 7.01

10 MPa

40 MPa

Fig. 7.13 |

oy =+50MPa 7y, = +40MPa
oy =-10MPa

o'= 20 MPa

= 50 MPa

max

o' = 20 MPa

Calculate the maximum shearing stress with

2
Tmax (—] t Txy

2
(302 + (40)?

7 = 50MPa

0 = 0 — 45

0 = —18.4° 71.6°

 The corresponding normal stress is

o' =20MPa
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Sample Problem 7.1

Y

SOLUTION:

B
T\ﬁ « Determine an equivalent force-couple
| » system at the center of the transverse
section passing through H.

 Evaluate the normal and shearing stresses
at H.

« Determine the principal planes and
x calculate the principal stresses.

A single horizontal force P of 150 Ib
magnitude is applied to end D of lever
ABD. Determine (a) the normal and
shearing stresses on an element at point
H having sides parallel to the x and y
axes, (b) the principal planes and
principal stresses at the point H.
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Sample Problem 7.1

SOLUTION:

« Determine an equivalent force-couple
system at the center of the transverse
.: @_ o section passing through H.

| M, = 1.5kip - in. P =150Ib
T =(1501b)(18in)= 2.7Kip - in
M, = (15010 )10in)=1.5Kip - in

 Evaluate the normal and shearing stresses

py - Mo __ Ak 005
| 4117[(0.6in)

Iy _Tc_ (2.7kip-in)(0.6in)
b 1 7(0.6in )’

oy =0 oy =+8.84ksl 7, =+7.96ksI



contents.ppt-1,1,

A
[ 1/ k Beer ¢ Johnston ¢ DeWolf

Sample Problem 7.1

« Determine the principal planes and
calculate the principal stresses.

T &, = 8.84 ksi

e B = T ksi

xy 2
tan 26, = o 2796)
ox—oy 0-3.84

26, = -61.0°119°
0 =—30.5°, 59.5°

oy +0y
Omax,min = —2 *

2
:O+£23.84i\/(0—523.84) (1567

= — 30.5°

oy = +13.52Ksi
.= 4.68 ksi .
@min . O-mln - _4.68 kSI
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Mohr’s Circle for Plane Stress

» With the physical significance of Mohr’s circle
for plane stress established, it may be applied
with simple geometric considerations. Critical
values are estimated graphically or calculated.

For a known state of plane stress ox.oy,7xy
plot the points X and Y and construct the
circle centered at C.

q,

min 2
OCave = 5 R= \/( 5 T Txy

The principal stresses are obtained at A and B.

Omax,min = Cave T R

27
tan20p = Xy

imin The direction of rotation of Ox to Oa is
the same as CX to CA.
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Mohr’s Circle for Plane Stress

7

« With Mohr’s circle uniquely defined, the state
of stress at other axes orientations may be
depicted.

For the state of stress at an angle 8 with
respect to the xy axes, construct a new
diameter XY’ at an angle 26 with respect to
XY.

Normal and shear stresses are obtained
from the coordinates XY
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Mohr’s Circle for Plane Stress

» Mohr’s circle for centric axial loading:

, O'y=TXy=0

P
A

Oy =

* Mohr’s circle for torsional loading:

t Onin
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Example 7.02

= 40 MPa

For the state of plane stress shown,
(a) construct Mohr’s circle, determine
(b) the principal planes, (c) the
principal stresses, (d) the maximum
shearing stress and the corresponding
normal stress.

SOLUTION:

» Construction of Mohr’s circle
oyx+oy (50)+(-10)

Cave = 5
CF =50-20=30MPa FX =40MPa
R=CX =+/(30) + (40)? = 50MPa

=20MPa
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Exam

nle 7.02

7(MPa))

* Principal planes and stresses

Omax = O0A=0C + CA=20+50
Cimax = T0MPa
Omax = OB =0C —BC =20-50

Orax = —30MPa

FX 40

tan 26?p =——=—
CP 30

26, =53.1°
Oy = 26.6°

c...= 70 MPa

max

c,... = 30 MPa

min
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Example 7.02

7(MPa))

o(MPa)

|
~20,=53.1°

 Maximum shear stress

Os =0, +45° Tmax = R

¢

o'= 20 MPa

/(/
o'= 20 MPa

.= 50 MPa

0 = 70 MPa

in = 30 MPa

Tmax = 20 MPa

X

'—
O =O03ye

o' =20 MPa
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Sample Problem 7.2

I
? 60 MPa

11 100 MPa

For the state of stress shown, Y(60, —48)
determine (a) the principal planes

and the principal stresses, (b) the T T = 132 MPa
stress components exerted on the

element obtained by rotating the SOLUTION:
given element counterclockwise  « Construct Mohr’s circle
through 30 degrees. oy +0y  100+60

Oave =
ave
2

R=+(CF)? +(FX 2 =/(20)% + (482 =52MPa

=80MPa

7-20
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Sample Problem 7.2

7 (MPa) )

O

Oin = 28 MPa

ag — Tlll =

min - __| : N
98 MPa 53 MPa R o = 132 MPd

* max

Y (60, —48)

o o = 132 MPa—»

max

 Principal planes and stresses
_XF_48_,, Omax =OA=0C+CA o =0A=0C-BC
CF 20 =80+52 =80-52

20p =67.4° o = +132MPa o = +28MPa
0 =33.7° clockwise
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Sample Problem 7.2

& = 180° — 60° — 67.4° %'

T (MPa) ) g, = 111.6 MPa :
= \ /

\.~70, = 48.4 MPa

20, = 67.4°

¢ =180°—-60°—-67.4°=52.6°

oy =0K =0C - KC =80-52c0s52.6°
Points X’ and Y’ on Mohr’s circle that &y = 0L =0C +CL =80 +52¢0552.6°
correspond to stress components on the -
rotated element are obtained by rotating ~ “*¥'
XY counterclockwise through 26 =60° oy =+48.4MPa

oy =+111.6MPa
7y = 41.3MPa

« Stress components after rotation by 30°

KX'"=52sin52.6°

7-22
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General State of Stress

 Consider the general 3D state of stress at a point and

& the transformation of stress from element rotation
State of stress at Q defined by: oy,0y,0;, 7y, 7y7, 72«

Consider tetrahedron with face perpendicular to the
line QN with direction cosines: Ay, 1y, 4,

The requirement > F, =0 leads to,

Op = Gx/l)z( + ay/"t%, + 0'223

+ 205y Ax Ay + 2Ty, Ay Ay + 2754 A; Ax

Form of equation guarantees that an element
orientation can be found such that

2 2 2
On =0ala + opdy +0cAc

These are the principal axes and principal planes

and the normal stresses are the principal stresses.



contents.ppt-1,1,

j \‘ [ A k ' \‘ = A Beer » Johnston  DeWolf

Application of Mohr’s Circle to the Three-
Dimensional Analysis of Stress

 Transformation of stress for an element « The three circles represent the
rotated around a principal axis may be normal and shearing stresses for
represented by Mohr’s circle. rotation around each principal axis.

E . Points A, B, and C represent the - Radius of the largest circle yields the
principal stresses on the principal planes  maximum shearing stress.
(shearing stress Is zero)

Tmax = E‘O'max ~ Omin ‘

Mc
Graw
Hill
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Application of Mohr’s Circle to the Three-
Dimensional Analysis of Stress

* In the case of plane stress, the axis
perpendicular to the plane of stress is a
principal axis (shearing stress equal zero).

« |f the points A and B (representing the
principal planes) are on opposite sides of
the origin, then

a) the corresponding principal stresses
are the maximum and minimum
normal stresses for the element

b) the maximum shearing stress for the
element is equal to the maximum “in-
plane” shearing stress

c) planes of maximum shearing stress
are at 45° to the principal planes.
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Application of Mohr’s Circle to the Three-

Dimensional Analysis of Stress
T)

« If Aand B are on the same side of the
origin (i.e., have the same sign), then

a) the circle defining o;,.,, G, @Nd
T..ax TOr the element is not the circle
corresponding to transformations within
the plane of stress

b) maximum shearing stress for the
element is equal to half of the
maximum stress

c) planes of maximum shearing stress are
at 45 degrees to the plane of stress
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Yield Criteria for Ductile Materials Under Plane Stress

Failure of a machine component
subjected to uniaxial stress is directly
predicted from an equivalent tensile test

Failure of a machine component
subjected to plane stress cannot be
directly predicted from the uniaxial state
of stress in a tensile test specimen

It is convenient to determine the
principal stresses and to base the failure
criteria on the corresponding biaxial
stress state

Failure criteria are based on the
mechanism of failure. Allows
comparison of the failure conditions for
a uniaxial stress test and biaxial
component loading
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Yield Criteria for Ductile Materials Under Plane Stress

Maximum shearing stress criteria:

Structural component is safe as long as the
maximum shearing stress is less than the
maximum shearing stress in a tensile test
specimen at yield, i.e.,
oy
Tmax <7y = o
For o, and o, with the same sign,

_‘Ga‘
Tmax = 5 or

\Ub\ < oY
2 2

For o, and o, with opposite signs,

Oq — O
Tmax:‘ a2 b‘<02(
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Yield Criteria for Ductile Materials Under Plane Stress

Maximum distortion energy criteria:

Structural component is safe as long as the
distortion energy per unit volume is less
than that occurring in a tensile test specimen
at yield.

Ug <Uy
1 1

6G

(0'5 — 040} +0'|§)< E(G% — oy ><O+02)

0'5 — 040 + Gg < a$
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Fracture Criteria for Brittle Materials Under Plane Stress

gy,
Brittle materials fail suddenly through rupture

or fracture in a tensile test. The failure
condition is characterized by the ultimate

strength oy,.

Maximum normal stress criteria:

Structural component is safe as long as the
maximum normal stress is less than the
ultimate strength of a tensile test specimen.

T4l <oy

op| <oy
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Stresses In Thin-Walled Pressure Vessels

 Cylindrical vessel with principal stresses
o, = hoop stress
o, = longitudinal stress

Hoop stress:
> F, =0=09(2t AX)— p(2r Ax)

_pr
t

01

Longitudinal stress:

> F, =0=0y(2zrt)- p(ﬂ'l’z)

_pr
2t
01 = 20'2

02
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Stresses In Thin-Walled Pressure Vessels

« Points A and B correspond to hoop stress, o,
and longitudinal stress, o,

« Maximum in-plane shearing stress:

1 pr
Tmax(in—plane) = 552 = at

« Maximum out-of-plane shearing stress
corresponds to a 45° rotation of the plane
stress element around a longitudinal axis

pr
Tmax =02 =~

2t
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Stresses In Thin-Walled Pressure Vessels

gy (]A

 Spherical pressure vessel:

pr
01202:2—1:

* Mohr’s circle for in-plane
transformations reduces to a point

o = 01 = 09 = constant

Tmax(in -plane) = 0

« Maximum out-of-plane shearing
stress

1
Tmax =501

_pr
4t
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Transformation of Plane Strain

y  Plane strain - deformations of the material
take place in parallel planes and are the

. Fixed support -

\\h\u _‘\\\H\ same in each of those planes.

. Plane strain occurs in a plate subjected
along its edges to a uniformly distributed
load and restrained from expanding or
contracting laterally by smooth, rigid and
fixed supports

Fixed support

components of strain :

Ex €y Vxy (52 :7/2x:72y20)

Example: Consider a long bar subjected
to uniformly distributed transverse loads.
State of plane stress exists in any
transverse section not located too close to
the ends of the bar.
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Transformation of Plane Strain

« State of strain at the point Q results in
different strain components with respect
to the xy and x’y’ reference frames.

£(0)= &, cos® 0 + £y Sin 20+ ¥xy Sin 0cosd

EOB = 5(450) = E(gx +éy + 7xy)

Vxy = 260B — (ex + gy)

» Applying the trigonometric relations
used for the transformation of stress,

Ey' = 5 +

&
Y c0s26 + %sin 20

&
Y c0s26 — y—gysin 20

— &
X "Ysin 20 + %cos 20
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Mohr’s Circle for Plane Strain

1y « The equations for the transformation of
plane strain are of the same form as the
equations for the transformation of plane
stress - Mohr s circle techniques apply.

1
Y(Gy ,+ 5ny>

Abscissa for the center C and radius R,

2 2

Principal axes of strain and principal strains,

2 Ymax (in plane) 8X - 8y

Emax = €ave T R Emin = €ave — R

Maximum in-plane shearing strain,

Y max ZZRZ\/(gx_gy)z+7>%y
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Three-Dimensional Analysis of Strain

b . . .
g g * Previously demonstrated that three principal
\ J axes exist such that the perpendicular
/\/ element faces are free of shearing stresses.
-- > « By Hooke’s Law, it follows that the
shearing strains are zero as well and that

the principal planes of stress are also the
principal planes of strain.

Rotation about the principal axes may be
represented by Mohr’s circles.



contents.ppt-1,1,

A »

L 1/ k ' \‘ A A A Beer » Johnston  DeWolf

Three-Dimensional Analysis of Strain

372 * For the case of plane strain where the x and y
axes are in the plane of strain,

- the z axis is also a principal axis

- the corresponding principal normal strain
IS represented by the point Z = 0 or the
origin.

If the points A and B lie on opposite sides
of the origin, the maximum shearing strain
IS the maximum in-plane shearing strain, D
and E.

If the points A and B lie on the same side of
the origin, the maximum shearing strain is
out of the plane of strain and is represented
by the points D’ and £
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Three-Dimensional Analysis of Strain

Ly) - Consider the case of plane stress,
D Gx:O'a Gy:()'b O'Z :O

 Corresponding normal strains,
(o) VO
g, =22 _Y%

E E
1%
VOa , Op

E E

8b=—

| 4 | 4

&c :_E(Ga JrO'b):_l—(“?a +(‘9b)

« Strain perpendicular to the plane of stress
IS not zero.

« If B is located between A and C on the
Mohr-circle diagram, the maximum
shearing strain is equal to the diameter CA.
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Measurements of Strain: Strain Rosette

B

« Strain gages indicate normal strain through
changes in resistance.

- With a 45°rosette, ¢ and &, are measured
directly. x, Is obtained indirectly with,

Vxy = 2€0B _(gx +5y)

« Normal and shearing strains may be
obtained from normal strains in any three
directions,

& = &y c0326?1 + gysinzel + 7xy SIN 61 COS &y

Ep = &y cos? 0 + &y sin 2 0, + yxy Sin 6, C0S 6,

£3 = &y cos? 03+ &y sin 2 03 + yxy SN B3€0S 03
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