
801

CHAPTER OUTLINE

14–1 The Computer System

14–2 Practical Computer System Considerations

14–3 The Processor: Basic Operation

14–4 The Processor: Addressing Modes

14–5 The Processor: Special Operations

14–6 Operating Systems and Hardware

14–7 Programming

14–8 Microcontrollers and Embedded Systems

14–9 System on Chip (SoC)

CHAPTER OBJECTIVES

■ Name the basic units of a computer

■ Name the computer buses and how they are used

■ Discuss the considerations for a practical computer

system

■ Describe the purpose of buffers, decoders, and

wait-state generators in a computer system

■ Define and explain the advantage of DMA

■ Name the basic elements of a microprocessor

■ Describe the basic architecture of a microprocessor

■ Explain basic microprocessor (CPU) operation

■ List and describe some microprocessor addressing

modes

■ Define and describe microprocessor polling,

interrupts, exceptions, and bus requests

■ Discuss the operating system of a computer

■ Explain pipelining, multitasking, and

multiprocessing

■ Describe a simple assembly language program

■ List some typical microprocessor instructions

■ Distinguish between assembly language and

machine language

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

This chapter provides a basic introduction to computers,

microprocessors, and microcontrollers. It gives you a

fundamental coverage of basic concepts related to data

■ CPU

■ Microprocessor

■ Main memory

■ Caching

■ BIOS

■ System bus

■ Signal loading

■ Buffer

■ Wait state

■ Pipelining

■ ALU

■ Program

■ Op-code

■ Operand

■ Interrupt

■ Exception

■ Interrupt vector table

■ Bus master

■ DMA

■ Hardware

■ Software

■ Operating system

■ Multitasking

■ Multiprocessing

■ Machine language

■ Assembly language

■ High-level language

■ Microcontroller

■ System on chip

Data Processing
and Control

14CHAPTER

■ Describe the architecture of a microcontroller and

explain how it differs from a microprocessor

■ Discuss embedded systems

■ Discuss some microcontroller applications

■ Describe a system on chip (SoC)

KEY TERMS

Key terms are in order of appearance in the chapter.

802 Data Processing and Control

processing and control. For the most part, a generic ap-

proach is used to present basic concepts of the topics.

The total computer system with practical considerations

is covered. Various aspects of a microprocessor and

its role as the CPU in computer systems are presented

and programming is briefly discussed. Microcontrollers

and system on chip (SoC) are also introduced, and

some applications are described.

14–1 The Computer System

General-purpose computers, with which most are familiar, and special-purpose computers are

used to control various functions or perform specific tasks in areas such as automotive, con-

sumer appliances, manufacturing processes, and navigation. The general-purpose computer

system, which can be programmed to do many different things, is the focus in this section.

After completing this section, you should be able to

u Describe the basic elements of a general-purpose computer

u Discuss each part of a computer

u Explain a peripheral device

All computer systems work with information, or data, to produce a desired result. To

accomplish this, computer systems must perform the following tasks:

• Acquireinformationfromdatasources,includinghumanoperators,sensors,memory
and storage devices, communication networks, and other computer systems

• Processinformationbyinterpreting,evaluating,manipulating,converting,format-
ting,orotherwiseworkingwithacquireddatainsomeintendedfashionasdirected
by a step-by-step set of instructions called a program

• Provideinformationinameaningfulformtodatarecipients,includinghumanopera-

tors, actuators, memory and storage devices, communication networks, and other

computer systems

Specific sections and components in computer systems accomplish each of these tasks.

Informationprocessingisperformedbythecentralprocessingunit,orCPU,whichisthe
brainofthecomputersystem.TheCPUacquiresinformationthroughtheinputsectionof
the computer system, provides information through the output section, and uses the system

memoryandstoragetostoreandretrieveinformationasneeded.TheCPUtransfersinfor-
mation to and from other sections of the computer system over special groups of signal

lines called buses. Figure 14–1 shows a block diagram of a general-purpose computer

system. Each block will be discussed in terms of its purpose and function.

Control bus

Data bus

Input/Output

ports

Address bus

Memories/Storage:

RAM, ROM, cache,

hard disk

CPU

(microprocessor)

FIGURE 14–1 Basic computer block diagram.

 The Computer System 803

The Central Processing Unit

The central processing unit (CPU) performs much of what is associated with the term

computer.Itexecutestheinstructionsequences(calledprograms) in the computer system,

directly processes much of the data that pass through the computer system, and controls

and coordinates the various sections that make up the computer system. To play such a

largeroleinthecomputersystem,theCPUconsistsoffourseparateunits:thearithmetic
logicunit(ALU),theinstructiondecoder,thetimingandcontrolunit,andtheregisterset.
TheCPUisbasicallyamicroprocessor (or simply processor). A single IC package can

contain two or more processors, forming a multicore processor.

Memory and Storage

Computer systems must have some means of storing and retrieving the information with

which they work and use two types of devices—memory devices and storage devices—to

do so. Although the usage and meanings of the terms can overlap somewhat, they primarily

differ in the construction of the devices and the information they contain. Memory devices

typically are semiconductor devices that store information electronically, interface with

the computer system through the system buses, and contain dynamic information, such as

programsandprogramvariables,thatisfrequentlyaccessedormodified.Storagedevices
typically store information on some physical medium, interface with the system through

a peripheral interface, and contain primarily static information, such as program and data

files,thatisaccessedormodifiedrelativelyinfrequently.Memorydevicesarefasterthan
storage devices; however, memory devices have lower storage capacities and higher cost

per bit than storage devices.

Memory in computer systems can be classified both by the type of memory and the

function it performs. The different types and characteristics of memory were discussed in

Chapter11.Hereweexaminethefunctionalrequirementsofmemoryincomputersystems.

Main Memory

The main memory is the computer system memory that contains programs and data asso-

ciated with them, such as program variables, the program stack, and information the oper-

atingsystemrequirestoexecutetheprogram.Theearliest8-bitprocessors(forexample,
the Intel 8080, Motorola 6800, and InMOS 6502) had 16-bit address buses that could
access 216

= 65,536bytes(64kilobytesor64kB)ofmemory.However,themainmemory
in 8-bit PCs was actually less than this because other devices in the system used part
of the address space.The16-bit computers that followedhad20-bit addressbuses that
could access 220

= 1,048,756bytes(1megabyteor1MB)ofmemory.Moderncomput-
ersrequiregigabytesofmainmemorytosupporttherequirementsoftheirgraphicaluser
interface(GUI)operatingsystemsandapplicationprograms.Mainmemorymustmeetthe
requirementsofalargestoragecapacityataneconomicalpriceandalsoallowthecom-

putersystemtomodifydatawithinit.Becauseoftheserequirements,computersystems
typically use some form of dynamic RAM (DRAM) for main memory that features large

capacity, low cost per bit, and read/write capability.

Cache Memory

Cache memory is memory that computer systems use to overcome the relatively slow

speed of main memory DRAM. Caching is a process that copies frequently accessed
instructions or data from slow main memory into faster cache memory to reduce access

timeandimprovesystemperformance.Becauseoftheserequirements,computersystems
use some form of static RAM (SRAM) for cache memory.

Basic Input/Output System (BIOS) Memory

The design of every computer system differs to some extent from other systems. The basic

input/output system (BIOS) memory contains system-specific low-level code that runs the

804 Data Processing and Control

poweronself-test(POST),installsspecializedsoftwarecalleddriverstoconfigureandpro-

videaccesstothecomputersystemhardware,andloadstheoperatingsystem.TheBIOS
memorymustretainitscontentswhenpowerisremovedsothattheBIOScodeisreadyto
runwhenthecomputerfirstpowersup.Thisrequirescomputersystemstousesomeform
ofnonvolatilememoryforBIOS.

The earliest personal computers used read-only memory (ROM) for BIOS, so any
changetotheBIOSrequiredtheusertoreplacetheROMchip(whichwasoftensocketed)
itself.Latercomputersusedalow-powerCMOSdevicewithaback-upbatterytopreserve
the contents when the system power was shut off. This allowed users to change and save

BIOSsettingswhentheymadechangestosystemhardwareconfiguration.Mostrecently,
computershaveusedEEPROMandflashdevicessothatuserscaneasilyupgradetheBIOS
firmware to the latest revision. Firmware is software programs or data that have been written

intoROM.

Content-Addressable Memory

Computersoftenusespecialized typesofmemory inaddition to those typesmentioned
previously. One specialized type of memory is the content-addressable (or associative)
memory, whose operation differs from that of conventional memory. Conventional mem-

ory returns the data stored at a specified address. Content-addressable memory returns the

address that contains a specified data value. Computers use content-addressable memory

for special data tables that support caching and paging operations.

FIFO

AnotherspecializedtypeofmemoryistheFIFO(first-in,first-out)memory.Conventional
memory, such as SRAM and DRAM, allow computers to store data and to retrieve data

fromanymemorylocationinanyorder.FIFOmemoryreturnsdataonlyintheorderin
which the data were stored. As the acronym FIFO indicates, the first data stored in memory

mustbethefirstdatatakenoutofmemory.ComputersuseFIFOmemoryforspecialdata
structures called queues.Queues temporarilystoredata forwhich thesequenceofdata
must be preserved, such as program instructions.

Input/Output Ports

Input/output(orI/O)portsare interfaces thatallowcomputers to transferdata toand
from external entities such as users, peripherals (such as mice, keyboards, video moni-

tors,scanners,printers,modems,andnetworkadapters),andothercomputers.I/Oports
varygreatlyincomplexityandcapability.AnI/Oportcanbeserialorparallel,operate
as an input, output, or both, and transfer several thousand to several billion bits per

second. Many I/O ports, such as RS-232, USB 3.0, SCSI-5, Firewire, and Ethernet
ports, conform to official or de facto standards to simplify computer system connec-

tions.These standardsareusuallydevelopedby internationalorganizationsand typi-
cally specify not only the type of connectors but also the pin assignments, electrical

signal levels, signal timing, data transmission rates, and communication protocols (i.e.,

theformat,organization,andmeaningofdatapatterns).EIA802,forexample,isthe
international standard for Ethernet communications and IEEE 1394 is the standard for

Firewire. These standards ensure that all devices that comply with the standard will be

able to communicate with each other.

ProcessorssupportI/Oportsandoperationsinoneoftwoways.Onewayismemory-
mappedI/O,inwhichtheprocessortreatsI/Oportsasmemorylocationsandexternalcir-
cuitryconvertsstandardreadandwriteoperationsintoI/Oportaccesses.Thesecondway
isdirectI/O,inwhichspecificprocessorpinsandinstructionsareexclusivelydedicatedto
datainputandoutputoperations.Ineithercase,general-purposeprocessorsrequireaddi-
tional circuitry and program code to implement specific communications standards and

protocols.SpecializedmicrocontrollersliketheMotorolaMC68360andNXPLPC2292
improve on this by incorporating additional circuitry and embedded firmware to support

 The Computer System 805

UART,I2C,Ethernet,CAN,SPIandotherpopularcommunicationstandardsontheirI/O
ports with a minimum of driver coding and external interface circuitry.

System Bus

As you have learned, computers acquire, process, and provide information. Computers
mustbeable (a) to specifywhere toacquireand return information, (b) to transfer the
information from its source to its destination, and (c) to coordinate the movement of data

within the computer system. The mechanism by which the computer accomplishes this is

the system bus, which consists of three component buses: the address bus, the data bus,

and the control bus.

The Address Bus

The address bus is the means by which a processor specifies the system location from

which data are to be read or to which data are to be written. For example, the processor sends

an address code to the memory specifying where certain data are stored. If the address bus

is32bitswide,232or4,294,967,296memorylocationscanbeaccessed.

The Data Bus

The data bus consists of signal lines over which the computer system transfers information

fromonedevicetoanother.Becausetheprocessorcanbothreaddatafromandwritedata
to system devices, each data line is bidirectional. The number of data lines determines the

widthofthedatabus,whichisafactorinhowquicklytheprocessorcanprocessdata.The
earliestmicroprocessorshad4-bitand8-bitdatabuses,butmodernprocessorshave64-bit
data buses.

The Control Bus

The control bus is the collection of signals that controls the transfer of data within the sys-

temandcoordinatestheoperationofsystemhardware.Unliketheaddressanddatabuses,
which consist of functionally identical signals that function as a group, the individual sig-

nals lines that make up the control bus vary in characteristics, nature, and function. Con-

trol signals can be unidirectional or bidirectional, can function individually or with other

controlsignals,canbeactive-HIGHoractive-LOW,canoperatesynchronouslyorasyn-

chronously, and can be edge-oriented or level-oriented. Despite this individual diversity,

computer systems and processor operations are similar enough that the signals that make

up the control bus—read, write, interrupt, and others—are also similar.

A Typical Computer System

TheblockdiagraminFigure14–2showsthemainelementsinatypicalcomputersystem
andhowtheyareinterconnected.Noticethatthecomputeritselfisconnectedwithseveral
peripheral units. For the computer to accomplish a given task, it must communicate with

the “outside world” by interfacing with people, sensing devices, or devices to be controlled

through input and output ports.

Computer Software

In addition to the hardware, a major part of a computer system is the software. The software

makes the hardware perform. The two major categories of software used in computers are

the system software and the application software.

Thesystemsoftwareiscalledtheoperatingsystem(OS)andallowstheusertointerface
withthecomputer.ThemostcommonoperatingsystemsareWindowsandMacOS.Many
other operating systems are used in special-purpose and mainframe computers.

System software performs two basic functions. It manages all the hardware and software

in a computer. For example, the operating system manages and allots space on the hard

disk. System software also provides a consistent interface between applications software

InfoNote

Grace Hopper, a mathematician and

pioneer programmer, developed

considerable troubleshooting skills

as a naval officer working with the

Harvard Mark I computer in the

1940s. She found and documented

in the Mark I’s log the first real

computer bug. It was a moth that

had been trapped in one of the

electromechanical relays inside the

machine, causing the computer

to malfunction. From then on,

when asked if anything was being

accomplished, those working on

the computer would reply that they

were “debugging” the system. The

term stuck, and finding problems

in a computer (or other electronic

system), particularly the software,

would always be known as

debugging.

806 Data Processing and Control

and hardware. This allows an applications program to work on various computers that may

differ in hardware details. The operating system on your computer allows you to have several

programs running at the same time. This is called multitasking.

Application software is used to accomplish a specific job or task, such as word process-

ing, accounting, tax preparation, circuit simulation, graphic design, to name only a very few.

Mouse

Modem

Computer

Control bus

Data bus

Address bus

Monitor Printer

Peripherals

Removable storage:
CDs, CD-RWs

Input/Output
ports

Memories/Storage:
RAM, ROM, cache,

hard disk

CPU

Keyboard

FIGURE 14–2 Basic block diagram of a typical computer system including common

peripherals. The computer itself is shown in the gray block.

SECTION 14–1 CHECKUP

Answers are at the end of the chapter.

 1. Whatarethemajorfunctionalblocksinacomputer?

 2. Whatareperipherals?

 3. Whatisthedifferencebetweencomputerhardwareandcomputersoftware?

 4. Howdoescontent-addressablememorydifferfromconventionalmemory?

 5. Compare and contrast the characteristics of the address, data, and control buses in a

computer system.

14–2 Practical Computer System Considerations

Practicalcomputerdesignsincorporatespecialcircuitrythatresolvesfourissuesthatexistin
real-world systems: shared signal lines, signal loading, device selection, and system timing.

After completing this section, you should be able to

u Identify design considerations for practical computer systems

u Explain the role and operation of buffers, decoders, and wait-state generators in

practical computer systems

 Practical Computer System Considerations 807

Figure 14–3 shows a block diagram of a practical computer system, based on the consid-

eration for shared signal lines, signal loading, device selection, and system timing.

Wait-state

generator

Data acknowledge

Address bus

Data bus

Control bus

Processor
Data

buffer

Data

buffer

System

input/output

(system I/O)

CS

Random-

access

memory

(RAM)

CS

Address

decoder

Data

buffer

Read-only

memory

(ROM)

CS

FIGURE 14–3 Block diagram of a practical computer system.

Shared Signal Lines

Whentheoutputsoftwoormoredevicesconnecttothesamesignalline,thepotentialfor
buscontentionexists.Buscontentionoccurswhendeviceoutputsattempttodriveasignal
line to different voltage levels. This causes high current to flow from one output into the

other, which can damage the devices. Typically, bus contention occurs when device outputs

are at different logic levels. However, even when devices are at the same logic level, the

variation for different devices will cause some device output voltages to be higher than oth-

ers so that bus contention will occur. Two special types of output, the tri-state output and

open collector output, allow devices to share signal lines, while avoiding bus contention.

The term tri-stateisaregisteredtrademarkofNationalSemiconductorbutisoftenused
interchangeably with the generic terms three-state or 3-state. As the name suggests, the tri-

state output adds a third output state, called the high-impedance or high-Z state, to the usual

logicLOWandHIGHstates.Thetri-stateswitchiseffectivelyaswitchthatdisconnects
the output of the tri-state device from the signal line so that it does not interfere with other

devicesfromdrivingtheline.Whenatri-statedeviceisenabled,itoutputsalogicLOW
orHIGHasotherdigitaldevices.Whenatri-statedeviceisdisabled,theoutputassumes
thehigh-Zstateandtheoutputissaidtobetri-stated.Whentri-stateoutputsshareasignal
line, only one output at a time must be enabled to ensure that bus contention will not occur.

Figure 14–4 shows the operation of tri-state outputs.

Devices that are designed to connect to processor buses, such as memory and interface

devices, typically have tri-state outputs built into them. Devices that do not have tri-state

outputs or open-collector outputs must use tri-state buffers to connect to buses.

808 Data Processing and Control

Signal Loading and Buffering

Digital outputs are affected by the inputs of the devices to which they connect. There is a

limit to the number of digital inputs that the outputs can reliably drive; this limit is called

the device fan-out.Whenthenumberofinputsexceedsthefan-outofanoutputdevice,
the operation of that output device may not meet the specified voltages or timing for that

device. The issue of inputs affecting the performance of an output to which they are con-

nected is called signal loading. To avoid problems with signal loading, special digital

devices called buffers are used to ensure that device fan-outs are not exceeded. A buffer is

a special circuit that isolates the output of a device from the loading effects of other devices.

Figure14–5illustratestheuseofbufferstopreventthenineinputdevicesfromexceed-

ingtheeight-loadfan-outoftheoutputdevice.Notethatuptoseveninputdevicescould

Input Output Output

Enable

Input

Enable

Tri-state circuit

enabled

Tri-state circuit

disabled

Logic

circuit

Logic

circuit

FIGURE 14–4 Logic devices with tri-state outputs.

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Output

device

Fan-out

= 8 loads

(a) Nine input device loads exceed

 8-load fan-out of output device

(b) Buffering of output device prevents signal loading

Buffer

Fan-out = 8 loads

Buffer

Fan-out = 8 loads

Output

device

Fan-out

= 8 loads

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

Input

device

1 load

FIGURE 14–5 Buffers are used to prevent overloading of driving device.

 Practical Computer System Considerations 809

have been connected directly to the output device and a single buffer used to connect the

remaining input devices. This would have reduced the parts count, but one characteristic of

buffers is that each buffer will increase the propagation delay. If a single buffer were used,

the response of the input devices connected to the buffer would be slower than that of the

inputdevicesconnecteddirectlytotheoutputdevice.Usingtwobuffersasshownhelps
match the propagation delay to all the input devices.

ThebuffersshowninFigure14–5aresimplenoninvertingbuffers,whichmeansthatthe
buffer output signal is identical to the buffer input signal. There are other types of buffers

to ensure that devices will not degrade the performance of a device to which they are con-

nected. These buffers include tri-state buffers like those mentioned previously, inverting

buffers that invert the input signal, bidirectional buffers that can pass information through

the buffer in both directions as on the data bus, and Schmitt triggers. A Schmitt trigger is a

special device that helps prevent logic devices from acting erratically due to system noise

affecting slowly changing inputs.

Device Selection

TheprocessorusestheaddressbustoaccessROM,RAM,hardwareI/Oports,andother
systemdevices.Aquestionthatnaturallyarisesishowadeviceknowswhentheprocessor
is attempting to access it rather than some other system device. The answer is that these

devices have a special input, usually called a chip select (CS) or chip enable (CE), that

enablesthedevice.Whentheprocessormustaccessaspecificdevice,itmustassertthe
select line of the intended device.

While in theory processors could provide separate control lines to select system
devices, this is not practical for general-purpose computers because there is no way for

the system designers to know what devices a system will contain. Instead, system design-

ersusePLDsordedicatedhardwaredecoders,similartothatinFigure14–6,todecode
processor addresses and generate the device select lines. For this example, the processor

usesa16-bitaddressbuswheretheupper(mostsignificant)fourbitsareusedtogenerate
device select outputs.

Device select outputs

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

D

C

B

A

Device address

from address bus

FIGURE 14–6 Address decoding for the purpose of device selection.

810 Data Processing and Control

System Timing

A final issue with practical computer systems is system timing. In a computer system, the

processor signals must meet the setup and hold times for each peripheral so that data are

properly stored and accessed. As you have seen, decoding logic or buffers in the system

can slow the processor signals. In some cases, the processor runs much faster than the

peripherals that are available; in other cases, fast peripherals are available but their cost

prohibits designers from using them. In addition, some peripherals, such as SRAM, are

inherently faster than others, such as DRAM, so the signal timing that meets the setup and

hold times for some devices will not meet the setup and hold times for others. To resolve

this issue, three different types of system buses can be used: synchronous, asynchronous,

and semisynchronous.

Synchronousbusesincludeasynchronizingclocktoensurethatsignalsfromthepro-

cessor meet the setup and hold times of the peripheral. Synchronous buses are faster than

asynchronous or semisynchronous buses.

Asynchronous buses will automatically insert wait states in a bus cycle until a signal

indicates that the bus cycle can finish. A wait state holds the state of the bus signals

foroneprocessorclockcycleso that thereadorwriteoperation is“frozen”forone
clock period when the processor is accessing memory or other devices that are slow

to respond. Several wait states may be necessary. Computer CPUs run at very high
speeds, while memory technology does not seem to be able to catch up. Typical pro-

cessorsliketheIntelCore2andtheAMDAthlon64X2runwithaclockofseveral
GHz,whilethemainmemoryclockgenerallyisintheseveralhundredtoover1000
MHzrange.Evensomesecond-levelCPUcachesrunslowerthantheprocessorcore.
Inordertominimizetheuseofwaitstates,whichslowthecomputerdown,techniques
suchasCPUcaches,instructionpipelines,instructionprefetch,andsimultaneousmul-
tithreading are used.

Semisynchronous buses are similar to asynchronous buses except that a semisyn-

chronous bus will complete the bus cycle unless a signal indicates that the processor

shouldnotcompletebuscycle.Untiltheprocessorcancompletethecycle,itwillinsert
wait states.

Memory and other peripheral devices do not, as a rule, have signals indicating when

data are ready. The signals that instruct the processor to insert wait states must be

generated by an additional logic circuit, called a wait-state generator, which can be

basically a programmable timer or shift register. The wait-state generator is clocked

by the same clock as the processor and enabled by the device select line for a specific

memory or other device. After the wait-state generator is enabled by the device select

line, it will generate a ready signal after a specific number of clock cycles. Figure 14–7

showsan8-bitparallel-in/serial-outshiftregistercircuitthatcaninsertuptosixwait
states for an asynchronous processor by delaying the ready signal to the processor by

up to six clock cycles.

Device select
Ready

Processor clock

D7

LD/SH
SEROUT

CLK

VCC

D6 D5 D4 D3 D2 D1 D0

FIGURE 14–7 A wait-state generator programmed for one wait state.

 Practical Computer System Considerations 811

Solution

The initial pattern loaded into the shift register is 111011112. This shifted pattern for

each clock and the corresponding number of wait states are

Clock1(0waitstates):111101112

Clock2(1waitstate):111110112

Clock3(2waitstates):111111012

Clock 4 (3 wait states): 111111102

OnthefourthclockafterDeviceselectgoesLOW,themostsigniicantbitof the
SEROUTlinefortheshiftregistergoesLOW.ThiscausestheReadyoutputtogo
LOW,terminatingthebuscycle.Therefore, thewait-stategenerator insertsthree

wait states.

Related Problem*

WhichdatainputlineoftheshiftregistermustbetiedLOWforthewait-stategenerator
inFigure14–8toinsertivewaitstates?

EXAMPLE 14–1

Forthewait-stategeneratorinFigure14–8,howmanywaitsstateswillbegenerated
whenthedeviceisselected?

Device select
Ready

Processor clock

D7

LD/SH
SEROUT

CLK

VCC

D6 D5 D4 D3 D2 D1 D0

FIGURE 14–8

*Answers are at the end of the chapter.

SECTION 14–2 CHECKUP

 1. Define bus contention and discuss types of devices used to prevent it.

 2. Howdoesaprocessorenablevariousdevices?

 3. Define wait state and give its purpose.

 4. Whatisthepurposeofabuffer?

The circuit of Figure 14–7, which inserts wait states for a single device, can be

expanded to support more than one device. If two or more devices have the same number

ofwaitstates,theirdeviceselectlinescanbeANDedtogether(assumingtheselectlines
areactive-LOW).

812 Data Processing and Control

Microprocessor

Register
set

Instruction
decoder

Arithmetic
logic unit

(ALU)

Timing/

Control unit

FIGURE 14–9 Elements of a

microprocessor (CPU).

Control bus

to ALU and other units

A

B

C

X

General-purpose registers

Address register

Address bus Data bus

Index register

Program counter

Data register

Accumulator

Timing and

control unit
Flag register

Instruction

decoderStack pointer

ALU

FIGURE 14–10 Basic model of a simplified processor.

14–3 The Processor: Basic Operation

Asyouhavelearned,amicroprocessorformstheCPUofacomputersystem.Amicropro-

cessor is a single integrated circuit that consists of several units, each designed for a specific

job.The specificunits, theirdesignandorganization, arecalled thearchitecture (do not

confuse the term with the VHDL element). The architecture determines the instruction set

and the process for executing those instructions.

After completing this section, you should be able to

u Namethefourbasicelementsofamicroprocessor

u Describe the fetch/execute cycle

u Explain the read and write operations

The four basic elements that are common to all microprocessors are the arithmetic logic

unit (ALU), the instructiondecoder, theregisterset,andthe timingandcontrolunit,as
shown in Figure 14–9.

Figure14–10showsasimpleblockdiagramofamicroprocessor.Theelementsshown
are common to most processors, although the internal arrangement or architecture and com-

plexityvary.Thisgenericblockdiagramofan8-bitprocessorwithasmallregistersetis
usedtoillustratefundamentaloperation.Today,processorshavedatabusesthatare64bits.

 The Processor: Basic Operation 813

The Fetch/Execute Cycle

Whenaprogramisbeingrun,theprocessorgoesthrougharepetitivecycleconsistingoftwo
fundamentalphases,asshowninFigure14–11.Onephaseiscalledfetch and the other is

called execute. During the fetch phase, an instruction is read from the memory and decoded

by the instruction decoder. During the executephase,theprocessorcarriesoutthesequence
of operations called for by the instruction. As soon as one instruction has been executed, the

processor returns to the fetch phase to get the next instruction from the memory.

Start Fetch Execute

FIGURE 14–11 The fetch/execute cycle of a processor.

Stage 2 of

execution idle

Stage 3 of

execution idle

2nd instruction

Stage 1 of

execution

Stage 2 of

execution idle

Stage 3 of

execution idle

1st instruction

Stage 2 of

execution

Stage 1 of

execution idle

Stage 3 of

execution idle

2nd instruction

Stage 2 of

execution

Stage 1 of

execution idle

Stage 3 of

execution idle

1st instruction

Stage 3 of

execution

Stage 1 of

execution idle

Stage 2 of

execution idle

2nd instruction

Stage 3 of

execution

Stage 1 of

execution idle

Stage 2 of

execution idle

(a) Nonpipelined execution of a program showing three

 stages of execution

First instruction

in program goes

through three

stages of

execution before

the next

instruction starts

execution.

Second instruction

in program goes

through three

stages of

execution before

the next

instruction starts

execution.

1st instruction

Stage 1 of

execution

Stage 2 of

execution idle

2nd instruction

Stage 1 of

execution

1st instruction

Stage 2 of

execution

3rd instruction

Stage 1 of

execution

2nd instruction

Stage 2 of

execution

4th instruction

Stage 1 of

execution

3rd instruction

Stage 2 of

execution

Stage 3 of

execution idle

Stage 3 of

execution idle

1st instruction

Stage 3 of

execution

2nd instruction

Stage 3 of

execution

First

instruction

complete

(b) Pipelined execution of a program showing three stages

1st instruction

Stage 1 of

execution

FIGURE 14–12 Illustration of pipelining.

Pipelining

Atechniquewherethemicroprocessorbeginsexecutingthenextinstructioninaprogram
before the previous instruction has been completed is called pipelining. That is, several

instructions are in the pipeline simultaneously, each at a different processing stage.

Typically, a pipeline is divided into stages or segments, and each stage can execute its

operationconcurrentlywiththeotherstages.Whenasegmentcompletesanoperation,it
passes the result to the next segment in the pipeline and fetches the next operation from the

preceding segment. The final results of each instruction emerge at the end of the pipeline

inrapidsuccession.Figure14–12isasimplifiedillustrationofnonpipelinedprocessing
compared to pipelined processing using three stages of execution.

814 Data Processing and Control

As shown in the figure, in nonpipelined processing of a program, one instruction at a

time is executed through all of its stages before the next instruction begins execution. As

you can see in part (a), all the stages of execution are idle (gray) except the one that is active

(red). In pipelined processing, as soon as one instruction has finished an execution stage,

thenextinstructionbeginsthatstage.Pipeliningresultsinmuchshorteroverallexecution
times.Oncethepipelineis“full,”therearenoidleprocessingstages.

Processor Elements

ALU

This part of the processor contains the logic to perform arithmetic and logic operations.

Data are transferred into the ALU from the accumulator and from the data register. For the

modelinFigure14–10,theaccumulatoranddataregisterare8-bitregistersthatholdone
byteofdata.EachbytetransferredintotheALUiscalledanoperand because it is operated

onbytheALU.Asanexample,Figure14–13showsan8-bitnumberfromtheaccumulator
beingaddedtoan8-bitnumberfromthedataregister.Theresultofthisadditionoperation
(sum) is put back into the accumulator and replaces the original operand that was stored

there.WhentheALUperformsanoperationontwooperands,theresultalwaysgoesinto
the accumulator to replace the previous operand.

Operand A = 310 Operand B = 510 Sum = 810

Accumulator Accumulator Data register

0000010100000011

Data register

00000101

ALU ALU

ADD

00001000

(a) ALU adds 011 and 101. (b) The sum 1000 is put into the accumulator.

FIGURE 14–13 Example of the ALU adding two operands.

As demonstrated in Figure 14–13, one function of the accumulator is to store an operand

priortoanoperationbytheALU.Anotherfunctionistostoretheresultoftheoperation
after it has been performed. The data register temporarily stores data that is to be put onto

the data bus or that has been taken off of the data bus.

Instruction Decoder and Timing/Control Unit

An instruction is a binary code that tells the processor what it is to do. An orderly arrange-

ment of many different instructions makes up a program. A program is a step-by-step

procedure used by the processor to carry out a specified task.

The instruction decoder within the processor decodes an instruction code that has been

transferred on the data bus from the memory. The instruction code is commonly known as

an op-code.Whentheop-codeisdecoded,theinstructiondecoderprovidesthetimingand
control unit with this information. The timing and control unit can then produce the proper

signalsandtimingsequencetoexecutetheinstruction.

Register Set

Processorstypicallyhavetwocategoriesofregistersfortemporarystorageofdata:general-
purpose registers and special-purpose registers. General-purpose registers are used to

 The Processor: Basic Operation 815

store any type data that may be required by a program. Special-purpose registers are
dedicated to a specific function. Some typical special-purpose registers are described

as follows.

Flag register This register is sometimes called a condition code register or status reg-

ister. It indicates the status of the contents of the accumulator or certain other conditions

withintheprocessor.Forexample,itcanindicateazeroresult,anegativeresult,theoccur-
rence of a carry, or the occurrence of an overflow from the accumulator.

Program counter Thiscounterproducesthesequenceofmemoryaddressesfromwhich
the program instructions are taken. The content of the program counter is always the mem-

ory address from which the next byte is to be taken. In some processors, the program coun-

ter is known as the instruction pointer.

Address register This register temporarily stores an address from the program counter

in order to place it on the address bus. As soon as the program counter loads an address

into the address register, it is incremented (increased by 1) to the address of the next

instruction.

Stack pointer The stack pointer is a register that is mainly used during program subrou-

tines and interrupts. It is used in conjunction with the memory stack.

Index register The index register is used as one means of addressing the memory in a

mode of addressing called indexed addressing.

The Processor and the Memory

The processor is connected to a memory with the address bus and data bus. Also, there are

certain control signals that must be sent between the processor and the memory, such as

the read and write controls. The address bus is unidirectional so the address bits go only

one way, from the processor to the memory. The data bus is bidirectional, so data bits are

transferred between the processor and memory in either direction. This is illustrated in

Figure 14–14.

Address

bus

Control

bus
Data bus

Processor

Memory

FIGURE 14–14 A processor and memory.

The Read Operation

To transfer data from the memory to the processor, a read operation must be performed,

asshowninFigure14–15,usingan8-bitdatabusanda16-bitaddressbusforillustration.
To start, the program counter contains the address of the data to be read from the memory.

This address is loaded into the address register and placed onto the address bus. The pro-

gramcounteristhenincremented(advancedbyone)tothenextaddressandwaits.Once
the address code is on the bus, the processor timing and control unit sends a read signal to

the memory. At the memory, the address bits are decoded and the desired memory location

is selected. The read signal causes the contents of the selected address to be placed on the

816 Data Processing and Control

data bus. The data are then loaded into the data register to be used by the processor, com-

pleting the read operation. In this illustration, each memory location contains one byte of

data.Whenabyteisreadfrommemory,itisnotdestroyedbutremainsinthememory.This
process of “copying” the contents of a memory location without destroying the contents is

called nondestructive read.

The Write Operation

To transfer data from the processor to the memory, a writeoperationisrequired,asillus-

tratedinFigure14–16.Adatabyteheldinthedataregisterisplacedonthedatabus,andthe
processor sends the memory a write signal. This causes the byte on the data bus to be stored

at the memory location selected by the address code. The existing contents of that particular

memory location are replaced by the new data. This completes the write operation.

READ

Memory

Memory

address

decoder

0

1

2

3

4

5

6

10001100

Data register

10001100

Address register

00000000000000101

2

1

1

Address 510 is placed on address bus and followed by the read signal.

Contents of address 510 in memory is placed on data bus and stored in data register.2

FIGURE 14–15 Illustration of the read operation.

1 Address code for address 610 is placed on address bus.

Data are placed on data bus and followed by the write signal. Data are stored at address 610 in memory.2

WRITE

Memory

Memory

address

decoder

0

1

2

3

4

5

6 10001101

1

2

Address register

00000000000000110

Data register

10001101

FIGURE 14–16 Illustration of the write operation.

 The Processor: Addressing Modes 817

Roles of the CPU

TheCPUhasthreemajorrolesinacomputersystem.ThefirstroleoftheCPUistocontrol
thesystemhardware.Specifically,theCPUdetermineshowdatamovethroughthecom-

puter system, which devices are active, and when specific operations and data transactions

occur.Incomputers,someofthiscontrolisdecentralizedbyassigningsometasks(such
as peripheral access and communications and graphics processing) to devices that can per-

formthosetasksmorequicklyandefficientlythantheCPUitself.Evenso,theCPUstill
coordinates the operation of the computer system as a whole.

Thesecondroleof theCPUis toprovidehardwaresupportfor theoperatingsystem
software. The first computers were large mainframes that were too expensive to devote

to a single user or program. The operating systems allowed these computers to support

multipleusersandprograms,buttheyrequiredspecialhardwaretoensurethatusersand
programs would not accidentally or deliberately interfere with each other. As the operat-

ing systems in personal computers evolved from single-user single-application platforms

to multitasking and multiprocessing systems, the microprocessors have incorporated the

featuresrequiredtosupportthem.
ThethirdroleoftheCPUistoexecuteapplicationprograms.TheCPUaccessesthe

system hardware and controls the flow of data through the system largely because some

applicationprogramrequiresthatitdoso.Thisrolegreatlyinfluencedthedevelopment
of many early complex instruction set computing (CISC) microprocessors. Reduced

instruction set computing (RISC) processors emphasize smaller and more efficient
instruction sets than those in CISC processors and place the burden of high-level pro-

gramming support on the compilers, which are programs that convert the source code

written by programmers to executable code that is executed by the processor.

SECTION 14–3 CHECKUP

 1. Describe the fetch/execute cycle.

 2. Namethefourelementsinamicroprocessor.

 3. WhatistheALUanditspurpose?

 4. Whathappensduringareadoperation?

 5. Whathappensduringawriteoperation?

14–4 The Processor: Addressing Modes

A processor must address the memory to obtain data or store data. There are several ways

in which the processor can generate an address when it is executing an instruction. These

ways are called addressing modes and they provide for wide programming flexibility. Each

instruction in a processor’s instruction set generally has a certain addressing mode associ-

ated with it. The type and number of addressing modes vary from one processor to another.

In this section, five common addressing modes are discussed, and generic instructions are

used for illustration.

After completing this section, you should be able to

u Explain inherent addressing

u Explain immediate addressing

u Explain direct addressing

818 Data Processing and Control

u Explain indexed addressing

u Explain relative addressing

Inherent Addressing

Inherent addressing is sometimes known as implied addressing. The one-byte instructions

usingthismodegenerallyrequirenooperand,ortheoperandisimpliedbytheop-code,
which is a mnemonic form of an instruction. An operand is the object to be manipulated

by the instruction. For example, an instruction used to clear the accumulator (CLRA) has

animpliedoperandofallzeros.Theimpliedall-zerosoperandendsupintheaccumula-

toraftertheinstructionisexecuted.Anotherexampleisahaltorwaitinstruction(WAI),
whichrequiresnooperandbecauseitsimplytellstheprocessortostopalloperations.The
sequencethattheprocessorgoesthroughinhandlinganinstructionwithinherentaddress-

ing is illustrated in Figure 14–17. The op-codes used for illustration are similar to the op-

codes of a typical processor.

READ

WAI op-code

WAITiming/

Control unit

Memory

Memory

address

decoder

Data

register

0

1

2

3

4

5

6 00111110

00111110

Address of

WAI op-code

Instruction

decoder

1
2

4
3

Address register

00000000000000110

1 Address code (610) is placed on address bus.

Data are placed on data bus and stored in data register by the read signal.2

3 Instruction is decoded.

Timing/Control unit stops processor operation.4

FIGURE 14–17 Fetch/execute cycle for the wait (WAI) instruction. This illustrates

inherent addressing.

Immediate Addressing

Immediate addressing is used in conjunction with two-byte instructions where the first

byte is the op-code and the second byte is the operand. The load accumulator (LDA)

and the add to accumulator (ADDA) instructions are two examples that use immediate

addressing.

 The Processor: Addressing Modes 819

The LDA immediate op-code is stored in one memory address, and the operand is stored

in the address immediately following the op-code. That is, the op-code and operand are

at consecutivememoryaddresses.When theLDA immediate instruction is fetchedand
executed, it tells the processor to get the contents of the next memory location (operand)

andloaditintotheaccumulator,asillustratedinFigure14–18.

Direct Addressing

For an instruction using direct addressing, the first part is the op-code and the second part

is the address of the operand, not the operand itself. For example, the LDA instruction uses

direct addressing as well as immediate addressing. LDA direct has a different op-code than

LDA immediate. Let’s assume each part is one byte for simplicity.

READ

Memory

First fetch/Execute cycle

Second fetch/Execute cycle

Memory

address

decoder

0

1

2

3

4

5

6

7

10000110

00000110

Timing/

Control unit

Program

counter

Address

register
Data register

Accumulator

LDA

immediate

op-code

Operand

Address of

operand

Address of

op-code

Instruction

decoder

LDA

immediate

10000110/00000110

00000110
0000001/00000010

00000001/0000010

1 Address of LDA immediate op-code (110) is placed on address bus.

LDA immediate op-code is placed on data bus and stored in data register by the read signal.2

3 LDA instruction is decoded.

Timing/Control unit initiates a read operation to fetch the operand.4

Address of operand (210) is placed on address bus.5

Operand is placed on data bus and stored in data register by the read signal.6

Operand is loaded into accumulator.7

5

1

4
3

6

2

7

FIGURE 14–18 Illustration of immediate addressing. The process steps are numbered in

sequence, and the cycle operations are color-coded.

820 Data Processing and Control

The LDA direct instruction is used to illustrate direct addressing. Figure 14–19

showstheLDAdirectinstructioninmemoryaddresses1and2.Thefirstbyteisthe
op-code,andthesecondbyteistheoperandaddress.WhentheLDAdirectinstruction
is fetched and executed, it tells the processor to load the accumulator with the operand

located at the memory address specified by the second byte of the instruction. The

process is illustrated in Figure 14–19.

READ

Memory

10000110

10001001

Timing/

Control unit

Address

register
Data

register

Accumulator

LDA direct

op-code

Operand address
Address of

operand

address

Operand

address

Address of

op-code

Instruction

decoder

LDA

direct

Operand

6

00000001/0000010/00000110

First fetch/Execute cycle

Second fetch/Execute cycle

Third fetch/Execute cycle

1 Address of LDA direct op-code (110) is placed on address bus.

LDA direct op-code is placed on data bus and stored in data register by the read signal.2

3 LDA instruction is decoded.

Timing/Control unit initiates a read operation to fetch the address of the operand.4

Address of operand address (210) is placed on address bus.5

Operand address is placed on data bus and stored in data register by the read signal.6

Operand address (610) is loaded into address register.7

Operand address (610) is placed on address register.8

Operand is placed on data bus and loaded into data register.9

Operand is loaded into accumulator.10

10

98

7

5

1

3
4

Program counter

0000001/00000010 10001001

10000110/00000110/10001001

Memory

address

decoder

0

1

2

3

4

5

6

7

00000110

2

FIGURE 14–19 Illustration of direct addressing.

Indexed Addressing

Indexed addressing is used in conjunction with the index register. An instruction using

indexedaddressingconsistsoftheop-codeandtheoffsetaddress.Whenanindexedinstruc-

tion is executed, the offset address is added to the contents of the index register to produce

 The Processor: Addressing Modes 821

anoperandaddress.InFigure14–20theLDA(loadaccumulator)instructionisagainused
to illustrate indexed addressing.

Relative Addressing

Relative addressing is used by a class of instructions known as branch instructions.

Basically,abranchinstructionallowstheCPUtogobackorskipaheadforaspecified
number of addresses in a program instead of going to the next address in sequence.
Branching instructions are used to form program loops. For a relative addressing
instruction (branch instruction), the first byte is the op-code and the second byte is the

relativeaddress.Whenabranch instruction isexecuted, the relativeaddress isadded
to the contents of the program counter to form the address to which the program is

READ

ADD

Index register

Address register

Address of

op-code

Address of

offset address

Address of

operand

Data

register
LDA

indexed

op-code

Offset address

ALU

Instruction

decoder
LDA

indexed

Accumulator

Operand

Memory

address

decoder

00000101

101001100

1

2

3

4

5

12 11001001

8

1

5

9

2

3 11

4

7

7

00000111

00000000/00000001/00001100

11001001

10100110/00000101/11001001

First fetch/Execute cycle

Second fetch/Execute cycle

Third fetch/Execute cycle

1 Address of LDA indexed op-code (010) is placed on address bus.

LDA indexed op-code is placed on data bus and stored in data register by the read signal.2

3 LDA indexed instruction is decoded.

Timing/Control unit initiates a read operation to fetch the address of the operand.4

Offset address (510) is selected at address 110.5

Offset address is placed on data bus and stored in data register by the read signal.6

Offset address is added to contents of index register (710) by the ALU to produce address of operand (1210).7

Address of operand (1210) is loaded into address register.8

Address of operand is placed on address bus.9

Operand is placed on data bus and stored in data register by the read signal.10

Operand is transferred into accumulator.11

10

6

FIGURE 14–20 Illustration of indexed addressing.

822 Data Processing and Control

Address register
Data

register

BRA relative

Relative address

BRA

op-code

Instruction

decoder

00000001/0000010/00000111 READ

Memory

address

decoder

00000101

00100000

0

1

2

3

4

5

6

7

Address of

op-code

Address of

relative

address

Branch

address

5

Memory

First fetch/Execute cycle

Second fetch/Execute cycle

1 Address of BRA relative op-code (110) is placed on address bus.

BRA op-code is placed on data bus and stored in data register by the read signal.2

3 BRA instruction is decoded.

Program count is transferred to ALU and address register.4

Address of relative address (210) is placed on address bus.5

Relative address (510) is placed on data bus and stored in data register by the read signal.6

Relative address is transferred to ALU.7

Program count and relative address are added by ALU and resulting branch address (710) is

placed in address register.

8

Program branches to specified address (710).9

9

1

4

8

3

7

2

6

ALU

ADD

0000001/00000010

Program counter

10000110/00000101

FIGURE 14–21 Illustration of relative addressing (branching).

tobranch.Figure14–21 illustrates relativeaddressingusingabranchrelativealways
(BRA) instruction that can branch both forward or backward. Forward branching is
shown.

SECTION 14–4 CHECKUP

 1. List five types of addressing.

 2. Whatisanop-code?

 3. Whatisanoperand?

 4. Explain branching.

 The Processor: Special Operations 823

14–5 The Processor: Special Operations

During normal operation the CPU fetches instructions from system memory, and these
instructions are decoded by the instruction decoder. Each decoded instruction affects the

operationofthetimingandcontrolunit,whichinturnsynchronizestheoperationofthe
CPU,systembuses,andsystemcomponentstoexecutetheinstruction.Inthissection,spe-

cific CPU operations (polling, interrupts, exceptions, and bus requests) that occur when
special circumstances or events arise that preempt normal processor operation are discussed.

After completing this section, you should be able to

u Define polling

u Define the terms interrupt and exception

u Describe the process by which a processor responds to and services an interrupt

u Explain how an interrupt service routine differs from a subroutine

u Explainwhycomputersystemsusebusrequests

A computer runs programs that limit what the computer is permitted to do and how it

will respond to situations that arise. Some situations are predictable and others are not.

Even when a situation is predictable, just when it will occur may not be. As an example,

every word processor program must respond to input from a keyboard, but the program

cannot predict just when someone will press a key.

Polling

OnetechniquetodealwithunpredictableeventsistohavetheCPUpoll,orrepeatedlycheck,
thekeyboard.Thesameoccursforotherperipheraldevicesthatmayrequireattentionfrom
theCPU.EachtimetheCPUpollsadevice,itmuststoptheprogramthatitiscurrentlypro-

cessing,gothroughthepollingsequence,provideserviceifneeded,andthenreturntothe
point where it left off in its current program. This process is inefficient and is suitable only

fordevicesthatcanbeservicedatregularandpredictableintervals.Figure14–22illustrates
polling,wheretheCPUsequentiallyselectseachperipheraldeviceviathemultiplexertosee
if it needs service.

Interrupts and Exceptions

A more efficient approach than polling is to have the processor perform its normal opera-

tionsanddeviatefromthemonlywhensomespecialeventrequirestheprocessortotake
special action to handle it. Some sources use the term exceptionforanyeventthatrequires
specialhandlingbytheprocessor.Othersourcesuseexception, software interrupt (SWI),

or trap for an event due to software and interrupt or hardware interrupt (HWI) for an event

duetohardware.Wewilluseinterrupt to refer to a hardware event and exception for a

softwareeventthatrequiretheCPUtodeviatefromitsnormaloperation.
When the processor receives an interrupt or an exception, it finishes executing

the current instruction and then runs a special sequence of instructions called an
interrupt service routine (ISR) or exception handler. An ISR similar to calling a stan-

dard programsubroutinebutwith three importantdifferences.Becausetheproces-

sor cannot know when an interrupt will occur, it automatically saves on the register

stack status information about the program that is executing at the time the interrupt

or exception occurs. The information includes the contents of the condition code

register as well as the address of the next instruction to be executed when the ISR

is finished. Sometimes the accumulator and condition code register, which make up

the program status word, are both saved. The ISR must save on the stack any other

824 Data Processing and Control

registers it may use to ensure that the interrupted process will not be affected when

it resumes executing.

Secondly, the processor obtains the address of the ISR based on the specific inter-

rupt or exception that occurs. In some systems, a programmable interrupt controller

(PIC) provides the address of the ISR over the data bus when the processor acknowl-

edgesaninterruptrequest.Othersystemsuseautovectoredinterrupts thatobtain the
address for each interrupt from entries in an interrupt vector table stored in memory.

Each vector, or ISR address, in the table specifies the starting address of an ISR. The

programmer must write the ISRs and place the starting address for each in the correct

location of the interrupt vector table. If no ISR exists for an entry in the vector inter-

rupt table, or if the interrupt vector table is not properly initialized, interrupts and
exceptions can cause the processor to behave erratically, “hang” (stop responding), or

“crash” (abort and restart).

A third difference is that the ISR uses a special return from interrupt (RTI) instruc-

tion, which restores the additional status information as well as the address of the next

instruction. RTI is used rather than a standard return from subroutine (RET) instruction,

which restores only the address of the next instruction, to exit and return processor

controltotheinterruptedprocess.BeforeexecutingtheRTIinstruction,theISRmust
restore any registers it saved on the stack.

Specific interrupts and exceptions vary with each processor, but the following list describes

some typical ones.

Reset This is sometimes called a cold boot. A cold boot completely restarts the system

sothattheprocessorrunsthepoweronself-test(POST),initializesthehardware,loads

I/O port
2

I/O port
3

I/O port
1OM

I/O port

n

Address bus

Data bus

Control bus

Peripheral
1

READY

Peripheral
2

READY

Peripheral
3

READY

Peripheral
n

READY

. . .

CPU

Multiplexer

Select

RAM R

FIGURE 14–22 Basic concept of CPU polling peripheral devices.

 The Processor: Special Operations 825

Bus Request Operations

The device in a computer that drives the address bus and the bus control signals is called

the bus master.Inasimplecomputerarchitecture,onlytheCPUcanbebusmaster,which
meansthatallcommunicationsbetweenI/OdevicesmustinvolvetheCPU.Morecomplex

RA I/O port
n

Address bus

Data bus

. . .

Interrupt request lines

* INTA – Interrupt
acknowledge

 I

PIC M ROM
I/O port

2
I/O port

3
I/O port

1

Peripheral
1

Peripheral
2

Peripheral
3

Peripheral
n

CPU

INTA* NTR

FIGURE 14–23 Basic concept of interrupt control.

the hardware drivers and operating system, and performs all other tasks necessary to

prepare the system for operation.

Software reset This is a software exception and is sometimes called a warm boot. This

alsorestarts thesystembutbypassesmanyofthehardwareinitializationtasksper-
formed by a cold boot.

Divide by zero This is a software exception and occurs when the processor attempts to

divideanumberbyzero.

System timer This is a hardware interrupt and occurs when a special timer asserts a

signalindicatingthataspeciiedtimeintervalor“timetick”(suchas1/60thofasec-

ond) has elapsed since the last occurrence.

Unrecognized instruction This is a hardware interrupt that occurs when the instruction

decoder determines that the value it contains is not a valid instruction.

As the above list shows, ISRs must perform a variety of tasks. Just what the ISR does

canbeascomplexorsimpleastheprogrammerdesires.Figure14–23showsthebasiccon-

cept of interrupts where a device called a programmable interrupt controller (PIC) is used

tomonitorperipheraldevicesforinterruptrequestsandsendtheappropriateaddresstothe
CPUsoitcantaketherequiredaction.

826 Data Processing and Control

architecturesallowotherdevices(ormultipleCPUs)totaketurnsatcontrollingthebus.
For example, a network controller card can be used to access a disk controller directly

whiletheCPUperformsothertasksthatdonotrequirethebus.Anydevicecanplacedata
onthedatabuswhentheCPUreadsfromthatdevice,butonlythebusmasterdrivesthe
address bus and control signals.

Although processors operate at high speeds, they are not always efficient at transfer-

ringdata.Whenaprocessortransfersdatafromonedevicetoanother,itmustuseabus
cycle to read in the data from the source device and use another bus cycle to write the

data back out to the destination device. The overhead in reading data into the processor

andwritingitoutagaingreatlyslowsdatatransfers.Thebusrequestoperationallows
other bus masters to take control of the system buses and rapidly transfer data between

system devices.

Bus request operations are similar to interrupts and exceptions but differ in three
importantways.Busrequestoperationsdonotcomplete thecurrent instructioncycle
before proceeding. Instructions can take hundreds or even thousands of clock cycles,

andthecircumstancesthatgeneratedthebusrequestmaybetoourgenttobedelayed.
Forexample,aCDdrivemaybeon thevergeofabufferunderrunandrequiredata
immediately to refill the buffer, or a memory controller may need to immediately refresh

the system DRAM to prevent data from being lost. Interrupts and exceptions allow

the processor to complete the current instruction cycle before processing the interrupt

or exception.

Secondly,inabusrequestoperation,theprocessorpassescontrolofthesystembuses
totherequestingdevice,whichthenhandlesallbusoperations.Theprocessorcontinuesto
execute instructions in the ISR or exception handler during interrupts.

Athirddifferenceisthatoncetheprocessorgrantsthebusrequestandrelinquishesthe
systembuses,theprocessorcannotregaincontrolofthesystemuntiltherequestingdevice
relinquishescontrolortheprocessorisreset.Thesequenceofeventsduringabusrequest
operation is as follows:

 1. Thebusmasterrequestingcontrolofthesystembusessubmitsarequestbyasserting
theprocessor’sbusrequest(BR)line.

 2. The processor tri-states the system buses and signals that it has released control of

thebusesbyassertingthebusgrant(BG)line.

 3. Therequestingbusmasterusesthesystemaddress,data,andcontrollinestotransfer
data between system devices.

 4. Aftercompletingthedatatransfers,therequestingbusmastertri-statesthesystem
busesandsignalstheendofthebusrequestoperationbyassertingthebusgrant
acknowledge(BGACK)line.

Direct Memory Access (DMA)

OneimportantclassofbusmasteristheDMA (direct memory access) controller. These

devices are designed specifically to transfer large amounts of data between system devices

inafractionofthetimethatthesystemprocessorwouldrequire.ToutilizeaDMAcon-

troller, the processor first writes the starting source address, starting destination address,

and number of bytes to transfer to registers within the DMA controller. The processor

next enables the transfer by writing to a control register within the controller, which then

initiatesthebusrequestoperation.ComputersystemstypicallyuseDMAcontrollersto
transfer data between memory and hardware peripherals, such as when loading a program

or data file from a hard drive to memory or when transferring a message from system

memory to the transmit buffer of an Ethernet controller. DMA controllers can also move

 The Processor: Special Operations 827

data between memory devices, for example, when moving data from main memory to

cache memory.

DMA speeds up data transfers between RAM and certain peripheral devices. Basi-
cally,DMAbypasses theCPU for certain typesofdata transfers, thus eliminating the
timeconsumedbynormalfetchandexecutecyclesrequiredforeachCPUreadorwrite
operation. Transfers between the disk drive and RAM are particularly suited for DMA

because of the large amount of data and the serial nature of the transfers. Generally, the

DMAcontrollercanhandledatatransfersseveraltimesfasterthantheCPU.Figure14–24
showsacomparisonofadatatransferhandledbytheCPU(parta)andonehandledby
the DMA (part b).

FIGURE 14–24 Illustration of DMA vs CPU data transfer.

Data bus

Memory read I/O write

CPU

RAM I/O port

Data bus

DMA
controller

I/O port

CPU

RAM

(b) Data transfer handled by the DMA controller

(a)DatatransferhandledbytheCPU

Busmastersother thanDMAcontrollersalsousebus requestoperations.Processors
inmultiprocessorsystemsusebusrequestoperationstoaccesssharedmemoryandother
systemresources.Memorycontrollersusebusrequestoperationstoperformbackground
memory operations, such as refreshing DRAM and ensuring that the data in main memory

and cache memory are consistent.

Figure 14–25 shows a computer system block diagram with a DMA controller and
aPIC.

828 Data Processing and Control

Read-only

memory

(ROM)

CS

CS

CS

CS
ACK RQ

Address bus

Data

buffer

Control

buffer

Random

access

memory

(RAM)

Interrupts

System

input/output

(system I/O)

PIC

Address

decoder

Wait-state

generator

0
1
2
3
4
5
6
7

BR
BG

BGACK

IRC
IACK

Processor

CS

BR
BG
BGA/CK

DMA

controller

Data bus

Control bus

Address

buffer

FIGURE 14–25 Block diagram of a typical computer.

14–6 Operating Systems and Hardware

Each computer system consists of two main components. The microprocessor, memories,

interface circuits, peripherals, power supplies, and other electronic components make up

what is collectively referred to as computer hardware. The programs that the microproces-

sor executes and that control the computer system are collectively referred to as computer

software.Onegeneralruleisanythinginacomputersystemthatyoucanphysicallytouch
is hardware, and anything that you can’t physically touch is software.

After completing this section, you should be able to

u Explain the three basic duties of an operating system

u Discuss how an operating system functions in a computer system

SECTION 14–5 CHECKUP

 1. Compare and contrast exceptions and interrupts.

 2. Compareandcontrastbusrequestsandinterrupts.

 3. Define and explain the purpose of direct memory accesses.

 Operating Systems and Hardware 829

u Compare and contrast the difference between multitasking and nonmultitasking

operating systems

u Differentiate between multitasking and multiprocessing

u Identify and discuss the issues presented by multitasking

Operating System Basics

The operating system(OS)ofacomputerisaspecialprogramthatestablishestheenvi-
ronment in which application programs operate. The operating system provides the func-

tional interface between application programs in the system, called processes, and the

computerhardware.Becausetheoperatingsystemmustworkcloselywiththecomputer
hardware, it is often written in assembly language or programming language with low-level

hardware support, such as C++.

An operating system increases the overall complexity of a computer system, but using an

operating system offers a number of advantages over running stand-alone application pro-

grams.Theoperatingsystemtestsandinitalizeshardwareinthecomputersystem,eliminat-
ingtheneedforeachapplicationtoduplicatethesefunctions.Operatingsystemsalsoprovide
a standard computing environment so that applications can execute consistently. Finally,

operating systems provide system services that allow applications access to commonly used

systemresources(suchasthereal-timeclock,I/Oports,anddatafiles),whichsimplifythe
code for applications programs. A drawback of operating systems is that processes may exe-

cute more slowly; accessing system resources through an operating system can take longer

than a program accessing them directly. An operating system has three basic duties.

 1. Toscheduleandallocatesystemresources(CPUtime,memory,accesstosystem
peripherals)

 2. To protect system processes and resources (preventing accidental or deliberate cor-

ruptionofprocesscodeanddata,unauthorizedaccesstohardwareandmemory)

 3. To provide system services (messaging between processes, low-level hardware

 drivers)

Multiple Processes

Computers can run multiple processes in two basic ways. The first way, called multitask-

ing, shares a single-core processor among multiple processes. The processor runs more

than one process but switches between them so that each process uses only part of the

processor’savailabletime.Multitaskingsystemsusedifferenttechniquestodecidewhen
toswitchbetweenprocesses.Onetechniqueallowsaprocesstorununtilitmustwaitfor
some event, such as a keypress, before it can continue and switches to another process that

is ready to run.Another technique, calledpreemptive multitasking, allows each process

to run for a specific amount of time before the operating system switches to another pro-

cess.Athirdtechnique,callednon-preemptive multitasking, allows a process to run until

itvoluntarilyrelinquishestheprocessortoanotherprocess.Figure14–26illustrateshowa
single-core processor multitasks.

Program 1

Program 2

Processing

program 1

Processing

program 2

Time slice 1 Time slice 2 Time slice 3 Time slice 4

Total time

Processing

program 1

Processing

program 2

Single-core processor

FIGURE 14–26 Simplified model of processor multitasking.

830 Data Processing and Control

The second way for a computer system to run multiple processes, called multiprocessing,

uses multiple processors, each of which can either multitask or run a single process.

Figure14–27illustratestheconceptofmultitaskedmultiprocessing.

Program 1

Program 2

Program 3

Program 4

Processing

program 3

Processing

program 1

Processing

program 2

Time slice 1 Time slice 2 Time slice 3 Time slice 4

Processing

program 1

Processing

program 2

Processing

program 4

Processing

program 3

Processing

program 4

FIGURE 14–27 Multitasked multiprocessing in a multicore processor.

Supervisor and User States

It is difficult for multiple users or processes to coexist in a computer system if processes have

unrestrictedaccesstosystemresources.Onceaprocesstakescontroloftheprocessorandis
running, it can modify or disable any software or hardware in the system that exists to control

it. The solution to this is to restrict what the process can access. Some processors use the

user/supervisor state bit so only trusted code, like the operating system, can run under certain

circumstances. For multiprocess or multiuser systems, the processor executes in supervisor

state when it first powers up, while the operating system is running, and when the processor

respondstoaninterrupt.Whentheoperatingsystemloadsandtransferscontroltoanapplica-

tion program, it first clears the user/supervisor state bit. This places the process in user state

and prevents it from accessing restricted parts of the computer system’s hardware or software.

Memory Management Unit

Onedeviceinthecomputersystemthathasnotyetbeendiscussedisthememorymanage-

ment unit, or MMU. Memory management units are very sophisticated logic devices that

handle many details associated with accessing memory in computer systems, including

memory protection, wait-state generation, address translation for handling virtual memory,

andcachecontrol.Asanexample,considerasimplifiedMMUthatsimplyprovidesmem-

oryprotection.TheprocessorcanprogramtheMMUwiththestartandendaddressesof
amemoryrange.TheMMUthenactsasacomparator.IftheMMUdetectsavalueonthe
address bus that is less than the programmed start address or greater than the programmed

end address, it will generate a hardware interrupt to the processor.

System Services

Operatingsystemsprovidesystemservicesthatallowapplicationsaccesstocommonlyused
system resources. This is essential for allowing processes to interact and communicate with

each other to share information, coordinate operations, and otherwise function in unison.

Interprocess communication uses software interrupts (also called traps).Whenoneprocess
wishestoutilizeasystemservice,itloadsspecificregisterswithvaluesandtheninvokesa
specific trap to pass control to the operating system’s exception handler for that trap.

When the process executes the trap, the processor enters supervisor mode; and the
exceptionhandlerusestheregistercontentstofulfilltherequestedservice.If,forexample,
therequestedservicewastosendseveralbytesfromoneprocesstoanother,theexception
handler would use the starting address of the data and the number of data bytes contained

in the processor registers to copy the data from the user memory of the source process to

 Programming 831

the user memory of the destination process. It would then load a condition code indicating

that the service had been completed successfully (or failed) in one of the processor registers

andwouldreturnprocessorcontroltotherequestingprocess.
Whenprocessesaremeanttointeractwithotherprocesses,theyeachmustbecarefully

designed to ensure that messages are passed at the right time and in the right order and that

theprocessescanrecoverfromcommunicationerrors.Otherwise,oneprocessmaybelieve
that it has sent out a valid message and await a response, while the intended destination

process is waiting for the first process to send a message to which it can respond. The result

is that neither process can proceed.

SECTION 14–6 CHECKUP

 1. Whatarethethreebasicdutiesofanoperatingsystem?

 2. Compare and contrast multitasking and multiprocessing.

 3. Describe how a memory management unit prevents one process from accessing the

memory space of another process.

 4. Explain how an operating system permits two processes to exchange information.

14–7 Programming

Assembly language is a way to express machine language in English-like terms, so there is

a one-to-one correspondence. Assembly language has limited applications and is not por-

table from one processor to another, so most computer programs are written in high-level

languages such as C++,JAVAandBASIC.High-levellanguagesareportableandtherefore
can be used in different computers. High-level languages must be converted to the machine

language for a specific microprocessor by a process called compiling.

After completing this section, you should be able to

u Describe some programming concepts

u Discuss the levels of programming languages

Levels of Programming Languages

A hierarchy diagram of computer programming languages relative to the computer hard-

wareisshowninFigure14–28.Atthelowestlevelisthecomputerhardware(CPU,mem-

ory,diskdrive,input/output).Nextisthemachine language that the hardware understands

becauseitiswrittenwith1sand0s(remember,alogicgatecanrecognizeonlyaLOW(0)
or a HIGH (1). The level above machine language is assembly language where the 1s and

0sare representedbyEnglish-likewords.Assembly languagesareconsidered low-level
because they are closely related to machine language and are machine dependent, which

means a given assembly language can only be used on a specific microprocessor.

The level above assembly language is high-level language, which is closer to human

language and further from machine language. An advantage of high-level language over

assembly language is that it is portable, which means that a program can run on a variety of

computers. Also, high-level language is easier to read, write, and maintain than assembly

language.Most system software (e.g.,Windows), and applications software (e.g.,word
processors and spreadsheets) are written with high-level languages.

Assembly Language

Toavoidhavingtowriteoutlongstringsof1sand0storepresentmicroprocessorinstruc-

tions, English-like terms called mnemonics or op-codes are used. Each type of micro-

processor has its own set of mnemonic instructions that represent binary codes for the

832 Data Processing and Control

instructions. All of the mnemonic instructions for a given microprocessor are called the

instruction set. Assembly language uses the instruction set to create programs for the micro-

processor; and because an assembly language is directly related to the machine language

(binary code instructions), it is classified as a low-level language. Assembly language is

one step removed from machine language.

Assembly language and the corresponding machine language that it represents is spe-

cific to the type of microprocessor or microprocessor family. Assembly language is not

portable; that is, you cannot directly run an assembly language program written for one

type of microprocessor on another type of microprocessor. For example, an assembly pro-

gram for the Motorola processors will not work on the Intel processors. Even within a

given family different microprocessors may have different instruction sets.

An assembler is a program that converts an assembly language program to machine

languagethatisrecognizedbythemicroprocessor.Also,programscalledcross-assemblers

translate an assembly language program for one type of microprocessor to an assembly

language for another type of microprocessor.

Assembly language is rarely used to create large application programs. However,

assembly language is often used in a subroutine (a small program within a larger pro-

gram) that can be called from a high-level language program. Assembly language is

useful in subroutine applications because it usually runs faster and has none of the

restrictions of a high-level language. Assembly language is also used in machine con-

trol, such as for industrial processes. Another area for assembly language is in video

game programming.

Conversion of a Program to Machine Language

All programs written in either an assembly language or a high-level language must be

convertedintomachinelanguageinorderforaparticularcomputertorecognizethepro-

gram instructions.

Assemblers

An assembler translates and converts a program written in assembly language into machine

code,as indicated inFigure14–29.The termsource program is often used to refer to

a program written in either assembly or high-level language. The term object program

refers to a machine language translation of a source program.

 Assembly language

• English-like terms representing
binary code

• Machine dependent

 High-level language

• Closer to human language
• Portable

Computer hardware (the “machine”)

• CPU
• Memory (RAM, ROM)
• Disk drives
• Input/Output

Machine language

• Binary code (1s and 0s)
• Machine dependent

FIGURE 14–28 Hierarchy of programming languages relative to computer hardware.

 Programming 833

Assembly language
program

(Source program)
Assembler

Machine language
program

(Object program)

FIGURE 14–29 Assembly to machine conversion using an assembler.

High-level language

program

(Source program)

Compiler

Machine language

program

(Object program)

FIGURE 14–30 High-level to machine conversion with a compiler.

All high-level languages, such as C++, will run on any computer. A given high-level

language is valid for any computer, but the compiler that goes with it is specific to a partic-

ulartypeofCPU.ThisisillustratedinFigure14–31,wherethesamehigh-levellanguage
program (written in C++ in this case) is converted by different machine-specific compilers.

Computer 1
Object program
(machine code)

C++
Source program

Computer 2
Object program
(machine code)

Computer 3
Object program
(machine code)

Compiler
Computer 1 with

CPU A

Compiler
Computer 2 with

CPU B

Compiler
Computer 3 with

CPU C

FIGURE 14–31 Machine independence of a program written in a high-level language.

Example of an Assembly Language Program

For a simple assembly language program, let’s say that we want the computer to add a list

of numbers from the memory and place the sum of the numbers back into the memory. A

zeroisusedasthelastnumberinthelisttoindicatetheendofthelistofnumbers.Thesteps
requiredtoaccomplishthistaskareasfollows:

 1. Clear a register (in the microprocessor) for the total or sum of the numbers.

 2. Pointtotheirstnumberinthememory(RAM).

 3. Checktoseeifthenumberiszero.Ifitiszero,allthenumbershavebeenadded.

 4. Ifthenumberisnotzero,addthenumberinthememorytothetotalintheregister.

 5. Pointtothenextnumberinthememory.

 6. Repeatsteps3,4,and5.

Compilers

A compiler is a program that compiles or translates a program written in a high-level language

andconvertsitintomachinecode,asshowninFigure14–30.Thecompilerexaminestheentire
sourceprogramandcollectsandreorganizestheinstructions.Everyhigh-levellanguagecomes
with a specific compiler for a specific computer, making the high-level language independent

of the computer on which it is used. Some high-level languages are translated using what is

called an interpreter that translates each line of program code to machine language.

834 Data Processing and Control

Aflowchartisoftenusedtodiagramthesequenceofstepsinacomputerprogram.Fig-

ure14–32showstheflowchartfortheprogramrepresentedbythesixsteps.

YesIs number
= zero?

No

Point to first
number.

Initialize total
to zero.

End
Add number

to total.

Point to next
number.

Start

FIGURE 14–32 Flowchart for adding a list of numbers.

The working portion of the assembly language program implements the addition prob-

lemshownintheflowchartinFigure14–32.Twooftheregistersinthemicroprocessor
arenamedeaxandebx.Thecommentsprecededbyasemicolonarenotrecognizedbythe
computer; they are for explanation only.

 mov eax,0 ;Replaces the contents of the eax

register with zero.

 ;Register eax will store the total of

the addition.

 mov ebx, OFFSET NumArray ;Places memory address of NumArray

into the ebx register.

next: cmp dword ptr [ebx],0 ;Compares the number stored in the ebx

register to zero.

 jz done ;If the number in the ebx register is

zero, jump to “done”.

 add eax,[ebx] ;Add the number in the ebx register to

the eax register.

 add ebx, 4

 jmp next

done: mov [ebx],eax

 call WriteInteger ;WriteInteger utility by Floyd to view

integer values

 exitProg ;exitProg utility provided by Floyd

utility to end the executable

 Programming 835

Depending on the assembler, most programs in assembly language will have a num-

ber of assembler directives that are used by the assembler to do a variety of tasks. These

tasks include setting up segments, using the appropriate instruction set, describing data

sizes,andperformingmanyother“housekeeping”functions.Tosimplifytheexplana-

tion, only two directives were shown in the preceding program. The directives were

word ptr,whichisusedtoindicatethesizeofthedatapointedtobytheebxregister,
andOFFSET.

EXAMPLE 14–2

Write the instructions for anassembly languageprogram thatwillind the largest
unsigned number in the data and place it in the last position. Assume the last data point

issignaledwithazero.

Solution

The flowchart is shown in Figure 14–33.

YesIs number
> BIG?

No

Point to first
number.

Initialize BIG

to zero.

Point to
next number.

Last
number?

Yes

End

Replace BIG

with number.

No

FIGURE 14–33 Flowchart. The variable BIG represents the largest value.

The data are assumed to be the same as before. The program listing (with comments)

is as follows:

 mov eax,0 ;initial value of BIG is in the eax

register

 mov ebx,OFFSET NumArray ;point to the location in memory where

the data are stored

836 Data Processing and Control

Types of Instructions

The programs in this section only show a few of the hundreds of variations of instruc-

tions available to programmers. Generally, an instruction set can be divided into categories,

which are described here.

Data Transfer

ThemostbasicdatatransferinstructionMOVwasintroducedintheexampleprograms.
TheMOVinstruction,forexample,canbeusedinseveralwaystocopyabyte,aword
(16 bits), or a double word (32 bits) between various sources and destinations such as
registers,memory,andI/Oports.(AbettermnemonicforMOVmighthavebeen“COPY”
becausethisiswhattheinstructionactuallydoes.)Otherdatatransferinstructionsinclude
IN(getdatafromaport),OUT(senddatatoaport),PUSH(copydataontothestack,a
separateareaofmemory),POP(copydatafromthestack),andXCHG(exchange).

Arithmetic

There are a number of instructions and variations of these instructions for addition,

subtraction, multiplication, and division. The ADD instruction was used in both exam-

ple programs. Other arithmetic instructions include INC (increment), DEC (decre-

ment),CMP(compare),SUB(subtract),MUL(multiply),andDIV(divide).Variations
of these instructions allow for carry operations and for signed or unsigned arithmetic.

These instructions allow for specification of operands located in memory, registers,

andI/Oports.

Bit Manipulation

This group of instructions includes those used for three classes of operations: logical

(Boolean)operations,shifts,androtations.ThelogicalinstructionsareNOT,AND,OR,
XOR,andTEST.Anexampleofa shift instruction isSAR(shiftarithmetic right).An
exampleofarotateinstructionisROL(rotateleft).Whenbitsareshiftedoutofanoper-
and, they are lost; but when bits are rotated out of an operand, they are looped back into

the other end. These logical, shift, and rotate instructions can operate on bytes or words

in registers or memory.

next: cmp dword ptr [ebx],eax ;is the data point larger than BIG?

 jbe check ;if the data point is smaller, go

to “check”

 mov eax, [ebx] ;otherwise, put the new largest data

point in eax

check: add ebx,4 ;point to the next number in memory

(four bytes per word)

 cmp dword ptr [ebx], 0 ;test for the last data point

 jnz next ;continue if the data point is not

a zero

 mov [ebx], eax ;save BIG in memory

 call WriteInteger ;WriteInteger utility by Floyd to

view integer values

 exitProg ;exitProg utility provided by Floyd

utility to end the executable

Related Problem

Explainhowyoucouldchangethelowcharttoindthesmallestnumberinthelist
instead of the largest.

 Programming 837

Loops and Jumps

Theseinstructionsaredesignedtoalterthenormal(oneaftertheother)sequenceofinstruc-

tions. Most of these instructions test the processor’s flags to determine which instruction should

beprocessednext.InExample14–2,theinstructionsJBEandJNZwereusedtoalterthepath.
OtherinstructionsinthisgroupincludeJMP(unconditionaljump),JA(jumpabove),JO(jump
overflow),LOOP(decrementtheCXregisterandrepeatifnotzero)andmanyothers.

Strings

A string is a contiguous(oneaftertheother)sequenceofbytesorwords.Stringsarecom-

mon in computer programs. A simple example is a sentence that the programmer wishes

to display on the screen. There are five basic string instructions that are designed to copy,

load, store, compare, or scan a string—either as a byte at a time or a word at a time. Exam-

plesofstringinstructionsareMOVSB(copyastring,onebyteatatime)andMOVSW
(copy a string, one word at a time).

Subroutine and Interrupts

A subroutine is a miniprogram that can be used repeatedly but programmed only once. For

example,ifaprogrammerneedstoconvertASCIInumbersfromakeyboardtoaBCDfor-
mat,asimpleprogrammingstructureistomaketherequiredinstructionsaseparateprocess
and “call” the process whenever necessary. Instructions in this group include CALL (begin

the subroutine) and RET (return to the main program).

Processor Control

This is a small group of instructions that allow direct control of some of the processor’s

flags and other miscellaneous tasks. An example is the STC (set carry flag) instruction.

High-Level Programming

The basic steps to take when you write a high-level computer program, regardless of the

particular programming language that you use, are as follows:

 1. Determine and specify the problem that is to be solved or task that is to be done.

 2. Create an algorithm; that is, develop a series of steps to accomplish the task.

 3. Express the steps using a particular programming language and enter them on the

software text editor.

 4. Compile (or assemble) and run the program.

A simple program will show an example of high-level programming. The following

C++ program implements the same addition problem defined by the flowchart in Figure

14–32andimplementedusingassemblylanguage.

int total = 0; //Initialize the total to zero.

int *number = NumArray; //Initialize a pointer to the array of integers.

while (*number != 0x00) //Loop while the value is not found. The

 //asterisk preceding the pointer identifier

 //number says the contents of the

 //memory location pointed to by the

 //Identifier number are being evaluated.

{

 total = total + *number; //Accumulate summation of total

 number++; //Increment pointer to next number in memory

}

cout << total; //C++ cout statement used to view integer value

838 Data Processing and Control

ThisC++programisequivalenttotheassemblyprogramthataddsaseriesofnumbers
and produces a total value.

 int total = 0; mov eax, 0

 int *number = NumArray; mov ebx, OFFSET NumArray

 while (*number != 0x00) next: cmp DWORD PTR [ebx], 0

 jz done

 {

 total = total + *number; Equivalent add eax, [ebx]

 number++; add ebx, 4

 }

 jmp next

 cout << total; mov [ebx], eax

 done: mov [ebx], eax

[C++]

 call WriteInteger

 Assembly

SECTION 14–7 CHECKUP

 1. Define program.

 2. Whatisanop-code?

 3. Whatisastring?

14–8 Microcontrollers and Embedded Systems

Although a general-purpose microprocessor can interface with a variety of devices over its

system buses, its ability to interface with the real world is limited. Most general-purpose

microprocessors must use analog-to-digital converters (ADCs), digital-to-analog convert-

ers(DACs),universalasynchronousreceiversandtransmitters(UARTs)andothercom-

munication controllers, peripheral interface adapters (PIAs), external timers, and other
specialized peripherals to process real-world information. Microcontrollers are used in
microprocessor-controlled applications called embedded systems that perform a specific

setof tasksand incorporateboth thehardwareand firmware required toperform them.
Embeddedsystemsincludepersonalelectronicdevicessuchascellphones,MP3players,
and calculators as well as consumer and industrial products as microwave ovens, auto-

mated assembly systems, and robots.

After completing this section, you should be able to

u Describe the general architecture of microcontrollers

u Discuss the types of peripherals found in common microcontrollers

u Describe how microcontroller peripherals are configured

u Describe how microcontrollers are used in various embedded systems

Microcontroller Basics

A special type of processor, called a microcontroller, sometimes abbreviated as mC or

MCU, combines a microprocessor core, memory, and common peripherals in a single
package.Microcontrollerscanrangeincomplexityfromsimpledeviceswithafewdozen
pins to very complex devices with hundreds of pins. A common aspect of all these processors

 Microcontrollers and Embedded Systems 839

is that the design of each seeks to incorporate all the elements of a microprocessor system

into a single package. A microcontroller will typically include the following functional

units:

• Amicroprocessor(calledtheprocessorcore)

• Nonvolatilememoryforprogramcode,deviceconigurationdata,andsimilardata
that must be preserved when power is removed

• RAMforprogramdata,internalregisters,peripheraldevicebuffers,andotherdata
storage

• Peripheraldevicessuchastimers,ADCs,DACs,communicationcontrollers,andI/O
ports

• Internalbusestoconnecttheprocessorcoretointernalmemory

• Internal buses to connect the processor core and internal memory to peripheral
devices

• Interfacecircuitrytoconnectthemicrocontrollerwithexternaldevices

In addition to the above list of microcontroller features, more sophisticated microcon-

trollers can also include the following:

• Aphase-lockedloop(PLL)tomultiplyalow-frequencyexternalclocktoahigher
internalfrequency,increasingthespeedofmicrocontrolleroperation

• DMAcontrollerstoimprovedatatransferbetweeninternalmemoryandperipheral
devices

• Programmablelogicresources,or“fabric”,toimplementcustomfunctions

• AJTAGinterfacetosupportdevicetestingandprogramming

• Specialpowermodesforlow-powerandstandbyoperation

Figure 14–34 shows a simplified block diagram of a typical microcontroller.

Microcontroller

Peripheral bus

A
d
d
re

ss
 b

u
s

D
at

a
b
u
s

C
o
n
tr

o
l

b
u

s

Processor

core

Address bus

Control bus

Data bus
Signal

connection

RAM

ROM

Address bus

Data bus

Control bus

Peripheral I/O

Peripheral I/O

Peripheral

Peripheral

External

bus

controller

FIGURE 14–34 Simplified microcontroller block diagram.

Microcontroller Peripherals

Microcontrollers feature a wide variety of peripherals. Manufacturers select the type

and number of peripherals, as well as the types and amounts of internal memory, to

meettherequirementsofspecificapplications,suchascommunication,automotive,and

840 Data Processing and Control

 motion-control products. For example, microcontrollers that target communication appli-

cations will include a wide variety and number of communication controllers (such as

Ethernet, I2C,USB,andUART)tosupportthetransmissionandreceptionofdatausing
multiple protocols. In contrast, microcontrollers meant for motion-control applications,

such as robotic assemblies, will include ADCs, DACs, encoders, and pulse width modula-

tors(PWMs)forpositionsensingandmotorfeedbackandcontrol.
Many pins on microcontrollers are multifunctional. This not only helps to reduce the

total pin count and cost of the device but also limits the functions that can be used at the

sametime.ThedatasheetmaystatethatacommunicationsmicrocontrollerhasfourUSB
controllers,twoUARTcontrollers,anEthernetcontroller,anexternalmemoryinterface,
and80general-purposeI/O(GPIO)lines,butitisunlikelythatadesigncanuseallofthese.
A pin on a communications microcontroller, for example, might serve as a transmit line for

USBcommunications,aclear-to-signallineforUARTcommunications,atransmitlinefor
Ethernet communications, an address line for the external bus controller, or a general-pur-

poseI/O(GPIO)pin;butitcanbeconfiguredforonlyonefunctionatatime.Sinceappli-
cations rarely can change pin functions “on the fly,” the circuit design permanently assigns

the function of each microcontroller pin. If the circuit designer must use a set of pins for an

external memory interface but also needs other functions that those pins provide, she either

must find those functions on other pins (which is why microcontrollers offer more than one

instance of a type of peripheral) or use external circuits to provide those functions.

The following describes some of the more common types of peripherals on micro-

controllers.

General-Purpose I/O (GPIO) General-purposeI/Opinsaretypicallythedefaultfunc-

tion for many microcontroller pins. As the name suggests, these pins can be configured as

input or outputs to read or write data, either as individual bits (for serial transfer of data)

orgroupsofbits(forparallertransferofdata).TypicalapplicationsforGPIOlinesareto
read individual switches, to drive LED indicators, or to select or enable latches or buffers.

Communication Controllers Communication controllers allow microcontrollers to com-

municate with other devices using specific communication protocols. Some standard com-

municationprotocolsareuniversalasynchronousreceiveandtransmit(UART),Ethernet,
universalserialbus(USB),inter-integratedcircuit(IICorI2C),serialperipheralinterface
(SPI),controllerareanetwork(CAN),andhigh-leveldatalinkcontrol(HDLC).Because
the timing, flow control, and data format of these protocols vary so widely, configuring

communication controller functions is typically much more involved than for other periph-

eral functions.

Timers Microcontroller timers can have multiple uses. These include setting the fre-

quencyforacommunicationcontroller,indicatingwhenapresettimeintervalhaselapsed,
determining the elapsed time between two events, and providing a periodic time tick for a

system real-time clock.

ADCs and DACs ADCs and DACs are the means by which digital circuits interact with

an analog world. As you know, digital circuits must use a limited set of values to represent

a continuous range of analog data. Microcontrollers use ADCs to convert analog voltage

and current measurements from sensors into digital values for processing and use DACs to

convert digital values into analog voltages and currents to control electric and electronic

circuits.

Quadrature Encoders Quadrature encoders are used to determine the speed, direc-

tion, and position of a moving object, such as a computer mouse or a stepper motor. A

quadratureencoderrepresentsthepresentpositionofatrackedobjectwithaGraycode
sequence.Whentheobjectmoves,theGraycodevaluechanges.Eachchangewillincre-

ment or decrement a counter to represent a positive or negative change in position. For

example,asystemcouldusethesequence00 S 01 S 11 S 10 S 00 to represent a posi-

tivechangesothatthesequence00 S 10 S 11 S 01 S 00 would represent a negative

change. The counter value represents the position of the tracked object in the physical

 Microcontrollers and Embedded Systems 841

system relative to the starting point or origin of the tracked object; how fast the counter

value changes reflects the speed of the tracked object. Quadrature encoders typically use

32-bitorlargercounterstopreventanunderfloworoverflowconditionthatwouldmake
it seem that the tracked device suddenly changed from a maximum or minimum position

orviceversa.Trackedobjectsrequireoneencoderforeachdimensionofmovement.An
object that moves in one dimension, such as a sliding door, needs only one encoder to

track movement along the line of travel. An object that moves in two dimensions, such as a

computermouse,requirestwoencoderstotrackmovementintheplaneoftravel.Objects
thatmoveinthreedimensions,suchassomeroboticassemblies,requirethreeencodersto
track movement in the space of travel.

Pulse Width Modulators As you know, a pulse width modulator modulates, or varies,

the pulse width of a repetitive digital signal to change the signal’s duty cycle (i.e., the

ratioofthetimethatasignalisHIGHtotheperiodofthesignal).Pulsewidthmodulators
are often used in motor control. Although motor controller circuits can use the amplitude

of winding current to set the speed of some motors, a more typical approach is to keep

the amplitude of the applied winding current constant and vary the duty cycle to control

the speed. Microcontrollers can precisely control the duty cycle to accurately set the

motor’srunningspeed.Also,microcontrollerscanchangethedutycycleveryquicklyin
response to the effects of motor speed due to line or load variations to maintain a constant

running speed.

External Memory Controllers Although most microcontrollers contain internal ROM,
RAM,EEPROM,flash,andothermemoryforcode,data,andotherprograminformation,
someapplicationsrequiremorememorythanamicrocontrollercontains.Consequently,many
microcontrollers feature external memory controllers that permit interfacing the microcon-

troller to external memory devices. Some microcontrollers do not contain any internal mem-

ory, so external memory must be used. External memory controllers often feature decoded

chipselectlinesthatallowprogrammerstoconfigurethesizeofthememoryrange,theport
size(8-,16-,or32-bits),andthenumberofwaitstatesforeachselectline;theycancontain
memory management units that provide memory protection for multitasking applications.

External memory devices are typically limited to SRAM, SDRAM, flash, and other memory

typesthatdonotrequirespecialbusoperations,asdoDRAMandEEPROM.

Configuring Peripherals

Microcontroller peripherals must be configured so that they operate the way an applica-

tionrequiresthemtodo.Configuringmeansloadingspecificregistersassociatedwiththe
peripheral with values that control the function and operation of the peripheral. The reg-

ister and values vary with each peripheral, but the registers fall into the general categories

describednext.Dependinguponthenumberofbitsrequiredtoconfiguresomeaspectof
aperipheral,somecategoriesmayshareoneregister,whileothersmayrequiremultiple
registers to contain the necessary information.

Control Registers Control registers determine how the peripheral will function. For some

peripherals a control register may select the specific peripheral as well as the characteristics

for that peripheral. For example, the control registers for a communication controller could

specifythespecificcommunicationprotocolandthedatarate,datapacketsize,errordetec-

tion method, and operating mode (interrupt-driven or polled).

Status Registers Status registers contain information about how the peripheral is oper-

ating and conditions associated with peripheral operation. Applications use status reg-

isters to detect errors, determine when the peripheral has completed some task, and

decidewhenconditionsrequiresomespecialhandling.Themicrocontrollermayauto-

matically clear some status bits when firmware corrects a detected condition, while in

other cases firmware may need to manually clear some status bits. For example, if an

ADC sets the end-of-conversion status bit to indicate it has completed converting an

analog value, reading the converted value from the ADC data register may automatically

842 Data Processing and Control

clear the bit; firmware may need to specifically clear the status bit to allow the ADC to

perform another conversion.

Data Registers Data registers contain information that the peripheral processes in some

way. The value in a data register can be data for the peripheral to process, data processed

by the peripheral, or data currently being processed. The contents of data registers might

not change unless firmware changes them, or operation of the peripheral may automati-

callyupdatethem.Forexample,theinitializationregisterforatimercontainstheinitial
count value that is loaded into the timer and may not change unless firmware writes a new

value into the register. In contrast, the timer’s count register holds the actual value of the

timer and may update each time the counter is clocked. Some peripherals have only a few

configuration registers.

The GPIO pins typically have only two registers: a control register that determines
whether a pin is an input or output and a data register that contains the signal level of

thepin.Otherperipheralscanhavemanymoreregisters.Acommunicationcontroller,for
example, can have a control register to specify the communication parameters, a status

register to monitor the operation of the controller, a transmit buffer descriptor register to

specify the memory locations of data to be transmitted, a transmit length register to specify

the number of bytes to transmit, a receive buffer descriptor register to specify the memory

locations at which received data are to be stored, a receive length register to indicate the

number of bytes received, an interrupt status register to signal communication events during

reception and transmission, and an interrupt mask register to prevent or allow recognition

ofcommunicationevents.Whenconfiguringmicrocontrollerperipherals,theprogrammer
must carefully read the user manual and understand not only the operation of each periph-

eral he intends to use but also which configuration registers must be programmed and the

configuration values to use.

As the number of products using microcontrollers has grown, manufacturers and

third-party vendors have visual development and evaluation tools to simplify the pro-

cess of programming microcontrollers. Many tools now allow programmers to use drop-

down lists, check boxes, and other visual controls to generate C or C++initialization
code by specifying the peripherals they wish to use and how the peripherals should oper-

ate.While this isconvenientandshortensdevelopment time,errorsarestillpossible.
Programmersshouldalwaysreviewthecodetoverifyitmatcheswhattheyexpected.

Microcontrollers in Embedded Systems

Personal Handheld Systems

Smartphones,digitalmediadevices,calculators,andportableGPSunitsareonlyafew
examples of portable handheld electronic devices that are microcontroller-based embed-

ded systems. Microcontrollers are widely used in these products because they can easily

interface with the input and output hardware, rapidly process data, and consume relatively

little power. Some of the most popular microcontrollers for portable handheld devices are

those based on the ARM (Advanced RISC Machine) processor.

A block diagram for a microcontroller-based programmable calculator is shown in Fig-

ure14–35.ThecalculatorincorporatesaUSBcommunicationport.TheROMcontainsthe
embedded code that implements the calculator functions and processes while the RAM

provides storage for the system stack, system data, user data, and programs.The USB
controllertransmitsandreceivesdatapertheUSBcommunicationsprotocolandinterfaces
tothehardwarethatmakesupthephysicalUSBport.Thecalculatorkeypadconnectsto
aparallelportformedbymultipleGPIOlines,andthecalculatorLCDdisplayinterfaces
with an LCD driver peripheral in the microcontroller to create the human machine inter-

face, or HMI. A timer inside the microcontroller powers down the calculator after it has

beenactiveforapresetamountoftimetosaveenergy.Othertimersinthemicrocontroller,
whicharenotshown,setthecommunicationsratefortheUSBcontroller,provideareal-
time clock, and allow the user to set time-of-day alarms.

 Microcontrollers and Embedded Systems 843

Consumer Appliances

Virtually every electronic product today is a “smart” product that can make decisions,

performapreprogrammedsequenceofevents,orbemanuallyprogrammedtodoso.A
short list of these products includes microwave ovens, coffee makers, washers and dryers,

refrigerators, ovens, home entertainment components and systems, video game systems,

and robotic vacuum cleaners.

Automobile Systems

Automobiles use microcontrollers in a number of embedded systems. Embedded systems

in modern automobiles monitor vehicle operation and control the engine, fuel system,

brakes, air bags, door locks, environmental system, instrument display, vehicle navigation,

andvirtuallyeveryaspectofvehicleoperation.Onespecificfactorthatcanaffectmicro-

controllers in automotive applications is the operating environment. Microcontrollers must

be able to operate properly when exposed to the vehicle’s temperature, humidity, vibration,

and electrical noise that they will encounter when the vehicle is operating.

Automated Systems

Two large areas of embedded applications are robotics and automation. Robotic and auto-

mated assemblies by nature must operate independently, perform repetitive tasks, process

real-world data, and respond to circumstances that arise during operation. Embedded

microcontrollersystemscanperformthesetasksverywell.Oneparticularaspectofauto-

mated systems with which the microcontroller must deal is motion control. Microcon-

trollers must use feedback from the mechanical system to properly control the speed and

acceleration of the system to ensure that it operates properly.

Figure14–36showstheblockdiagramforabasicroboticssystem.Althoughtheblock
diagram is for a system that operates along a single axis, it can be extended to three axes

for three-dimensional movement by using three microcontroller systems.

TheROMcontainstheembeddedcodethatimplementstheroboticfunctionsandpro-

cesses;theRAMprovidesstorageforthesystemstackandsystemdata.Thequadrature
encoder receives encoded information from a motor position indicator and increments or

decrements a counter depending upon how the encoded pattern changes. The pulse width

modulator supplies a pulse train to a motor driver that in turn applies the voltages to the

motorwindingstoturnthemotor.GPIOlinesdetectwhenoptical,magnetic,orothersen-

sors indicate that the mechanical assembly has reached its maximum or minimum position.

Parallel port

LCD interface

USB channel

RAM

ROM
Peripheral bus

A
d
d
re

ss
 b

u
s

D
at

a
b
u
s

C
o
n
tr

o
l

b
u
s

Microcontroller

Signal

connection

Processor

core

USB

controller

GPIO

LCD

Driver

Timer

USB

port

Interface

circuitry

Keypad

Display

Address bus

Data bus

Control bus

FIGURE 14–35 Microcontroller block diagram for programmable calculator.

844 Data Processing and Control

Whenthesystemfirstpowersup,themicrocontrollerusesthequadratureencoderand
pulse width modulator to move the mechanical assembly to its minimum, or home, posi-

tionandclearsthecountersothatzerocorrespondstothishomepositionandinitializes
thesystem.Oncethesystemisinitialized,themicrocontrollerthenmovesthemechanical
assembly as programmed by driving the pulse width modulator to move the motor forward

or backward and monitor the counter to determine how far and fast the mechanical assem-

bly has moved. In most robotic systems, the microcontroller performs a complex series of

calculations while monitoring the motor position and driving the motor to ensure that the

mechanical assembly starts, stops, and operates smoothly.

D
at

a
b
u
s

C
o
n
tr

o
l

b
u
s

Address bus

Data bus

Control signal

Encoded position

Microcontroller

Motor

controller

Upper sensor

Lower sensor

Motor

Motor

position

A
d
d
re

ss
 b

u
s

Processor

core

RAM

ROM
Quadrature

encoder

Pulse width

modulator

GPIO

Signal

connection

Control bus

Peripheral bus

FIGURE 14–36 Basic block diagram for a robotics system.

SECTION 14–8 CHECKUP

 1. Howdoesamicrocontrollerdifferfromamicroprocessor?

 2. Whataresomecommonfunctionalunitsfoundinatypicalmicrocontroller?

 3. Discuss an advantage and disadvantage of multifunctional pins on a microcontroller.

 4. Whichperipheralsallowamicrocontrollertointeractwiththerealworld?

 5. Howdoesanembeddedsystemdifferfromapersonalcomputersystem?

 6. Identify some types of embedded systems in which microcontrollers are found.

14–9 System on Chip (SoC)

The system on chip (SoC) is a major step up in complexity from the microcontroller and is

what makes smaller and more powerful mobile devices possible. A SoC contains a variety

of functional blocks integrated on a single semiconductor chip to meet specific application

requirements.ASoCgenerally includesdataprocessing,bothdigital andanalog signal
processing, data conversion, memory, interfacing, and other functions. The SoC is found in

many devices such as smart phones, tablet computers, and digital cameras. Two important

advantagesoftheSoParesmallsizeandreducedpowerconsumption,whichmakeitideal
for small mobile devices.

After completing this section, you should be able to

u Describe a typical SoC

u List the functional elements of a SoC

 System on Chip (SoC) 845

A system on chip (SoC) is an integrated circuit that combines all components of a

computer or other electronic system on a single chip. The SoC offers reduced manufactur-

ingcostsandsmallersystemconfigurations;Packagesizescanbesmallerthanadime,as
shown in Figure 14–37.

(a) (b)

FIGURE 14–37 A typical SoC ball-grid package. The bottom of the package with the BG

contacts is shown. (a) Boris Sosnovyy/Shutterstock (b) Eldad Carin/Shutterstock.

A typical SoC consists of the following functional elements, depending on the

application:

• Asingleormultiple-processor(CPU)core

• Adigitalsignalprocessor(DSP)

• Agraphicsprocessor(GPU)

• Memory(ROM,RAM,EEPROM,lash)

• AnalogfunctionssuchasADCandDAC

• I/OinterfacessuchasUSB,Firewire,I2C,USART

• Timingsourcessuchasoscillatorsandphase-lockedloops(PLL)

• Voltageregulatorsandotherpowermanagementfunctions

• Busbridges

• Variousperipherals

• Programmablelogicandapplicationspeciiclogic

In a system using a microprocessor as the CPU, a variety of other chips must be
included to achieve full system capability. The same is true for systems using a microcon-

troller,althoughasmallerchipsetmayberequiredbecausethemicrocontrollertypically
has memory and some peripherals on a single chip. Actually, the microcontroller often is

considered a SoC with limited functionality. The SoC provides all functions necessary for

agivensystemapplication,suchasacomputeronasinglechip.Figure14–38illustratesa
simplified generic SoC block diagram. Actual SoCs feature a number of functions that vary

from one manufacturer to another.

TheCPU(centralprocessingunit) ina typicalSoCmayfeatureoneormoremicro-

processors(MPUs)aswellasagraphicsprocessor(GPU).Generally,SoCsuseproces-

sors based on ARM architecture. The ARM processors, developed by Advanced RISC

Machines,Ltd.inthe1980s,wereverysimpleintermsoftransistorcountandinstruction
set. They used reduced instruction set computer (RISC) architecture which allowed them

tohavehighperformanceand lowenergyconsumption.TheGPU(graphicsprocessing
unit)handlescomplexgamesandothervideorequirementsthatarefoundonsmartphones,
tablets, and other devices.

SoCsincludevarious typesofmemorysuchasROM,SRAM,DRAM,andcacheas
well as the accompanying control functions.A DSP (digital signal processor) is also a
feature on many SoCs along with analog functions such as ADC (analog-to-digital conver-

sion)andDAC(digital-to-analogconversion)elements.Ofcourse,interfacingisacrucial
partofanysystemandallSoCsprovideavaryingnumberofstandardbusandotherI/Os.
These interfacing elements may include USB, SPI, CAN, I2C,AGP, UART, Bluetooth,

846 Data Processing and Control

Wi-Fi,Ethernet,audio,rf,aswellasothers.Thenorthbridgeisacircuitthatconnectthe
CPUtothememory,andtothePCIinternalbus.Thesouthbridgeisacircuitthatcontrols
connectionstotheI/Os.

CPU

MPU/MCU/GPU

Northbridge
Power

management

Memory controller

MMU/DMA
DSP

Southbridge

I/O

Interfaces

Programmable

logic

Memory

ROM/RAM/

EEPROM/CACHE

Rf

WiFi, 3G, 4G

Peripherals

ADC/DAC

Timing

Oscillator/PLL

Internal bus

FIGURE 14–38 Generic block diagram of a typical SoC.

SECTION 14–9 CHECKUP

1. WhatisaSoC?

2. List two advantages of a SoC.

3. NameatleastfivefunctionalelementsofaSoC.

