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Stability of Structures

• In the design of columns, cross-sectional area is 

selected such that

- allowable stress is not exceeded

all
A

P
 

- deformation falls within specifications

spec
AE

PL
 

• After these design calculations, may discover 

that the column is unstable under loading and 

that it suddenly becomes sharply curved or 

buckles. 
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Stability of Structures

• Consider model with two rods and torsional 

spring.  After a small perturbation,

 

moment ingdestabiliz 
2

sin
2

moment restoring 2









L
P

L
P

K

• Column is stable (tends to return to aligned 

orientation) if

 

L

K
PP

K
L

P

cr
4

2
2



 

contents.ppt-1,1,


© 2002 The McGraw-Hill Companies, Inc. All rights reserved. 

MECHANICS OF MATERIALS

T
h

ird
E

d
itio

n

Beer  • Johnston  • DeWolf

10 - 5

Stability of Structures

• Assume that a load P is applied.  After a 

perturbation, the system settles to a new 

equilibrium configuration at a finite 

deflection angle.

 







sin4

2sin
2





crP

P

K

PL

K
L

P

• Noting that  sin <  , the assumed 

configuration is only possible if  P > Pcr. 
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Euler’s Formula for Pin-Ended Beams

• Consider an axially loaded beam.  

After a small perturbation, the system 

reaches an equilibrium configuration 

such that

0
2

2

2

2





y
EI

P

dx

yd

y
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P
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M
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• Solution with assumed configuration 

can only be obtained if
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Euler’s Formula for Pin-Ended Beams

 

 

s ratioslendernes
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• The value of stress corresponding to 

the critical load,

• Preceding analysis is limited to 

centric loadings.
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Extension of Euler’s Formula

• A column with one fixed and one free 

end, will behave as the upper-half of a 

pin-connected column.

• The critical loading is calculated from 

Euler’s formula,

 

length  equivalent 2

2

2

2

2
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


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e
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Extension of Euler’s Formula
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Sample Problem 10.1

An aluminum column of length L and 

rectangular cross-section has a fixed end at B 

and supports a centric load at A.  Two smooth 

and rounded fixed plates restrain end A from 

moving in one of the vertical planes of 

symmetry but allow it to move in the other 

plane.

a) Determine the ratio a/b of the two sides of 

the cross-section corresponding to the most 

efficient design against buckling.

b) Design the most efficient cross-section for 

the column.

L = 20 in.

E = 10.1 x 106 psi

P = 5 kips

FS = 2.5
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Sample Problem 10.1

• Buckling in xy Plane:
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• Buckling in xz Plane:
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• Most efficient design:

2

7.0

12/

2

12

7.0

,,







b

a

b

L

a

L

r

L

r

L

y

ye

z

ze

35.0
b

a

SOLUTION:

The most efficient design occurs when the 

resistance to buckling is equal in both planes of 

symmetry.  This occurs when the slenderness 

ratios are equal.
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Sample Problem 10.1

L = 20 in.

E = 10.1 x 106 psi

P = 5 kips

FS = 2.5

a/b = 0.35

• Design:

 
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



ba

b

contents.ppt-1,1,


© 2002 The McGraw-Hill Companies, Inc. All rights reserved. 

MECHANICS OF MATERIALS

T
h

ird
E

d
itio

n

Beer  • Johnston  • DeWolf

10 - 13

Eccentric Loading;  The Secant Formula

• Eccentric loading is equivalent to a centric 

load and a couple.

• Bending occurs for any nonzero eccentricity.  

Question of buckling becomes whether the 

resulting deflection is excessive.
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• The deflection become infinite when P = Pcr

• Maximum stress
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10 - 14

Eccentric Loading;  The Secant Formula
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Sample Problem 10.2

The uniform column consists of an 8-ft section 

of structural tubing having the cross-section 

shown.

a) Using Euler’s formula and a factor of safety 

of two, determine the allowable centric load 

for the column and the corresponding 

normal stress.

b) Assuming that the allowable load, found in 

part a, is applied at a point 0.75 in. from the 

geometric axis of the column, determine the 

horizontal deflection of the top of the 

column and the maximum normal stress in 

the column.

.psi1029 6E
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Sample Problem 10.2

SOLUTION:

• Maximum allowable centric load:

  in. 192 ft 16ft 82 eL

- Effective length,

  
 

kips 1.62

in 192

in 0.8psi 1029
2

462

2

2







e
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L

EI
P

- Critical load,

2in 3.54

kips 1.31

2

kips 1.62





A

P

FS

P
P

all

cr
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

kips 1.31allP

ksi 79.8

- Allowable load,
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Sample Problem 10.2

• Eccentric load:

in. 939.0my
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- Maximum normal stress,
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10 - 18

Design of Columns Under Centric Load

• Previous analyses assumed 

stresses below the proportional 

limit and initially straight, 

homogeneous columns

• Experimental data demonstrate

- for large Le/r, cr follows 

Euler’s formula and depends 

upon E but not Y.

- for intermediate Le/r, cr

depends on both Y and E.  

- for small Le/r, cr is 

determined by the yield 

strength Y and not E.
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10 - 19

Design of Columns Under Centric Load

Structural Steel

American Inst. of Steel Construction

• For Le/r > Cc

 
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Design of Columns Under Centric Load

Aluminum

Aluminum Association, Inc.

• Alloy 6061-T6

Le/r < 66:

  

  MPa /868.0139

ksi /126.02.20

rL

rL

e

eall





Le/r > 66:

   2

3

2
/

MPa 10513

/

ksi 51000

rLrL ee

all




• Alloy 2014-T6

Le/r < 55:

  

  MPa /585.1212

ksi /23.07.30

rL

rL

e

eall





Le/r > 66:

   2
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2
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Sample Problem 10.4

Using the aluminum alloy2014-T6, 

determine the smallest diameter rod 

which can be used to support the centric 

load P = 60 kN if  a) L = 750 mm,  

b) L = 300 mm

SOLUTION:

• With the diameter unknown, the 

slenderness ration can not be evaluated.  

Must make an assumption on which 

slenderness ratio regime to utilize.

• Calculate required diameter for 

assumed slenderness ratio regime.

• Evaluate slenderness ratio and verify 

initial assumption.  Repeat if necessary.
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Sample Problem 10.4

2

4

gyration of radius 

radiuscylinder  

2

4 c

c

c

A

I

r

c











• For L = 750 mm, assume L/r > 55

• Determine cylinder radius:

 

mm44.18

c/2

m 0.750

MPa 103721060

rL

MPa 10372

2

3

2

3

2

3




















c
c

N

A

P
all





• Check slenderness ratio assumption:

 
553.81

mm 18.44

mm750

2/


c

L

r

L

assumption was correct

mm 9.362  cd
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Sample Problem 10.4

• For L = 300 mm, assume L/r < 55

• Determine cylinder radius:

mm00.12

Pa10
2/

m 3.0
585.1212

1060

MPa 585.1212

6
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

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A

P
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



• Check slenderness ratio assumption:

 
5550

mm 12.00

mm 003

2/


c

L

r

L

assumption was correct

mm 0.242  cd
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10 - 24

Design of Columns Under an Eccentric Load

• Allowable stress method:

all
I

Mc

A

P


• Interaction method:

   
1

bendingallcentricall

IMcAP



• An eccentric load P can be replaced by a 

centric load P and a couple M = Pe.

• Normal stresses can be found from 

superposing the stresses due to the centric 

load and couple,

I

Mc

A

P

bendingcentric





max


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