
 497

497

CHAPTER OUTLINE

9–1 Finite State Machines

9–2 Asynchronous Counters

9–3 Synchronous Counters

9–4 Up/Down Synchronous Counters

9–5 Design of Synchronous Counters

9–6 Cascaded Counters

9–7 Counter Decoding

9–8 Counter Applications

9–9 Logic Symbols with Dependency Notation

9–10 Troubleshooting

 Applied Logic

CHAPTER OBJECTIVES

■ Discuss the types of state machines

■ Describe the difference between an asynchronous

and a synchronous counter

■ Analyze counter timing diagrams

■ Analyze counter circuits

■ Explain how propagation delays affect the

operation of a counter

■ Determine the modulus of a counter

■ Modify the modulus of a counter

■ Recognize the difference between a 4-bit binary

counter and a decade counter

■ Use an up/down counter to generate forward and

reverse binary sequences

■ Determine the sequence of a counter

■ Use IC counters in various applications

■ Design a counter that will have any specified

sequence of states

■ Use cascaded counters to achieve a higher modulus

■ Use logic gates to decode any given state of a counter

■ Eliminate glitches in counter decoding

■ Explain how a digital clock operates

■ Interpret counter logic symbols that use

dependency notation

■ Troubleshoot counters for various types of faults

Counters

9CHAPTER

■ State machine

■ Asynchronous

■ Recycle

■ Modulus

■ Decade

■ Synchronous

■ Terminal count

■ State diagram

■ Cascade

KEY TERMS

Key terms are in order of appearance in the chapter.

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

As you learned in Chapter 7, flip-flops can be con-

nected together to perform counting operations. Such

a group of flip-flops is a counter, which is a type of

finite state machine. The number of flip-flops used

and the way in which they are connected determine

the number of states (called the modulus) and also

the specific sequence of states that the counter goes

through during each complete cycle.

Counters are classified into two broad categories

 according to the way they are clocked: asynchronous

and synchronous. In asynchronous counters, commonly

called ripple counters, the first flip-flop is clocked by the

external clock pulse and then each successive flip-flop

is clocked by the output of the preceding flip-flop. In

synchronous counters, the clock input is connected to all

of the flip-flops so that they are clocked simultaneously.

Within each of these two categories, counters are clas-

sified primarily by the type of sequence, the number of

states, or the number of flip-flops in the counter. VHDL

codes for various types of counters are presented.

498 Counters

9–1 Finite State Machines

A state machine is a sequential circuit having a limited (finite) number of states occuring

in a prescribed order. A counter is an example of a state machine; the number of states is

called the modulus. Two basic types of state machines are the Moore and the Mealy. The

Moore state machine is one where the outputs depend only on the internal present state.

The Mealy state machine is one where the outputs depend on both the internal present

state and on the inputs. Both types have a timing input (clock) that is not considered a con-

trolling input. A design approach to counters is presented in this section.

After completing this section, you should be able to

u Describe a Moore state machine

u Describe a Mealy state machine

u Discuss examples of Moore and Mealy state machines

General Models of Finite State Machines

A Moore state machine consists of combinational logic that determines the sequence and

memory (flip-flops), as shown in Figure 9–1(a). A Mealy state machine is shown in part (b).

Outputs

Outputs
Combinational

logic
Memory

(a) Moore machine (b) Mealy machine

Input(s)

Present state

Combinational

logic
Memory

FIGURE 9–1 Two types of sequential logic.

In the Moore machine, the combinational logic is a gate array with outputs that deter-

mine the next state of the flip-flops in the memory. There may or may not be inputs to the

combinational logic. There may also be output combinational logic, such as a decoder. If

there is an input(s), it does not affect the outputs because they always correspond to and

are dependent only on the present state of the memory. For the Mealy machine, the present

state affects the outputs, just as in the Moore machine; but in addition, the inputs also affect

the outputs. The outputs come directly from the combinational logic and not the memory.

Example of a Moore Machine

Figure 9–2(a) shows a Moore machine (modulus-26 binary counter with states 0 through

25) that is used to control the number of tablets (25) that go into each bottle in an assem-

bly line. When the binary number in the memory (flip-flops) reaches binary twenty-five

(11001), the counter recycles to 0 and the tablet flow and clock are cut off until the next

bottle is in place. The combinational logic for the state transitions sets the modulus of the

counter so that it sequences from binary state 0 to binary state 25, where 0 is the reset or

rest state and the output combinational logic decodes binary state 25. There is no input in

this case, other than the clock, so the next state is determined only by the present state,

which makes this a Moore machine. One tablet is bottled for each clock pulse. Once a

bottle is in place, the first tablet is inserted at binary state 1, the second at binary state 2,

and the twenty-fifth tablet when the binary state is 25. Count 25 is decoded and used to

stop the flow of tablets and the clock. The counter stays in the 0 state until the next bottle

is in position (indicated by a 1). Then the clock resumes, the count goes to 1, and the cycle

repeats, as illustrated by the state diagram in Figure 9–2(b).

 Finite State Machines 499

Example of a Mealy Machine

Let’s assume that the tablet-bottling system uses three different sizes of bottles: a 25-tablet

bottle, a 50-tablet bottle, and a 100-tablet bottle. This operation requires a state machine with

three different terminal counts: 25, 50, and 100. One approach is illustrated in Figure 9–3(a).

The combinational logic sets the modulus of the counter depending on the modulus-select

inputs. The output of the counter depends on both the present state and the modulus-select

inputs, making this a Mealy machine. The state diagram is shown in part (b).

Present state

Combinational

logic for state

transitions

Flip-flops

Clock

Logic for

decoding

binary state 25

Output

(binary state 25)

Bottle in place

binary

0

Bottle not in place

binary

1

binary

25

Modulus 26 counter

(a) Moore machine (b) State diagram

FIGURE 9–2 A fixed-modulus binary counter as an example of a Moore state machine.

The dashed line in the state diagram means the states between binary 1 and 25 are not

shown for simplicity.

Present state

Combinational

logic for the state

transitions

Flip-flops

25 50 100
Modulus-select inputs

Combinational

logic for

decoding count

25 or 50 or 100

Output

(final state)

(a) Mealy machine (b) State diagram

binary

0

binary

1

binary

25

binary

51

binary

50

binary

100

binary

26

Bottle not in place

Bottle in place
Input 50 =1

Input 25 =1

Input 100 =1

FIGURE 9–3 A variable-modulus binary counter as an example of a Mealy state machine.

The red arrows in the state diagram represent the recycle paths that depend on the input

number. The black dashed lines mean the interim states are not shown for simplicity.

SECTION 9–1 CHECKUP

Answers are at the end of the chapter.

 1. What characterizes a finite state machine?

 2. Name the types of finite state machines.

 3. Explain the difference between the two types of state machines.

500 Counters

9–2 Asynchronous Counters

The term asynchronous refers to events that do not have a fixed time relationship with

each other and, generally, do not occur at the same time. An asynchronous counter is one

in which the flip-flops (FF) within the counter do not change states at exactly the same time

because they do not have a common clock pulse.

After completing this section, you should be able to

u Describe the operation of a 2-bit asynchronous binary counter

u Describe the operation of a 3-bit asynchronous binary counter

u Define ripple in relation to counters

u Describe the operation of an asynchronous decade counter

u Develop counter timing diagrams

u Discuss the implementation of a 4-bit asynchronous binary counter

A 2-Bit Asynchronous Binary Counter

Figure 9–4 shows a 2-bit counter connected for asynchronous operation. Notice that the clock

(CLK) is applied to the clock input (C) of only the first flip-flop, FF0, which is always the

least significant bit (LSB). The second flip-flop, FF1, is triggered by the Q0 output of FF0.

FF0 changes state at the positive-going edge of each clock pulse, but FF1 changes only when

triggered by a positive-going transition of the Q0 output of FF0. Because of the inherent

propagation delay time through a flip-flop, a transition of the input clock pulse (CLK) and a

transition of the Q0 output of FF0 can never occur at exactly the same time. Therefore, the

two flip-flops are never simultaneously triggered, so the counter operation is asynchronous.

The clock input of an asynchronous
counter is always connected only to
the LSB flip-flop.

The Timing Diagram

Let’s examine the basic operation of the asynchronous counter of Figure 9–4 by applying four

clock pulses to FF0 and observing the Q output of each flip-flop. Figure 9–5 illustrates the

changes in the state of the flip-flop outputs in response to the clock pulses. Both flip-flops are

connected for toggle operation (D = Q) and are assumed to be initially RESET (Q LOW).

The positive-going edge of CLK1 (clock pulse 1) causes the Q0 output of FF0 to go

HIGH, as shown in Figure 9–5. At the same time the Q0 output goes LOW, but it has no

effect on FF1 because a positive-going transition must occur to trigger the flip-flop. After

the leading edge of CLK1, Q0 = 1 and Q1 = 0. The positive-going edge of CLK2 causes

Q0 to go LOW. Output Q0 goes HIGH and triggers FF1, causing Q1 to go HIGH. After the

leading edge of CLK2, Q0 = 0 and Q1 = 1. The positive-going edge of CLK3 causes Q0

to go HIGH again. Output Q0 goes LOW and has no effect on FF1. Thus, after the leading

edge of CLK3, Q0 = 1 and Q1 = 1. The positive-going edge of CLK4 causes Q0 to go

LOW, while Q0 goes HIGH and triggers FF1, causing Q1 to go LOW. After the leading

Asynchronous counters are also
known as ripple counters.

D
1 Q

1
D

0

Q
1

Q
0

CLK
C C

FF1FF0

Q
0

FIGURE 9–4 A 2-bit asynchronous binary counter. Open file F09-04 to verify operation. A

Multisim tutorial is available on the website.

 Asynchronous Counters 501

edge of CLK4, Q0 = 0 and Q1 = 0. The counter has now recycled to its original state

(both flip-flops are RESET).

In the timing diagram, the waveforms of the Q0 and Q1 outputs are shown relative to the

clock pulses as illustrated in Figure 9–5. For simplicity, the transitions of Q0, Q1, and the

clock pulses are shown as simultaneous even though this is an asynchronous counter. There

is, of course, some small delay between the CLK and the Q0 transition and between the Q0

transition and the Q1 transition.

Note in Figure 9–5 that the 2-bit counter exhibits four different states, as you would

expect with two flip-flops (22
= 4). Also, notice that if Q0 represents the least significant

bit (LSB) and Q1 represents the most significant bit (MSB), the sequence of counter states

represents a sequence of binary numbers as listed in Table 9–1.

In digital logic, Q0 is always the LSB
unless otherwise specified.

Q
0

CLK

Q0 (LSB)

1 2 3 4

Q1 (MSB)

Outputs

FIGURE 9–5 Timing diagram for the counter of Figure 9–4. As in previous chapters,

output waveforms are shown in green.

TABLE 9–1

Binary state sequence for the counter in Figure 9–4.

Clock Pulse Q1 Q0

Initially 0 0

1 0 1

2 1 0

3 1 1

4 (recycles) 0 0

TABLE 9–2

State sequence for a 3-bit binary counter.

Clock Pulse Q2 Q1 Q0

Initially 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 (recycles) 0 0 0

Since it goes through a binary sequence, the counter in Figure 9–4 is a binary counter. It

actually counts the number of clock pulses up to three, and on the fourth pulse it recycles

to its original state (Q0 = 0, Q1 = 0). The term recycle is commonly applied to counter

operation; it refers to the transition of the counter from its final state back to its original state.

A 3-Bit Asynchronous Binary Counter

The state sequence for a 3-bit binary counter is listed in Table 9–2, and a 3-bit asynchronous

binary counter is shown in Figure 9–6(a). The basic operation is the same as that of the 2-bit

502 Counters

counter except that the 3-bit counter has eight states, due to its three flip-flops. A timing

diagram is shown in Figure 9–6(b) for eight clock pulses. Notice that the counter progresses

through a binary count of zero through seven and then recycles to the zero state. This counter

can be easily expanded for higher count, by connecting additional toggle flip-flops.

Propagation Delay

Asynchronous counters are commonly referred to as ripple counters for the following

reason: The effect of the input clock pulse is first “felt” by FF0. This effect cannot get to

FF1 immediately because of the propagation delay through FF0. Then there is the propa-

gation delay through FF1 before FF2 can be triggered. Thus, the effect of an input clock

pulse “ripples” through the counter, taking some time, due to propagation delays, to reach

the last flip-flop.

To illustrate, notice that all three flip-flops in the counter of Figure 9–6 change state on

the leading edge of CLK4. This ripple clocking effect is shown in Figure 9–7 for the first

four clock pulses, with the propagation delays indicated. The LOW-to-HIGH transition of

1 2 3 4CLK

t
PLH

(CLK to Q
0
)

t
PHL

(CLK to Q
0
)

t
PLH

(Q
0
 to Q

1
)

t
PHL

(CLK to Q
0
)

t
PHL

(Q
0
 to Q

1
)

t
PLH

(Q
1
 to Q

2
)

Q
0

Q
1

Q
2

FIGURE 9–7 Propagation delays in a 3-bit asynchronous (ripple-clocked) binary counter.

Q0 (LSB)

Q2 (MSB)

D
2

Q
2

D
1

Q
1

CLK C C

FF2FF1

D
0

Q
0

C

FF0

1 2 3 4 5CLK 6 7 8

10 10 10 10 0

Q
1 10 10 1010

00 11 11

0

000

(a)

(b) Recycles back to 0

Q
1

Q
0

Q
2

FIGURE 9–6 Three-bit asynchronous binary counter and its timing diagram for one cycle.

Open file F09-06 to verify operation.

 Asynchronous Counters 503

Q0 occurs one delay time (tPLH) after the positive-going transition of the clock pulse. The

LOW-to-HIGH transition of Q1 occurs one delay time (tPLH) after the positive-going tran-

sition of Q0. The LOW-to-HIGH transition of Q2 occurs one delay time (tPLH) after the

positive-going transition of Q1. As you can see, FF2 is not triggered until two delay times

after the positive-going edge of the clock pulse, CLK4. Thus, it takes three propagation

delay times for the effect of the clock pulse, CLK4, to ripple through the counter and change

Q2 from LOW to HIGH.

This cumulative delay of an asynchronous counter is a major disadvantage in many

applications because it limits the rate at which the counter can be clocked and creates

decoding problems. The maximum cumulative delay in a counter must be less than the

period of the clock waveform.

EXAMPLE 9–1

A 4-bit asynchronous binary counter is shown in Figure 9–8(a). Each D flip-flop is

negative edge-triggered and has a propagation delay for 10 nanoseconds (ns). Develop

a timing diagram showing the Q output of each flip-flop, and determine the total propa-

gation delay time from the triggering edge of a clock pulse until a corresponding change

can occur in the state of Q3. Also determine the maximum clock frequency at which the

counter can be operated.

CLK C C C

Q
0

Q
1

Q
2

Q
3

FF0 FF1 FF2 FF3

(a)

D
0

D
1

D
2

D
3

C

(b)

CLK

Q
0

Q
1

Q
2

Q
3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Q
0

Q
1

Q
2

Q
3

FIGURE 9–8 Four-bit asynchronous binary counter and its timing diagram. Open file

F09-08 and verify the operation.

Solution

The timing diagram with delays omitted is as shown in Figure 9–8(b). For the total

delay time, the effect of CLK8 or CLK16 must propagate through four flip-flops before

Q3 changes, so

tp(tot) = 4 * 10 ns = 40 ns

504 Counters

Asynchronous Decade Counters

The modulus of a counter is the number of unique states through which the counter will

sequence. The maximum possible number of states (maximum modulus) of a counter is 2n,

where n is the number of flip-flops in the counter. Counters can be designed to have a num-

ber of states in their sequence that is less than the maximum of 2n. This type of sequence

is called a truncated sequence.

One common modulus for counters with truncated sequences is ten (called MOD10).

Counters with ten states in their sequence are called decade counters. A decade counter

with a count sequence of zero (0000) through nine (1001) is a BCD decade counter because

its ten-state sequence produces the BCD code. This type of counter is useful in display

applications in which BCD is required for conversion to a decimal readout.

To obtain a truncated sequence, it is necessary to force the counter to recycle before

going through all of its possible states. For example, the BCD decade counter must recycle

back to the 0000 state after the 1001 state. A decade counter requires four flip-flops (three

flip-flops are insufficient because 23
= 8).

Let’s use a 4-bit asynchronous counter such as the one in Example 9–1 and modify its

sequence to illustrate the principle of truncated counters. One way to make the counter

recycle after the count of nine (1001) is to decode count ten (1010) with a NAND gate and

connect the output of the NAND gate to the clear (CLR) inputs of the flip-flops, as shown

in Figure 9–9(a).

Partial Decoding

Notice in Figure 9–9(a) that only Q1 and Q3 are connected to the NAND gate inputs. This

arrangement is an example of partial decoding, in which the two unique states (Q1 = 1

and Q3 = 1) are sufficient to decode the count of ten because none of the other states (zero

through nine) have both Q1 and Q3 HIGH at the same time. When the counter goes into

count ten (1010), the decoding gate output goes LOW and asynchronously resets all the

flip-flops.

The resulting timing diagram is shown in Figure 9–9(b). Notice that there is a glitch

on the Q1 waveform. The reason for this glitch is that Q1 must first go HIGH before

the count of ten can be decoded. Not until several nanoseconds after the counter goes

to the count of ten does the output of the decoding gate go LOW (both inputs are

HIGH). Thus, the counter is in the 1010 state for a short time before it is reset to 0000,

thus producing the glitch on Q1 and the resulting glitch on the CLR line that resets the

 counter.

Other truncated sequences can be implemented in a similar way, as Example 9–2

shows.

A counter can have 2n states, where
n is the number of flip-flops.

The maximum clock frequency is

fmax =

1

tp(tot)

=

1

40 ns
= 25 MHz

The counter should be operated below this frequency to avoid problems due to the

propagation delay.

Related Problem*

Show the timing diagram if all of the flip-flops in Figure 9–8(a) are positive edge-

triggered.

*Answers are at the end of the chapter.

 Asynchronous Counters 505

1 2 3 4 5 6 7 8 9 10

Q
0

Q
1

Q
2

Q
3

CLK

(b)

CLR

10 decoder

CLK C C C C

Q
0

Q
1

Q
2

Q
3

FF0 FF1 FF2 FF3

(a)

D
0

D
1

D
2

D
3

CLRCLRCLRCLR

CLR

Glitch

Glitch

Q
0

Q
1

Q
2

Q
3

FIGURE 9–9 An asynchronously clocked decade counter with asynchronous recycling.

EXAMPLE 9–2

Show how an asynchronous counter with J-K flip-flops can be implemented having a modulus of twelve with a straight

binary sequence from 0000 through 1011.

Solution

Since three flip-flops can produce a maximum of eight states, four flip-flops are required to produce any modulus greater

than eight but less than or equal to sixteen.

When the counter gets to its last state, 1011, it must recycle back to 0000 rather than going to its normal next state of

1100, as illustrated in the following sequence chart:

Normal next state

Recycles

Observe that Q0 and Q1 both go to 0 anyway, but Q2 and Q3 must be forced to 0 on the twelfth clock pulse. Figure 9–10(a)

shows the modulus-12 counter. The NAND gate partially decodes count twelve (1100) and resets flip-flop 2 and flip-flop 3.

 Q3 Q2 Q1 Q0

 0 0 0 0

 # # # #
 # # # #
 # # # #
 1 0 1 1

 1 1 0 0

506 Counters

Thus, on the twelfth clock pulse, the counter is forced to recycle from count eleven to count zero, as shown in the timing

diagram of Figure 9–10(b). (It is in count twelve for only a few nanoseconds before it is reset by the glitch on CLR.)

(a)

12 decoder

Q
0

FF0

C C C

Q
1

Q
2

Q
3

HIGH

CLK

FF1 FF2 FF3

C

J
0

K
0

J
1

K
1

J
2

K
2

J
3

K
3

CLR CLR CLR CLR

CLR

1 2 3 4 5 6 7 8 9 10 11 12

Q
0

Q
1

Q
2

Q
3

Decoder
output

(CLR)

Glitch

Glitch

CLK

(b)

FIGURE 9–10 Asynchronously clocked modulus-12 counter with asynchronous recycling.

Related Problem

How can the counter in Figure 9–10(a) be modified to make it a modulus-13 counter?

IMPLEMENTATION: 4-BIT ASYNCHRONOUS BINARY COUNTER

Fixed-Function Device The 74HC93 is an example of a specific integrated circuit asyn-

chronous counter. This device actually consists of a single flip-flop (CLK A) and a 3-bit asyn-

chronous counter (CLK B). This arrangement is for flexibility. It can be used as a divide-by-2

device if only the single flip-flop is used, or it can be used as a modulus-8 counter if only the

3-bit counter portion is used. This device also provides gated reset inputs, RO(1) and RO(2).

When both of these inputs are HIGH, the counter is reset to the 0000 state CLR.

Additionally, the 74HC93 can be used as a 4-bit modulus-16 counter (counts 0 through

15) by connecting the Q0 output to the CLK B input as shown by the logic symbol in

Figure 9–11(a). It can also be configured as a decade counter (counts 0 through 9) with

asynchronous recycling by using the gated reset inputs for partial decoding of count ten, as

shown by the logic symbol in Figure 9–11(b).

 Synchronous Counters 507

Programmable Logic Device (PLD) The VHDL code for a generic 4-bit asynchronous

binary counter using J-K flip flops with preset (PRN) and clear (CLRN) inputs is as

 follows:

C

RO(2)

RO(1)

CLK A

CCLK B

Q
0

Q
1

Q
2

Q
3

(b) 74HC93 connected as a decade counter

CTR DIV 10C

RO(2)

RO(1)

CLK A

CCLK B

Q
0

Q
1

Q
2

Q
3

(a) 74HC93 connected as a modulus-16 counter

CTR DIV 16

FIGURE 9–11 Two configurations of the 74HC93 asynchronous counter. (The qualifying

label, CTR DIV n, indicates a counter with n states.)

SECTION 9–2 CHECKUP

 1. What does the term asynchronous mean in relation to counters?

 2. How many states does a modulus-14 counter have? What is the minimum number of

flip-flops required?

9–3 Synchronous Counters

The term synchronous refers to events that have a fixed time relationship with each other.

A synchronous counter is one in which all the flip-flops in the counter are clocked at the

same time by a common clock pulse. J-K flip-flops are used to illustrate most synchronous

counters. D flip-flops can also be used but generally require more logic because of having

no direct toggle or no-change states.

library ieee;

use ieee.std_logic_1164.all;

entity AsyncFourBitBinCntr is

 port (Clock, Clr: in std_logic; Q0, Q1, Q2, Q3: inout std_logic);

end entity AsyncFourBitBinCntr;

architecture LogicOperation of AsyncFourBitBinCntr is

component jkff is

 port (J, K, Clk, PRN, CLRN: in std_logic; Q: out std_logic);

end component jkff;

begin

 FF0: jkff port map(J=7‘1’, K=7‘1’, Clk=7Clock, CLRN=7Clr, PRN=7‘1’, Q=7Q0);

 FF1: jkff port map(J=7‘1’, K=7‘1’, Clk=7not Q0, CLRN=7Clr, PRN=7‘1’, Q=7Q1);

 FF2: jkff port map(J=7‘1’, K=7‘1’, Clk=7not Q1, CLRN=7Clr, PRN=7‘1’, Q=7Q2);

 FF3: jkff port map(J=7‘1’, K=7‘1’, Clk=7not Q2, CLRN=7Clr, PRN=7‘1’, Q=7Q3);

end architecture LogicOperation;

J-K flip-flop component

declaration

Inputs and outputs declared

Instantiations define

how each flip-flop is

connected.

t
s

508 Counters

After completing this section, you should be able to

u Describe the operation of a 2-bit synchronous binary counter

u Describe the operation of a 3-bit synchronous binary counter

u Describe the operation of a 4-bit synchronous binary counter

u Describe the operation of a synchronous decade counter

u Develop counter timing diagrams

A 2-Bit Synchronous Binary Counter

Figure 9–12 shows a 2-bit synchronous binary counter. Notice that an arrangement differ-

ent from that for the asynchronous counter must be used for the J1 and K1 inputs of FF1

in order to achieve a binary sequence. A D flip-flop implementation is shown in part (b).

J
1

Q
1

K
1

J
0

Q
1

Q
0

K
0

HIGH

CLK

C C

FF1FF0

(a) J-K flip-flop

FIGURE 9–12 2-bit synchronous binary counters.

Q
1

D
0

D
1

Q
0

CLK

C C

(b) D flip-flop

The operation of a J-K flip-flop synchronous counter is as follows: First, assume that the

counter is initially in the binary 0 state; that is, both flip-flops are RESET. When the positive

edge of the first clock pulse is applied, FF0 will toggle and Q0 will therefore go HIGH. What

happens to FF1 at the positive-going edge of CLK1? To find out, let’s look at the input con-

ditions of FF1. Inputs J1 and K1 are both LOW because Q0, to which they are connected, has

not yet gone HIGH. Remember, there is a propagation delay from the triggering edge of the

clock pulse until the Q output actually makes a transition. So, J = 0 and K = 0 when the

leading edge of the first clock pulse is applied. This is a no-change condition, and therefore

FF1 does not change state. A timing detail of this portion of the counter operation is shown

in Figure 9–13(a).

The clock input goes to each flip-flop
in a synchronous counter.

Propagation delay through FF0Q
0

 1

 0

(a)

Propagation delay through FF0

1

(c)

Propagation delay through FF0

(b)

Propagation delay through FF1

Propagation delay through FF0

(d)

Propagation delay through FF1

 0

Q
0

 1

 0

Q
0

 1

 0

Q
1

 1

 0

Q
0

 1

 0

Q
1

 1

 0

CLK3

CLK1

CLK4

CLK2

Q
1

Q
1

FIGURE 9–13 Timing details for the 2-bit synchronous counter operation (the

propagation delays of both flip-flops are assumed to be equal).

 Synchronous Counters 509

After CLK1, Q0 = 1 and Q1 = 0 (which is the binary 1 state). When the leading edge

of CLK2 occurs, FF0 will toggle and Q0 will go LOW. Since FF1 has a HIGH (Q0 = 1) on

its J1 and K1 inputs at the triggering edge of this clock pulse, the flip-flop toggles and Q1

goes HIGH. Thus, after CLK2, Q0 = 0 and Q1 = 1 (which is a binary 2 state). The timing

detail for this condition is shown in Figure 9–13(b).

When the leading edge of CLK3 occurs, FF0 again toggles to the SET state (Q0 = 1),

and FF1 remains SET (Q1 = 1) because its J1 and K1 inputs are both LOW (Q0 = 0). After

this triggering edge, Q0 = 1 and Q1 = 1 (which is a binary 3 state). The timing detail is

shown in Figure 9–13(c).

Finally, at the leading edge of CLK4, Q0 and Q1 go LOW because they both have a toggle

condition on their J and K inputs. The timing detail is shown in Figure 9–13(d). The counter

has now recycled to its original state, binary 0. Examination of the D flip-flop counter in

Figure 9–12(b) will show the timing diagram is the same as for the J-K flip-flop counter.

The complete timing diagram for the counters in Figure 9–12 is shown in Figure 9–14.

Notice that all the waveform transitions appear coincident; that is, the propagation delays are

not indicated. Although the delays are an important factor in the synchronous counter opera-

tion, in an overall timing diagram they are normally omitted for simplicity. Major waveform

relationships resulting from the normal operation of a circuit can be conveyed completely

without showing small delay and timing differences. However, in high-speed digital circuits,

these small delays are an important consideration in design and troubleshooting.

CLK

Q
0

Q
1

Q
2

1 2 3 4 5 6 7 8

FIGURE 9–16 Timing diagram for the counter of Figure 9–15.

A 3-Bit Synchronous Binary Counter

A 3-bit synchronous binary counter is shown in Figure 9–15, and its timing diagram is

shown in Figure 9–16. You can understand this counter operation by examining its sequence

of states as shown in Table 9–3.

Q
0

CLK

J
0

K
0

C

HIGH

FF0

Q
1

J
1

K
1

C

FF1

Q
2J

2

K
2

C

FF2Q
0
Q

1

FIGURE 9–15 A 3-bit synchronous binary counter. Open file F09-15 to verify the operation.

Q
0

CLK

Q
1

1 2 3 4
FIGURE 9–14 Timing diagram

for the counters of Figure 9–12.

510 Counters

First, let’s look at Q0. Notice that Q0 changes on each clock pulse as the counter pro-

gresses from its original state to its final state and then back to its original state. To produce

this operation, FF0 must be held in the toggle mode by constant HIGHs on its J0 and K0

inputs. Notice that Q1 goes to the opposite state following each time Q0 is a 1. This change

occurs at CLK2, CLK4, CLK6, and CLK8. The CLK8 pulse causes the counter to recycle.

To produce this operation, Q0 is connected to the J1 and K1 inputs of FF1. When Q0 is a 1

and a clock pulse occurs, FF1 is in the toggle mode and therefore changes state. The other

times, when Q0 is a 0, FF1 is in the no-change mode and remains in its present state.

Next, let’s see how FF2 is made to change at the proper times according to the binary

sequence. Notice that both times Q2 changes state, it is preceded by the unique condi-

tion in which both Q0 and Q1 are HIGH. This condition is detected by the AND gate and

applied to the J2 and K2 inputs of FF2. Whenever both Q0 and Q1 are HIGH, the output of

the AND gate makes the J2 and K2 inputs of FF2 HIGH, and FF2 toggles on the following

clock pulse. At all other times, the J2 and K2 inputs of FF2 are held LOW by the AND gate

output, and FF2 does not change state.

The analysis of the counter in Figure 9–15 is summarized in Table 9–4.

TABLE 9–3

State sequence for a 3-bit binary counter.

Clock Pulse Q2 Q1 Q0

Initially 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 (recycles) 0 0 0

InfoNote

The TSC or time stamp counter in

some microprocessors is used for

performance monitoring, which

enables a number of parameters

important to the overall perform-

ance of a system to be determined

exactly. By reading the TSC before

and after the execution of a proce-

dure, the precise time required for

the procedure can be determined

based on the processor cycle time.

In this way, the TSC forms the

basis for all time evaluations in

connection with optimizing system

operation. For example, it can

be accurately determined which

of two or more programming

sequences is more efficient. This

is a very useful tool for compiler

developers and system program-

mers in producing the most effec-

tive code.

TABLE 9–4

Summary of the analysis of the counter in Figure 9–15.

Outputs J-K Inputs At the Next Clock Pulse

Clock Pulse Q2 Q1 Q0 J2 K2 J1 K1 J0 K0 FF2 FF1 FF0

Initially 0 0 0 0 0 0 0 1 1 NC* NC Toggle

1 0 0 1 0 0 1 1 1 1 NC Toggle Toggle

2 0 1 0 0 0 0 0 1 1 NC NC Toggle

3 0 1 1 1 1 1 1 1 1 Toggle Toggle Toggle

4 1 0 0 0 0 0 0 1 1 NC NC Toggle

5 1 0 1 0 0 1 1 1 1 NC Toggle Toggle

6 1 1 0 0 0 0 0 1 1 NC NC Toggle

7 1 1 1 1 1 1 1 1 1 Toggle Toggle Toggle

Counter recycles back to 000.

*NC indicates No Change.

A 4-Bit Synchronous Binary Counter

Figure 9–17(a) shows a 4-bit synchronous binary counter, and Figure 9–17(b) shows its

timing diagram. This particular counter is implemented with negative edge-triggered flip-

flops. The reasoning behind the J and K input control for the first three flip-flops is the

same as previously discussed for the 3-bit counter. The fourth stage, FF3, changes only

twice in the sequence. Notice that both of these transitions occur following the times that

Q0, Q1, and Q2 are all HIGH. This condition is decoded by AND gate G2 so that when a

 Synchronous Counters 511

clock pulse occurs, FF3 will change state. For all other times the J3 and K3 inputs of FF3

are LOW, and it is in a no-change condition.

A 4-Bit Synchronous Decade Counter

As you know, a BCD decade counter exhibits a truncated binary sequence and goes from

0000 through the 1001 state. Rather than going from the 1001 state to the 1010 state, it

recycles to the 0000 state. A synchronous BCD decade counter is shown in Figure 9–18.

The timing diagram for the decade counter is shown in Figure 9–19.

CLK

FF0 FF2 FF3FF1 Q
0

Q
1

Q
2

Q
3

Q
1

Q
0 G

1
G

2

Q
2

J
0

K
0

J
1

K
1

J
2

K
2

J
3

K
3

C

(a)

C C C

Q
0

Q
1

(b)

CLK

Q
0

Q
1

Q
2

Q
3

Q
0

Q
1

Q
0

Q
1

Q
2

Q
0

Q
1

Q
0

Q
1

Q
2

HIGH

FIGURE 9–17 A 4-bit synchronous binary counter and timing diagram. Times where the

AND gate outputs are HIGH are indicated by the shaded areas.

A decade counter has ten states.

Q
0

CLK

J
0

K
0

C

HIGH

FF0

Q
1

C

FF1

Q
2

C

FF2

J
1

K
1

J
2

K
2

C

J
3

K
3

Q
3

FF3

Q
3

FIGURE 9–18 A synchronous BCD decade counter. Open file F09-18 to verify operation.

512 Counters

The counter operation is shown by the sequence of states in Table 9–5. First, notice that

FF0 (Q0) toggles on each clock pulse, so the logic equation for its J0 and K0 inputs is

J0 = K0 = 1

This equation is implemented by connecting J0 and K0 to a constant HIGH level.

1 2 3 4 5CLK 6 7 8

Q
0

10 10 10 10 0

Q
1

10 10 1010

Q
2

00 11 1100

9 10

Q
3

00 00

0

0

1 1000

1

0

0

0

0

0

0

0

FIGURE 9–19 Timing diagram for the BCD decade counter (Q0 is the LSB).

TABLE 9–5

States of a BCD decade counter.

Clock Pulse Q3 Q2 Q1 Q0

Initially 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 (recycles) 0 0 0 0

Next, notice in Table 9–5 that FF1 (Q1) changes on the next clock pulse each time

Q0 = 1 and Q3 = 0, so the logic equation for the J1 and K1 inputs is

J1 = K1 = Q0Q3

This equation is implemented by ANDing Q0 and Q3 and connecting the gate output to the

J1 and K1 inputs of FF1.

Flip-flop 2 (Q2) changes on the next clock pulse each time both Q0 = 1 and Q1 = 1.

This requires an input logic equation as follows:

J2 = K2 = Q0Q1

This equation is implemented by ANDing Q0 and Q1 and connecting the gate output to the

J2 and K2 inputs of FF2.

Finally, FF3 (Q3) changes to the opposite state on the next clock pulse each time Q0 = 1,

Q1 = 1, and Q2 = 1 (state 7), or when Q0 = 1 and Q3 = 1 (state 9). The equation for

this is as follows:

J3 = K3 = Q0Q1Q2 + Q0Q3

This function is implemented with the AND/OR logic connected to the J3 and K3 inputs of

FF3 as shown in the logic diagram in Figure 9–18. Notice that the differences between this

 Synchronous Counters 513

decade counter and the modulus-16 binary counter in Figure 9–17(a) are the Q0Q3 AND

gate, the Q0Q3 AND gate, and the OR gate; this arrangement detects the occurrence of the

1001 state and causes the counter to recycle properly on the next clock pulse.

IMPLEMENTATION: 4-BIT SYNCHRONOUS BINARY COUNTER

Fixed-Function Device The 74HC163 is an example of an integrated circuit 4-bit syn-

chronous binary counter. A logic symbol is shown in Figure 9–20 with pin numbers in

parentheses. This counter has several features in addition to the basic functions previously

discussed for the general synchronous binary counter.

CLR

Q
0

CTR DIV 16

Q
1

Q
2

Q
3

D
3

D
2

D
1

D
0

(1)

LOAD
(9)

ENP
(7)

ENT
(10)

CCLK
(2)

(3) (4) (5) (6)

(14) (13) (12) (11)

TC = 15
(15)

RCO

Data outputs

Data inputs

FIGURE 9–20 The 74HC163 4-bit synchronous binary counter. (The qualifying label CTR

DIV 16 indicates a counter with sixteen states.)

First, the counter can be synchronously preset to any 4-bit binary number by applying

the proper levels to the parallel data inputs. When a LOW is applied to the LOAD input,

the counter will assume the state of the data inputs on the next clock pulse. Thus, the coun-

ter sequence can be started with any 4-bit binary number.

Also, there is an active-LOW clear input (CLR), which synchronously resets all four

flip-flops in the counter. There are two enable inputs, ENP and ENT. These inputs must

both be HIGH for the counter to sequence through its binary states. When at least one

input is LOW, the counter is disabled. The ripple clock output (RCO) goes HIGH when

the counter reaches the last state in its sequence of fifteen, called the terminal count

(TC = 15). This output, in conjunction with the enable inputs, allows these counters to be

cascaded for higher count sequences.

Figure 9–21 shows a timing diagram of this counter being preset to twelve (1100) and

then counting up to its terminal count, fifteen (1111). Input D0 is the least significant input

bit, and Q0 is the least significant output bit.

Let’s examine this timing diagram in detail. This will aid you in interpreting timing

diagrams in this chapter or on manufacturers’ data sheets. To begin, the LOW level pulse

on the CLR input causes all the outputs (Q0, Q1, Q2, and Q3) to go LOW.

Next, the LOW level pulse on the LOAD input synchronously enters the data on the

data inputs (D0, D1, D2, and D3) into the counter. These data appear on the Q outputs at the

time of the first positive-going clock edge after LOAD goes LOW. This is the preset opera-

tion. In this particular example, Q0 is LOW, Q1 is LOW, Q2 is HIGH, and Q3 is HIGH.

This, of course, is a binary 12 (Q0 is the LSB).

The counter now advances through states 13, 14, and 15 on the next three positive-

going clock edges. It then recycles to 0, 1, 2 on the following clock pulses. Notice that

514 Counters

both ENP and ENT inputs are HIGH during the state sequence. When ENP goes LOW, the

counter is inhibited and remains in the binary 2 state.

Programmable Logic Device (PLD) The VHDL code for a 4-bit synchronous decade

counter using J-K flip flops is as follows:

library ieee;

use ieee.std_logic_1164.all;

entity FourBitSynchDecadeCounter is

 port (Clk: in std_logic; Q0, Q1, Q2, Q3: inout std_logic);

end entity FourBitSynchDecadeCounter;

architecture LogicOperation of FourBitSynchDecadeCounter is

component jkff is

 port (J, K, Clk: in std_logic; Q: out std_logic);

end component jkff;

signal J1, J2, J3: std_logic;

begin

J1 6= Q0 and not Q3;

J2 6= Q1 and Q0;

J3 6= (Q2 and J2) or (Q0 and Q3);

FF0: jkff port map (J =7 ‘1’, K =7 ‘1’, Clk =7 Clk, Q =7 Q0);

FF1: jkff port map (J =7 J1, K =7 J1, Clk =7 Clk, Q =7 Q1);

FF2: jkff port map (J =7 J2, K =7 J2, Clk =7 Clk, Q =7 Q2);

FF3: jkff port map (J =7 J3, K =7 J3, Clk =7 Clk, Q =7 Q3);

end architecture LogicOperation;

Input and outputs

declared

Instantiations define

connections for each

flip-flop.

Component declaration for

the J-K flip-flop

D
0

Data
inputs

Outputs

D
1

D
2

D
3

Count Inhibit

Clear Preset

12 13 14 15 0 1 2

Q
0

Q
1

Q
2

Q
3

CLK

ENP

ENT

RCO

CLR

LOAD

FIGURE 9–21 Timing example for a 74HC163.

t

s
Boolean expressions for J input

of each flip-flop (J = K)
t

 Up/Down Synchronous Counters 515

SECTION 9–3 CHECKUP

 1. How does a synchronous counter differ from an asynchronous counter?

 2. Explain the function of the preset feature of counters such as the 74HC163.

 3. Describe the purpose of the ENP and ENT inputs and the RCO output for the

74HC163 counter.

9–4 Up/Down Synchronous Counters

An up/down counter is one that is capable of progressing in either direction through a

certain sequence. An up/down counter, sometimes called a bidirectional counter, can have

any specified sequence of states. A 3-bit binary counter that advances upward through

its sequence (0, 1, 2, 3, 4, 5, 6, 7) and then can be reversed so that it goes through the

sequence in the opposite direction (7, 6, 5, 4, 3, 2, 1, 0) is an illustration of up/down

sequential operation.

After completing this section, you should be able to

u Explain the basic operation of an up/down counter

u Discuss the 74HC190 up/down decade counter

In general, most up/down counters can be reversed at any point in their sequence. For

instance, the 3-bit binary counter can be made to go through the following sequence:

 UP UP

0, 1, 2, 3, 4, 5, 4, 3, 2, 3, 4, 5, 6, 7, 6, 5, etc.

 DOWN DOWN

Table 9–6 shows the complete up/down sequence for a 3-bit binary counter. The arrows

indicate the state-to-state movement of the counter for both its UP and its DOWN modes

of operation. An examination of Q0 for both the up and down sequences shows that FF0

toggles on each clock pulse. Thus, the J0 and K0 inputs of FF0 are

J0 = K0 = 1

¸̊ ˚̋ ˚̊ ˛ ¸˚˝˚˛

¸˝˛ ¸˝˛

TABLE 9–6

Up/Down sequence for a 3-bit binary counter.

Clock Pulse Up Q2 Q1 Q0 Down

0 [0 0 0

[

1 [0 0 1

[

2 [0 1 0

[

3 [0 1 1

[

4 [1 0 0

[

5 [1 0 1

[

6 [1 1 0

[

7 [1 1 1

[

For the up sequence, Q1 changes state on the next clock pulse when Q0 = 1. For the down

sequence, Q1 changes on the next clock pulse when Q0 = 0. Thus, the J1 and K1 inputs of

FF1 must equal 1 under the conditions expressed by the following equation:

J1 = K1 = (Q0
UP) + (Q0

DOWN)

516 Counters

For the up sequence, Q2 changes state on the next clock pulse when Q0 = Q1 = 1. For

the down sequence, Q2 changes on the next clock pulse when Q0 = Q1 = 0. Thus, the

J2 and K2 inputs of FF2 must equal 1 under the conditions expressed by the following

equation:

J2 = K2 = (Q0
Q1

UP) + (Q0
Q1

DOWN)

Each of the conditions for the J and K inputs of each flip-flop produces a toggle at the

appropriate point in the counter sequence.

Figure 9–22 shows a basic implementation of a 3-bit up/down binary counter using

the logic equations just developed for the J and K inputs of each flip-flop. Notice that the

UP/DOWN control input is HIGH for UP and LOW for DOWN.

Q
2

FF0

J
0

K
0

C

HIGH

CLK

Q
1

C

J
1

K
1

Q
1

Q
0

Q
0

FF1

Q
2

C

J
2

K
2

FF2

UP/DOWN

Q
0

• UP

Q
0

• DOWN
DOWN

UP

FIGURE 9–22 A basic 3-bit up/down synchronous counter. Open file F09-22 to verify

operation.

EXAMPLE 9–3

Show the timing diagram and determine the sequence of a 4-bit synchronous binary

up/down counter if the clock and UP/DOWN control inputs have waveforms as shown

in Figure 9–23(a). The counter starts in the all-0s state and is positive edge-triggered.

(b)

CLK

Q0

Q1

Q2

Q3

0 1

0

0

0

0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 1 0 1 1 0 0 1 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

Up Up

(a)

Down Down

UP/ DOWN

FIGURE 9–23

 Up/Down Synchronous Counters 517

Solution

The timing diagram showing the Q outputs is shown in Figure 9–23(b). From these

waveforms, the counter sequence is as shown in Table 9–7.

TABLE 9–7

Q3 Q2 Q1 Q0

0 0 0 0

0 0 0 1

0 0 1 0 UP

0 0 1 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1 DOWN

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 1 UP

0 0 1 0

0 0 0 1
DOWN

0 0 0 0

¸
˚
˝
˚
˛

¸
˚
˝
˚
˛

¸
˝
˛

¸
˝
˛

Related Problem

Show the timing diagram if the UP/DOWN control waveform in Figure 9–23(a) is

inverted.

IMPLEMENTATION: UP/DOWN DECADE COUNTER

Fixed-Function Device Figure 9–24 shows a logic diagram for the 74HC190, an example

of an integrated circuit up/down synchronous decade counter. The direction of the count is

determined by the level of the up/down input (D/U). When this input is HIGH, the counter

counts down; when it is LOW, the counter counts up. Also, this device can be preset to any

desired BCD digit as determined by the states of the data inputs when the LOAD input

is LOW.

(10)(15)

CTEN

Q
0

CTR DIV 10

Q
1

Q
2

Q
3

D
3

D
2

D
1

D
0

(4)

D/U
(5)

LOAD
(11)

CLK
(14)

C

(1) (9)

(3) (2) (6) (7)

(12)
MAX/MIN

(13)
RCO

FIGURE 9–24 The 74HC190 up/down synchronous decade counter.

518 Counters

library ieee;

use ieee.std_logic_1164.all;

entity UpDnDecadeCntr is

 port (UPDN, Clk: in std_logic; Q0, Q1, Q2, Q3: buffer std_logic);

end entity UpDnDecadeCntr;

architecture LogicOperation of UpDnDecadeCntr is

component jkff is

 port (J, K, Clk: in std_logic; Q: buffer std_logic);

end component jkff;

The MAX/MIN output produces a HIGH pulse when the terminal count nine (1001)

is reached in the UP mode or when the terminal count zero (0000) is reached in the

DOWN mode. The MAX/MIN output, the ripple clock output (RCO), and the count enable

input (CTEN) are used when cascading counters. (Cascaded counters are discussed in

Section 9–6.)

Figure 9–25 is a timing diagram that shows the 74HC190 counter preset to seven

(0111) and then going through a count-up sequence followed by a count-down sequence.

The MAX/MIN output is HIGH when the counter is in either the all-0s state (MIN) or the

1001 state (MAX).

D/U

CTEN

D
0

Data
inputs

Data
outputs

D
1

D
2

D
3

Count up Inhibit

7 8 9 0 1

Q
0

Q
1

Q
2

Q
3

Load

Count down

2 2 1 0 9 8 7

CLK

RCO

MAX /MIN

LOAD

2

FIGURE 9–25 Timing example for a 74HC190.

Programmable Logic Device (PLD) A VHDL code for an up/down decade counter using

J-K flip-flops is as follows:

UPDN: Counter direction

Clk: System clock

Q0-Q3: Counter output

J-K flip flop components

 Design of Synchronous Counters 519

SECTION 9–4 CHECKUP

 1. A 4-bit up/down binary counter is in the DOWN mode and in the 1010 state. On the

next clock pulse, to what state does the counter go?

 2. What is the terminal count of a 4-bit binary counter in the UP mode? In the DOWN

mode? What is the next state after the terminal count in the DOWN mode?

9–5 Design of Synchronous Counters

In this section, you will learn the six steps to design a counter (state machine). As you

learned in Section 9–1, sequential circuits can be classified into two types: (1) those in

which the output or outputs depend only on the present internal state (Moore state machines)

and (2) those in which the output or outputs depend on both the present state and the input

or inputs (Mealy state machines). This section is recommended for those who want an

introduction to counter design or to state machine design in general. It is not a prerequisite

for any other material.

After completing this section, you should be able to

u Develop a state diagram for a given sequence

u Develop a next-state table for a specified counter sequence

u Create a flip-flop transition table

u Use the Karnaugh map method to derive the logic requirements for a synchronous

counter

u Implement a counter to produce a specified sequence of states

Step 1: State Diagram

The first step in the design of a state machine (counter) is to create a state diagram. A state

diagram shows the progression of states through which the counter advances when it is

function UpDown(A, B, C, D: in std_logic)

 return std_logic is

begin

 return((A and B) or (C and D));

end function UpDown;

signal J1Up, J1Dn, J1, J2, J3: std_logic;

begin

 J1Up 6= UPDN and Q0; J1Dn <= not UPDN and not Q0;

 UpDn1: J1 6= UpDown(UPDN, Q0, not UPDN, not Q0);

 UpDn2: J2 6= UpDown(J1Up, Q1, J1Dn, not Q1);

 UpDn3: J3 6= UpDown(J1Up and Q1, Q2, J1Dn and not Q1, not Q2);

 FF0: jkff port map (J =7‘1’, K =7‘1’, Clk =7 Clk, Q =7 Q0);

 FF1: jkff port map (J =7 J1, K =7 J1, Clk =7 Clk, Q =7 Q1);

 FF2: jkff port map (J =7 J2, K =7 J2, Clk =7 Clk, Q =7 Q2);

 FF3: jkff port map (J =7 J3, K =7 J3, Clk =7 Clk, Q =7 Q3);

end architecture LogicOperation;

Identifiers J1, J2, and J3 complete the

up/down logic applied to the J and K

inputs of flip-flop stages FF0-FF1.

Using a function to perform operations

common to multiple tasks simplifies the

overall code design and implementation.

J1Up: Initial Up logic for FF1.

J1Dn: Initial Down logic for FF1.

J1-J3: Variable for combined UpDown applied to FF1-FF3.t
Flip-flop stages FF0-FF3 complete the

Up/Down counter.
t

Function UpDown is a helper function performing the common

logic between stages performed by the two AND gates applied

to the OR gate supplying the J K inputs of the next stage. See

Figure 9–22.

u

520 Counters

Step 2: Next-State Table

Once the sequential circuit is defined by a state diagram, the second step is to derive a

next-state table, which lists each state of the counter (present state) along with the cor-

responding next state. The next state is the state that the counter goes to from its present

state upon application of a clock pulse. The next-state table is derived from the state

diagram and is shown in Table 9–8 for the 3-bit Gray code counter. Q0 is the least sig-

nificant bit.

TABLE 9–8

Next-state table for 3-bit Gray code counter.

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 0 0 1

0 0 1 0 1 1

0 1 1 0 1 0

0 1 0 1 1 0

1 1 0 1 1 1

1 1 1 1 0 1

1 0 1 1 0 0

1 0 0 0 0 0

TABLE 9–9

Transition table for a J-K flip-flop.

Output Transitions Flip-Flop Inputs

QN QN 1 1 J K

0 ¡ 0 0 X

0 ¡ 1 1 X

1 ¡ 0 X 1

1 ¡ 1 X 0

QN: present state

QN + 1: next state

X: “don’t care”

Step 3: Flip-Flop Transition Table

Table 9–9 is a transition table for the J-K flip-flop. All possible output transitions are

listed by showing the Q output of the flip-flop going from present states to next states.

QN is the present state of the flip-flop (before a clock pulse) and QN + 1 is the next state

(after a clock pulse). For each output transition, the J and K inputs that will cause the

transition to occur are listed. An X indicates a “don’t care” (the input can be either a 1

or a 0).

To design the counter, the transition table is applied to each of the flip-flops in the

counter, based on the next-state table (Table 9–8). For example, for the present state 000,

001

011

010

110

100

101

111

000

FIGURE 9–26 State diagram for a 3-bit Gray code counter.

clocked. As an example, Figure 9–26 is a state diagram for a basic 3-bit Gray code counter.

This particular circuit has no inputs other than the clock and no outputs other than the

outputs taken off each flip-flop in the counter. You may wish to review the coverage of the

Gray code in Chapter 2 at this time.

 Design of Synchronous Counters 521

Q0 goes from a present state of 0 to a next state of 1. To make this happen, J0 must be a

1 and you don’t care what K0 is (J0 = 1, K0 = X), as you can see in the transition table

(Table 9–9). Next, Q1 is 0 in the present state and remains a 0 in the next state. For this

transition, J1 = 0 and K1 = X. Finally, Q2 is 0 in the present state and remains a 0 in the

next state. Therefore, J2 = 0 and K2 = X. This analysis is repeated for each present state

in Table 9–8.

Step 4: Karnaugh Maps

Karnaugh maps can be used to determine the logic required for the J and K inputs of each

flip-flop in the counter. There is a Karnaugh map for the J input and a Karnaugh map for

the K input of each flip-flop. In this design procedure, each cell in a Karnaugh map repre-

sents one of the present states in the counter sequence listed in Table 9–8.

From the J and K states in the transition table (Table 9–9) a 1, 0, or X is entered into each

present-state cell on the maps depending on the transition of the Q output for a particular

flip-flop. To illustrate this procedure, two sample entries are shown for the J0 and the K0

inputs to the least significant flip-flop (Q0) in Figure 9–27.

0 1

00

01

11

10

Q0

Q2Q1

X

1

J0 map

0 1

00

01

11

10

Q0

Q2Q1

1

X

K0 map

The values of J0 and K0 required
to produce the transition are
placed on each map in the
present-state cell.

The values of J0 and K0 required
to produce the transition are
placed on each map in the
present-state cell.

Output

Transitions

Flip-Flop

Inputs

QN QN+1

0
0
1
1

0
1
0
1

0
1
X
X

KJ

Present State Next State

Q2 Q2Q1 Q1Q0 Q0

0 1
0 1
0 0
1 0
1 1
1 1
1 0

0 00
0
1
1
1
1
0
0

0 1
0 1
0 0
1 0

0
1
1
1

1 11
1 10
1 00
0 00

For the present state 000, Q0

makes a transition from 0 to 1

to the next state.

For the present state 101, Q0

makes a transition from 1 to 0

to the next state.

Next-state table

Flip-flop transition table

X
X
1
0

FIGURE 9–27 Examples of the mapping procedure for the counter sequence

represented in Table 9–8 and Table 9–9.

The completed Karnaugh maps for all three flip-flops in the counter are shown in

 Figure 9–28. The cells are grouped as indicated and the corresponding Boolean expres-

sions for each group are derived.

522 Counters

Step 5: Logic Expressions for Flip-Flop Inputs

From the Karnaugh maps of Figure 9–28 you obtain the following expressions for the J and

K inputs of each flip-flop:

 J0 = Q2Q1 + Q2Q1 = Q2 � Q1

 K0 = Q2Q1 + Q2Q1 = Q2 � Q1

 J1 = Q2Q0

 K1 = Q2Q0

 J2 = Q1Q0

 K2 = Q1Q0

Step 6: Counter Implementation

The final step is to implement the combinational logic from the expressions for the J and

K inputs and connect the flip-flops to form the complete 3-bit Gray code counter as shown

in Figure 9–29.

Q
2
Q

1

Q
0

0 0

1 0

00

0 1

01

11

10

Q
2
Q

1

Q
0

000

0 1

01

11

10

Q
2
Q

1

Q
0

0

00

0 1

01

11

1000

1

0

Q
2
Q

1

Q
0

0 0

1 0

00

0 1

01

11

10

Q
2
Q

1

Q
0

00

0 1

01

11

10

Q
2
Q

1

Q
0

00

0 1

01

11

10

0

0

0

0 0Q
2
Q

0

X X

X X

X X

X X

X

X

X

X

X

X

X

XX X

X XX X

X X

J
2

map J
1

map J
0

map

K
2

map K
1

map K
0

map

Q
2
Q

1

Q
2
Q

1

Q
2
Q

1
Q

2
Q

0

Q
1
Q

0

Q
1
Q

0

11

1

1

1

Q
2
Q

1

FIGURE 9–28 Karnaugh maps for present-state J and K inputs.

CLK

FF0

J
0

C

Q
0

K
0

FF1

J
1

C

K
1

FF2

J
2

C

K
2

Q
0

Q
1

Q
1

Q
2

Q
2

FIGURE 9–29 Three-bit Gray code counter. Open file F09-29 to verify operation.

 Design of Synchronous Counters 523

A summary of steps used in the design of the 3-bit Gray code counter follows. In gen-

eral, these steps can be applied to any state machine.

 1. Specify the counter sequence and draw a state diagram.

 2. Derive a next-state table from the state diagram.

 3. Develop a transition table showing the flip-flop inputs required for each transition.

The transition table is always the same for a given type of flip-flop.

 4. Transfer the J and K states from the transition table to Karnaugh maps. There is a

Karnaugh map for each input of each flip-flop.

 5. Group the Karnaugh map cells to generate and derive the logic expression for each

flip-flop input.

 6. Implement the expressions with combinational logic, and combine with the flip-flops

to create the counter.

This procedure is now applied to the design of other synchronous counters in Examples

9–4 and 9–5.

EXAMPLE 9–4

Design a counter with the irregular binary count sequence shown in the state diagram of

Figure 9–30. Use D flip-flops.

001
 (1)

010
 (2)

111
 (7)

101
 (5)

FIGURE 9–30

Solution

Step 1: The state diagram is as shown. Although there are only four states, a 3-bit

counter is required to implement this sequence because the maximum binary

count is seven. Since the required sequence does not include all the possible

binary states, the invalid states (0, 3, 4, and 6) can be treated as “don’t cares”

in the design. However, if the counter should erroneously get into an invalid

state, you must make sure that it goes back to a valid state.

Step 2: The next-state table is developed from the state diagram and is given in

Table 9–10.

TABLE 9–10

Next-state table.

Present State Next State

Q2 Q1 Q0 Q2 Q1 Q0

0 0 1 0 1 0

0 1 0 1 0 1

1 0 1 1 1 1

1 1 1 0 0 1

524 Counters

Step 3: The transition table for the D flip-flop is shown in Table 9–11.

TABLE 9–11

Transition table for a D flip-flop.

Output Transitions Flip-Flop Input

QN QN 1 1 D

0 ¡ 0 0

0 ¡ 1 1

1 ¡ 0 0

1 ¡ 1 1

Step 4: The D inputs are plotted on the present-state Karnaugh maps in Figure 9–31.

Also “don’t cares” can be placed in the cells corresponding to the invalid

states of 000, 011, 100, and 110, as indicated by the red Xs.

Q
2
Q

1

Q
0

00

0 1

01

11

10

Q
2
Q

1

Q
0

00

0 1

01

11

10

Q
2
Q

1

Q
0

00

01

11

10

0 1

X

X

X

X

0

1

X

X

X

X

0

0

X

X

X

X

1

1

1

01

1

1

0

D
2
 map D

1
 map D

0
 map

Q
2
Q

1

Q
0

Q
0

Q
1

Q
2

FIGURE 9–31

Step 5: Group the 1s, taking advantage of as many of the “don’t care” states as pos-

sible for maximum simplification, as shown in Figure 9–31. The expression

for each D input taken from the maps is as follows:

 D0 = Q0 + Q2

 D1 = Q1

 D2 = Q0 + Q2Q1

Step 6: The implementation of the counter is shown in Figure 9–32.

Q
0

CLK

Q
1

Q
2

C C

D
0

D
1

D
2

C

Q
0

Q
1

FIGURE 9–32

 Design of Synchronous Counters 525

An analysis shows that if the counter, by accident, gets into one of the invalid states

(0, 3, 4, 6), it will always return to a valid state according to the following sequences:

0 S 3 S 4 S 7, and 6 S 1.

Related Problem

Verify the analysis that proves the counter will always return (eventually) to a valid

state from an invalid state.

Step 2: The next-state table is derived from the state diagram and is shown in Table 9–12. Notice that for each present state

there are two possible next states, depending on the UP/DOWN control variable, Y.

EXAMPLE 9–5

Develop a synchronous 3-bit up/down counter with a Gray code sequence using J-K flip-flops. The counter should count up

when an UP/DOWN control input is 1 and count down when the control input is 0.

Solution

Step 1: The state diagram is shown in Figure 9–33. The 1 or 0 beside each arrow indicates the state of the UP/DOWN

control input, Y.

1

001

011

010

110

100

101

111

000

0

0
1

0

1

1

0

1

Y = 1

Y = 0

0

1
0

0

1

FIGURE 9–33 State diagram for a 3-bit up/down Gray code counter.

TABLE 9–12

Next-state table for 3-bit up/down Gray code counter.

Next State

Present State Y � 0 (DOWN) Y � 1 (UP)

Q2 Q1 Q0 Q2 Q1 Q0 Q2 Q1 Q0

0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 1

0 1 1 0 0 1 0 1 0

0 1 0 0 1 1 1 1 0

1 1 0 0 1 0 1 1 1

1 1 1 1 1 0 1 0 1

1 0 1 1 1 1 1 0 0

1 0 0 1 0 1 0 0 0

Y = UP/ DOWN control input.

526 Counters

Step 3: The transition table for the J-K flip-flops is repeated in Table 9–13.

TABLE 9–13

Transition table for a J-K flip-flop.

Output Transitions Flip-Flop Inputs

QN QN 1 1 J K

0 ¡ 0 0 X

0 ¡ 1 1 X

1 ¡ 0 X 1

1 ¡ 1 X 0

Step 4: The Karnaugh maps for the J and K inputs of the flip-flops are shown in Figure 9–34. The UP/DOWN control

input, Y, is considered one of the state variables along with Q0, Q1, and Q2. Using the next-state table, the informa-

tion in the “Flip-Flop Inputs” column of Table 9–13 is transferred onto the maps as indicated for each present state

of the counter.

Q
2
Q

1

Q
0
Y

1

0

00

00 01

01

11

10

1

0 00

0 0

11 10

Q
2
Q

1

Q
0
Y

1

0

00

00 01

01

11

10 1

0 00

0 0

11 10

Q
1
Q

0
Y

Q
1
Q

0
Y

Q
1
Q

0
Y

Q
1
Q

0
Y

X X X X

X X X X

X X X X

X X X X

J
2

map

K
2

map

Q
2
Q

1

Q
0
Y

00

00 01

01

11

10

10 00

0

11 10

0 0 1

Q
2
Q

1

Q
0
Y

00

00 01

01

11

10

10 00

0

11 10

0 0 1

Q
2
Q

0
Y

Q
2
Q

0
Y

Q
2
Q

0
Y

Q
2
Q

0
Y

X X X X

X X X X

X X X X

X X X X

J
1

map

K
1

map

Q
2
Q

1

Q
0
Y

1 0

00

00 01

01

11

10

0

11 10

1

1 0

0 1

Q
2
Q

1

Q
0
Y

0

00

00 01

01

11

10

0

11 10

1

0

0 1

Q
2
Q

1
Y

Q
2
Q

1
Y

Q
2
Q

1
Y

Q
2
Q

1
Y

Q
2
Q

1
Y

Q
2
Q

1
Y

Q
2
Q

1
Y

Q
2
Q

1
Y

X X

X X

X X

X X

X X

X X

X X

X X

J
0

map

K
0

map

1

1

FIGURE 9–34 J and K maps for Table 9–12. The UP/DOWN control input, Y, is treated

as a fourth variable.

Step 5: The 1s are combined in the largest possible groupings, with “don’t cares” (Xs) used where possible. The groups

are factored, and the expressions for the J and K inputs are as follows:

 J0 = Q2Q1Y + Q2Q1Y + Q2Q1Y + Q2Q1Y K0 = Q2Q1Y + Q2Q1Y + Q2Q1Y + Q2Q1Y

 J1 = Q2Q0Y + Q2Q0Y K1 = Q2Q0Y + Q2Q0Y

 J2 = Q1Q0Y + Q1Q0Y K2 = Q1Q0Y + Q1Q0Y

Step 6: The J and K equations are implemented with combinational logic. This step is the Related Problem.

Related Problem

Specify the number of flip-flops, gates, and inverters that are required to implement the logic described in Step 5.

 Cascaded Counters 527

SECTION 9–5 CHECKUP

 1. A flip-flop is presently in the RESET state and must go to the SET state on the next

clock pulse. What must J and K be?

 2. A flip-flop is presently in the SET state and must remain SET on the next clock pulse.

What must J and K be?

 3. A binary counter is in the Q3Q2Q1Q0 = 1010 state.

(a) What is its next state?

(b) What condition must exist on each flip-flop input to ensure that it goes to the

proper next state on the clock pulse?

9–6 Cascaded Counters

Counters can be connected in cascade to achieve higher-modulus operation. In essence,

 cascading means that the last-stage output of one counter drives the input of the next counter.

After completing this section, you should be able to

u Determine the overall modulus of cascaded counters

u Analyze the timing diagram of a cascaded counter configuration

u Use cascaded counters as a frequency divider

u Use cascaded counters to achieve specified truncated sequences

Asynchronous Cascading

An example of two asynchronous counters connected in cascade is shown in Figure 9–35

for a 2-bit and a 3-bit ripple counter. The timing diagram is shown in Figure 9–36. Notice

J0

Q
0

K0

CLK C

J1

K1

C

J2

Q
2

K2

C

J3

Q
3

K3

C

J4

K4
Q

1

Modulus-4 counter Modulus-8 counter

Q
4

C

HIGH HIGH

FIGURE 9–35 Two cascaded asynchronous counters (all J and K inputs are HIGH).

CLK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Q
0

Q
1

Q
2

Q
3

Q
4

FIGURE 9–36 Timing diagram for the cascaded counter configuration of Figure 9–35.

528 Counters

that the final output of the modulus-8 counter, Q4, occurs once for every 32 input clock

pulses. The overall modulus of the two cascaded counters is 4 * 8 = 32; that is, they act

as a divide-by-32 counter.

Synchronous Cascading

When operating synchronous counters in a cascaded configuration, it is necessary to use

the count enable and the terminal count functions to achieve higher-modulus operation.

On some devices the count enable is labeled simply CTEN (or some other designation

such as G), and terminal count (TC) is analogous to ripple clock output (RCO) on some IC

counters.

Figure 9–37 shows two decade counters connected in cascade. The terminal count (TC)

output of counter 1 is connected to the count enable (CTEN) input of counter 2. Counter 2

is inhibited by the LOW on its CTEN input until counter 1 reaches its last, or terminal, state

and its terminal count output goes HIGH. This HIGH now enables counter 2, so that when

the first clock pulse after counter 1 reaches its terminal count (CLK10), counter 2 goes

from its initial state to its second state. Upon completion of the entire second cycle of coun-

ter 1 (when counter 1 reaches terminal count the second time), counter 2 is again enabled

and advances to its next state. This sequence continues. Since these are decade counters,

counter 1 must go through ten complete cycles before counter 2 completes its first cycle.

In other words, for every ten cycles of counter 1, counter 2 goes through one cycle. Thus,

counter 2 will complete one cycle after one hundred clock pulses. The overall modulus of

these two cascaded counters is 10 * 10 = 100.

The overall modulus of cascaded
counters is equal to the product of
the individual moduli.

InfoNote

The time stamp counter (TSC),

mentioned in the last InfoNote, is

a 64-bit counter. It is interesting

to observe that if this counter (or

any full-modulus 64-bit counter)

is clocked at a frequency of 1 GHz,

it will take 583 years for it to go

through all of its states and reach

its terminal count. In contrast,

a 32-bit full-modulus counter

will exhaust all of its states in

approximately 4.3 seconds when

clocked at 1 GHz. The difference is

astounding.

Q
0

CTR DIV 10

Q
1

Q
2

Q
3

CLK

TC

HIGH

CTEN

Q
0

CTR DIV 10

Q
1

Q
2

Q
3

C

CTEN TC

ƒ
in

10

ƒ
in

100

ƒ
in

C

Counter 1 Counter 2

FIGURE 9–37 A modulus-100 counter using two cascaded decade counters.

CTR DIV 10

C1 MHz

TC

HIGH

CTEN

CTR DIV 10

CTEN TC

CTR DIV 10

C

CTEN TC

100 kHz 10 kHz 1 kHz

C

FIGURE 9–38 Three cascaded decade counters forming a divide-by-1000 frequency

divider with intermediate divide-by-10 and divide-by-100 outputs.

When viewed as a frequency divider, the circuit of Figure 9–37 divides the input clock

frequency by 100. Cascaded counters are often used to divide a high-frequency clock sig-

nal to obtain highly accurate pulse frequencies. Cascaded counter configurations used for

such purposes are sometimes called countdown chains. For example, suppose that you have

a basic clock frequency of 1 MHz and you wish to obtain 100 kHz, 10 kHz, and 1 kHz;

a series of cascaded decade counters can be used. If the 1 MHz signal is divided by 10,

the output is 100 kHz. Then if the 100 kHz signal is divided by 10, the output is 10 kHz.

Another division by 10 produces the 1 kHz frequency. The general implementation of this

countdown chain is shown in Figure 9–38.

 Cascaded Counters 529

EXAMPLE 9–6

Determine the overall modulus of the two cascaded counter configurations in Figure 9–39.

CTR DIV 8 CTR DIV 12 CTR DIV 16

(a)

CTR DIV 10 CTR DIV 4 CTR DIV 7

(b)

CTR DIV 5Input Output

Input Output

FIGURE 9–39

Solution

In Figure 9–39(a), the overall modulus for the 3-counter configuration is

8 * 12 * 16 = 1536

In Figure 9–39(b), the overall modulus for the 4-counter configuration is

10 * 4 * 7 * 5 = 1400

Related Problem

How many cascaded decade counters are required to divide a clock frequency by 100,000?

EXAMPLE 9–7

Use 74HC190 up/down decade counters connected in the UP mode to obtain a 10 kHz waveform from a 1 MHz clock.

Show the logic diagram.

Solution

To obtain 10 kHz from a 1 MHz clock requires a division factor of 100. Two 74HC190 counters must be cascaded as shown

in Figure 9–40. The left counter produces a terminal count (MAX/MIN) pulse for every 10 clock pulses. The right counter

produces a terminal count (MAX/MIN) pulse for every 100 clock pulses.

D
3

D
2

D
1

D
0

D
3

D
2

D
1

D
0

Q
0

CTR DIV 10

Q
1

Q
2

Q
3

(11)

(4)

(5)
D/U

(14)

MAX/MIN
(12)

10 kHzCTEN

C

Q
0

CTR DIV 10

Q
1

Q
2

Q
3

(11)

(4)

(5)

(14)

(12)

C

CLK

LOADLOAD

1 MHz

(3) (2) (6) (7) (3) (2) (6) (7)

(15) (1) (10) (9)(15) (1) (10) (9)

LOAD

D/U

CTEN

LOAD

MAX/MIN

FIGURE 9–40 A divide-by-100 counter using two 74HC190 up/down decade counters

connected for the up sequence.

Related Problem

Determine the frequency of the waveform at the Q0 output of the second counter (the one on the right) in Figure 9–40.

530 Counters

Cascaded Counters with Truncated Sequences

The preceding discussion has shown how to achieve an overall modulus (divide-by-factor)

that is the product of the individual moduli of all the cascaded counters. This can be con-

sidered full-modulus cascading.

Often an application requires an overall modulus that is less than that achieved by full-

modulus cascading. That is, a truncated sequence must be implemented with cascaded

counters. To illustrate this method, we will use the cascaded counter configuration in

Figure 9–41. This particular circuit uses four 74HC161 4-bit synchronous binary coun-

ters. If these four counters (sixteen bits total) were cascaded in a full-modulus arrange-

ment, the modulus would be

216
= 65,536

LOAD

0000

ENT RCO

C

CLK

HIGH

ENP

CTR DIV 16

D
0

D
1

D
2

D
3

LSD 0
16

0011

ENT RCO

C

ENP

CTR DIV 16

D
0

D
1

D
2

D
3

C
16

1100

ENT RCO

C

ENP

CTR DIV 16

D
0

D
1

D
2

D
3

3
16

0110

ENT RCO

C

ENP

CTR DIV 16

D
0

D
1

D
2

D
3

MSD6
16

Output

FIGURE 9–41 A divide-by-40,000 counter using 74HC161 4-bit binary counters. Note

that each of the parallel data inputs is shown in binary order (the right-most bit D0 is the

LSB in each counter).

Let’s assume that a certain application requires a divide-by-40,000 counter (modulus

40,000). The difference between 65,536 and 40,000 is 25,536, which is the number of

states that must be deleted from the full-modulus sequence. The technique used in the cir-

cuit of Figure 9–41 is to preset the cascaded counter to 25,536 (63C0 in hexadecimal) each

time it recycles, so that it will count from 25,536 up to 65,535 on each full cycle. Therefore,

each full cycle of the counter consists of 40,000 states.

Notice in Figure 9–41 that the RCO output of the right-most counter is inverted and

applied to the LOAD input of each 4-bit counter. Each time the count reaches its terminal

value of 65,535, which is 11111111111111112, RCO goes HIGH and causes the number

on the parallel data inputs (63C016) to be synchronously loaded into the counter with the

clock pulse. Thus, there is one RCO pulse from the right-most 4-bit counter for every

40,000 clock pulses.

With this technique any modulus can be achieved by synchronous loading of the counter

to the appropriate initial state on each cycle.

SECTION 9–6 CHECKUP

 1. How many decade counters are necessary to implement a divide-by-1000 (modulus-

1000) counter? A divide-by-10,000?

 2. Show with general block diagrams how to achieve each of the following, using a flip-

flop, a decade counter, and a 4-bit binary counter, or any combination of these:

(a) Divide-by-20 counter (b) Divide-by-32 counter

(c) Divide-by-160 counter (d) Divide-by-320 counter

 Counter Decoding 531

9–7 Counter Decoding

In many applications, it is necessary that some or all of the counter states be decoded.

The decoding of a counter involves using decoders or logic gates to determine when

the counter is in a certain binary state in its sequence. For instance, the terminal count

function previously discussed is a single decoded state (the last state) in the counter

sequence.

After completing this section, you should be able to

u Implement the decoding logic for any given state in a counter sequence

u Explain why glitches occur in counter decoding logic

u Use the method of strobing to eliminate decoding glitches

Suppose that you wish to decode binary state 6 (110) of a 3-bit binary counter. When

Q2 = 1, Q1 = 1, and Q0 = 0, a HIGH appears on the output of the decoding gate, indi-

cating that the counter is at state 6. This can be done as shown in Figure 9–42. This is called

active-HIGH decoding. Replacing the AND gate with a NAND gate provides active-LOW

decoding.

EXAMPLE 9–8

Implement the decoding of binary state 2 and binary state 7 of a 3-bit synchronous

counter. Show the entire counter timing diagram and the output waveforms of the

decoding gates. Binary 2 = Q2Q1Q0 and binary 7 = Q2Q1Q0.

Solution

See Figure 9–43. The 3-bit counter was originally discussed in Section 9–3 (Figure 9–15).

HIGH

CLK

1 11

LSB MSB

Decoded 6

Q0

Q2Q1Q0

C

J2

K2

C

J1

K1

C

J0

K0

Q0

Q1

Q1

Q2

Q2

FIGURE 9–42 Decoding of state 6 (110). Open file F09-42 to verify operation.

532 Counters

Related Problem

Show the logic for decoding state 5 in the 3-bit counter.

C

Q
0

C

CLK

HIGH

LSB
Q

1
Q

2

CLK 1 2 3 4 5 6 7 8

Q
0

Q
1

Q
2

7

MSB
FF0 FF1 FF2

2

2

7

Decoded
outputs

J
2

K
2

J
1

K
1

J
0

K
0

Q
0

Q
2

C

FIGURE 9–43 A 3-bit counter with active-HIGH decoding of count 2 and count 7.

Open file F09-43 to verify operation.

Decoding Glitches

The problem of glitches produced by the decoding process was discussed in Chapter 6. As

you have learned, the propagation delays due to the ripple effect in asynchronous coun-

ters create transitional states in which the counter outputs are changing at slightly dif-

ferent times. These transitional states produce undesired voltage spikes of short duration

(glitches) on the outputs of a decoder connected to the counter. The glitch problem can also

occur to some degree with synchronous counters because the propagation delays from the

clock to the Q outputs of each flip-flop in a counter can vary slightly.

Figure 9–44 shows a basic asynchronous BCD decade counter connected to a BCD-to-

decimal decoder. To see what happens in this case, let’s look at a timing diagram in which the

propagation delays are taken into account, as shown in Figure 9–45. Notice that these delays

cause false states of short duration. The value of the false binary state at each critical transi-

tion is indicated on the diagram. The resulting glitches can be seen on the decoder outputs.

A glitch is an unwanted spike of
voltage.

 Counter Decoding 533

One way to eliminate the glitches is to enable the decoded outputs at a time after the

glitches have had time to disappear. This method is known as strobing and can be accom-

plished in the case of an active-HIGH clock by using the LOW level of the clock to enable

the decoder, as shown in Figure 9–46. The resulting improved timing diagram is shown in

Figure 9–47.

BCD/DEC

EN 9

8

4

2

1

8

7

6

5

4

3

2

1

0

CTR DIV 10

Q
0

Q
1

Q
2

Q
3

CCLK

FIGURE 9–44 A basic decade (BCD) counter and decoder.

CLK 1 2 3 4 5 6 7 8 9 10

Q
0

Q
1

Q
2

Q
3

1

2

3

4

5

6

7

8

9

0

0000 1000

Counter
outputs

Decoder
outputs

0010

0100

0000
0110

0100

0000

FIGURE 9–45 Outputs with glitches from the decoder in Figure 9–44. Glitch widths are

exaggerated for illustration and are usually only a few nanoseconds wide.

534 Counters

BCD/DEC

EN 9

8

4

2

1

8

7

6

5

4

3

2

1

0

CTR DIV 10

Q
0

Q
1

Q
2

Q
3

C

CLK/STROBE

FIGURE 9–46 The basic decade counter and decoder with strobing to eliminate glitches.

1 2 3 4 5

Decoder
outputs

6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

CLK/STROBE

FIGURE 9–47 Strobed decoder outputs for the circuit of Figure 9–46.

SECTION 9–7 CHECKUP

 1. What transitional states are possible when a 4-bit asynchronous binary counter

changes from

(a) count 2 to count 3 (b) count 3 to count 4

(c) count 1010 to count 1110 (d) count 15 to count 0

9–8 Counter Applications

The digital counter is a useful and versatile device that is found in many applications. In

this section, some representative counter applications are presented.

After completing this section, you should be able to

u Describe how counters are used in a basic digital clock system

u Explain how a divide-by-60 counter is implemented and how it is used in a digital

clock

 Counter Applications 535

u Explain how the hours counter is implemented

u Discuss the application of a counter in an automobile parking control system

u Describe how a counter is used in the process of parallel-to-serial data conversion

A Digital Clock

A common example of a counter application is in timekeeping systems. Figure 9–48 is a

simplified logic diagram of a digital clock that displays seconds, minutes, and hours. First,

a 60 Hz sinusoidal ac voltage is converted to a 60 Hz pulse waveform and divided down to

a 1 Hz pulse waveform by a divide-by-60 counter formed by a divide-by-10 counter fol-

lowed by a divide-by-6 counter. Both the seconds and minutes counts are also produced by

divide-by-60 counters, the details of which are shown in Figure 9–49. These counters count

from 0 to 59 and then recycle to 0; synchronous decade counters are used in this particular

implementation. Notice that the divide-by-6 portion is formed with a decade counter with

a truncated sequence achieved by using the decoder count 6 to asynchronously clear the

counter. The terminal count, 59, is also decoded to enable the next counter in the chain.

Seconds counter (divide-by-60)Hours counter Minutes counter (divide-by-60)

Seconds

BCD/7-seg

EN
C

CTR DIV 6

(0–9)

BCD/7-seg

EN

C

CTR DIV 10

(0–5)

Minutes

BCD/7-seg

EN
C

CTR DIV 6

(0–9)

BCD/7-seg

EN
C

CTR DIV 10

(0–5)

Hours

BCD/7-seg

FF

C

(0–9)

BCD/7-seg

EN
C

(0–1)

C

CTR DIV 10

EN

CTR DIV 6

C

1 Hz60 Hz
Wave-

shaping
circuit

60 Hz ac

Divide-by-60

Q
CTR DIV 10

FIGURE 9–48 Simplified logic diagram for a 12-hour digital clock. Logic details using

specific devices are shown in Figures 9–49 and 9–50.

The hours counter is implemented with a decade counter and a flip-flop as shown in Figure

9–50. Consider that initially both the decade counter and the flip-flop are RESET, and the

decode-12 gate and decode-9 gate outputs are HIGH. The decade counter advances through all

of its states from zero to nine, and on the clock pulse that recycles it from nine back to zero, the

flip-flop goes to the SET state (J = 1, K = 0). This illuminates a 1 on the tens-of-hours dis-

play. The total count is now ten (the decade counter is in the zero state and the flip-flop is SET).

536 Counters

Next, the total count advances to eleven and then to twelve. In state 12 the Q2 output of

the decade counter is HIGH, the flip-flop is still SET, and thus the decode-12 gate output

is LOW. This activates the LOAD input of the decade counter. On the next clock pulse, the

decade counter is preset to 0001 from the data inputs, and the flip-flop is RESET (J = 0,

K = 1). As you can see, this logic always causes the counter to recycle from twelve back

to one rather than back to zero.

Automobile Parking Control

This counter example illustrates the use of an up/down counter to solve an everyday prob-

lem. The problem is to devise a means of monitoring available spaces in a one-hundred-

space parking garage and provide for an indication of a full condition by illuminating a

display sign and lowering a gate bar at the entrance.

CLR CTR DIV 6

HIGH
CTEN

C

Q
3

CTR DIV 10

Q
2

Q
1

Q
0

CTEN
TC = 9

C

CLK

units

CLR CLR

To next
counter

Q
3

Q
2

Q
1

Q
0

Decode 6

Decode 59

TC = 59
To ENABLE
of next CTR

tens

FIGURE 9–49 Logic diagram of typical divide-by-60 counter using synchronous decade

counters. Note that the outputs are in binary order (the right-most bit is the LSB).

LOAD

0 0 0 1

J

K

D
3

D
2

D
1

D
0

Q
3

Q
2

Q
1

Q
0

CLK

Q

Decode
12

BCD/7-seg

8 4 2 1

g f e d c b a

BCD/7-seg

8 4 2 1

g f e d c b a

To units-of-hours
display

To tens-of-hours
display

CTR DIV 10

G
2

G
1

Decode 9

FIGURE 9–50 Logic diagram for hours counter and decoders. Note that on the counter

inputs and outputs, the right-most bit is the LSB.

 Counter Applications 537

A system that solves this problem consists of optoelectronic sensors at the entrance and

exit of the garage, an up/down counter and associated circuitry, and an interface circuit that

uses the counter output to turn the FULL sign on or off as required and lower or raise the

gate bar at the entrance. A general block diagram of this system is shown in Figure 9–51.

CTR DIV 100

Entrance
sensor

Exit
sensor

UP

DOWN

Interface

Gate
activation

On/Off

Lower/Raise

Full
indication

count

Terminal

FIGURE 9–51 Functional block diagram for parking garage control.

CTR DIV 10

CTEN

D/U

C

CTR DIV 10

CTEN RCO

C

MAX /MIN

(to interface)
HIGH activates
FULL sign and
lowers gate.

S

R Q

From
entrance

sensor D/U

From
exit

sensor

FIGURE 9–52 Logic diagram for modulus-100 up/down counter for automobile parking

control.

Incrementing a counter increases its
count by one.

Decrementing a counter decreases its
count by one.

A logic diagram of the up/down counter is shown in Figure 9–52. It consists of two cas-

caded up/down decade counters. The operation is described in the following paragraphs.

The counter is initially preset to 0 using the parallel data inputs, which are not shown.

Each automobile entering the garage breaks a light beam, activating a sensor that produces

an electrical pulse. This positive pulse sets the S-R latch on its leading edge. The LOW on the

Q output of the latch puts the counter in the UP mode. Also, the sensor pulse goes through

the NOR gate and clocks the counter on the LOW-to-HIGH transition of its trailing edge.

Each time an automobile enters the garage, the counter is advanced by one (incremented).

When the one-hundredth automobile enters, the counter goes to its last state (10010). The

MAX/MIN output goes HIGH and activates the interface circuit (no detail), which lights the

FULL sign and lowers the gate bar to prevent further entry.

When an automobile exits, an optoelectronic sensor produces a positive pulse, which

resets the S-R latch and puts the counter in the DOWN mode. The trailing edge of the clock

decreases the count by one (decremented). If the garage is full and an automobile leaves, the

MAX/MIN output of the counter goes LOW, turning off the FULL sign and raising the gate.

Parallel-to-Serial Data Conversion (Multiplexing)

A simplified example of data transmission using multiplexing and demultiplexing tech-

niques was introduced in Chapter 6. Essentially, the parallel data bits on the multiplexer

inputs are converted to serial data bits on the single transmission line. A group of bits

appearing simultaneously on parallel lines is called parallel data. A group of bits appearing

on a single line in a time sequence is called serial data.

Parallel-to-serial conversion is normally accomplished by the use of a counter to provide

a binary sequence for the data-select inputs of a data selector/multiplexer, as illustrated in

Figure 9–53. The Q outputs of the modulus-8 counter are connected to the data-select

inputs of an 8-bit multiplexer.

538 Counters

Figure 9–54 is a timing diagram illustrating the operation of this circuit. The first byte

(eight-bit group) of parallel data is applied to the multiplexer inputs. As the counter goes

through a binary sequence from zero to seven, each bit, beginning with D0, is sequentially

0

2

Data
Select

Q
0

Q
1

Q
2

0

1

3

5

7

2

Serial
data out

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

6

CLK

Parallel
data in

MUXCTR DIV 8

C

4

FIGURE 9–53 Parallel-to-serial data conversion logic.

CLK

Q
1

Q
2

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

Data
out

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1 0

0 0

0 1

1 0

1 1

1 0

0 1

1 0

Q
0

1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0

1st byte 2nd byte

Data
select

Data
in

FIGURE 9–54 Example of parallel-to-serial conversion timing for the circuit in Figure 9–53.

InfoNote

Computers contain an internal

counter that can be programmed

for various frequencies and tone

durations, thus producing “music.”

To select a particular tone, the

programmed instruction selects a

divisor that is sent to the counter.

The divisor sets the counter up to

divide the basic peripheral clock

frequency to produce an audio

tone. The duration of a tone can

also be set by a programmed

instruction; thus, a basic counter

is used to produce melodies by

controlling the frequency and dura-

tion of tones.

 Logic Symbols with Dependency Notation 539

selected and passed through the multiplexer to the output line. After eight clock pulses the

data byte has been converted to a serial format and sent out on the transmission line. When

the counter recycles back to 0, the next byte is applied to the data inputs and is sequentially

converted to serial form as the counter cycles through its eight states. This process contin-

ues repeatedly as each parallel byte is converted to a serial byte.

SECTION 9–8 CHECKUP

 1. Explain the purpose of each NAND gate in Figure 9–50.

 2. Identify the two recycle conditions for the hours counter in Figure 9–48, and explain

the reason for each.

9–9 Logic Symbols with Dependency Notation

Up to this point, the logic symbols with dependency notation specified in ANSI/IEEE Stan-

dard 91-1984 have been introduced on a limited basis. In many cases, the symbols do not

deviate greatly from the traditional symbols. A significant departure does occur, however, for

some devices, including counters and other more complex devices. Although we will continue

to use primarily the more traditional symbols throughout this book, a brief coverage of logic

symbols with dependency notation is provided. A specific IC counter is used as an example.

After completing this section, you should be able to

u Interpret logic symbols that include dependency notation

u Identify the common block and the individual elements of a counter symbol

u Interpret the qualifying symbol

u Discuss control dependency

u Discuss mode dependency

u Discuss AND dependency

Dependency notation is fundamental to the ANSI/IEEE standard. Dependency notation

is used in conjunction with the logic symbols to specify the relationships of inputs and

outputs so that the logical operation of a given device can be determined entirely from its

logic symbol without a prior knowledge of the details of its internal structure and without a

detailed logic diagram for reference. This coverage of a specific logic symbol with depen-

dency notation is intended to aid in the interpretation of other such symbols that you may

encounter in the future.

The 74HC163 4-bit synchronous binary counter is used for illustration. For comparison,

Figure 9–55 shows a traditional block symbol and the ANSI/IEEE symbol with depen-

dency notation. Basic descriptions of the symbol and the dependency notation follow.

Common Control Block

The upper block with notched corners in Figure 9–55(b) has inputs and an output that are

considered common to all elements in the device and not unique to any one of the elements.

Individual Elements

The lower block in Figure 9–55(b), which is partitioned into four abutted sections, repre-

sents the four storage elements (D flip-flops) in the counter, with inputs D0, D1, D2, and D3

and outputs Q0, Q1, Q2, and Q3.

Qualifying Symbol

The label “CTR DIV 16” in Figure 9–55(b) identifies the device as a counter (CTR) with

sixteen states (DIV 16).

540 Counters

Control Dependency (C)

As shown in Figure 9–55(b), the letter C denotes control dependency. Control inputs usu-

ally enable or disable the data inputs (D, J, K, S, and R) of a storage element. The C input

is usually the clock input. In this case the digit 5 following C (C5/2,3,4+) indicates that the

inputs labeled with a 5 prefix are dependent on the clock (synchronous with the clock). For

example, 5CT = 0 on the CLR input indicates that the clear function is dependent on the

clock; that is, it is a synchronous clear. When the CLR input is LOW (0), the counter is reset

to zero (CT = 0) on the triggering edge of the clock pulse. Also, the 5 D label at the input

of storage element [1] indicates that the data storage is dependent on (synchronous with)

the clock. All labels in the [1] storage element apply to the [2], [4], and [8] elements below

it since they are not labeled differently.

Mode Dependency (M)

As shown in Figure 9–55(b), the letter M denotes mode dependency. This label is used to

indicate how the functions of various inputs or outputs depend on the mode in which the

device is operating. In this case the device has two modes of operation. When the LOAD

input is LOW (0), as indicated by the triangle input, the counter is in a preset mode (M1) in

which the input data (D0, D1, D2, and D3) are synchronously loaded into the four flip-flops.

The digit 1 following M in M1 and the 1 in the label 1, 5 D show a dependency relationship

and indicate that input data are stored only when the device is in the preset mode (M1), in

which LOAD = 0. When the LOAD input is HIGH (1), the counter advances through its

normal binary sequence, as indicated by M2 and the 2 in C5/2,3,4+.

AND Dependency (G)

As shown in Figure 9–55(b), the letter G denotes AND dependency, indicating that an input

designated with G followed by a digit is ANDed with any other input or output having the

same digit as a prefix in its label. In this particular example, the G3 at the ENT input and

the 3CT = 15 at the RCO output are related, as indicated by the 3, and that relationship is

an AND dependency, indicated by the G. This tells us that ENT must be HIGH (no triangle

on the input) and the count must be fifteen (CT = 15) for the RCO output to be HIGH.

Also, the digits 2, 3, and 4 in the label C5/2,3,4+ indicate that the counter advances

through its states when LOAD = 1, as indicated by the mode dependency label M2, and

when ENT = 1 and ENP = 1, as indicated by the AND dependency labels G3 and G4.

The + indicates that the counter advances by one count when these conditions exist.

(2)
CLK

(10)
ENT

(7)
ENP

Q
0

Q
1

Q
2

Q
3

D
0

D
1

D
2

D
3

5CT = 0CLR

LOAD

Common
control
block

CTR DIV 16

(1)

(9)

G4

3CT = 15
(15)

(b) ANSI/IEEE Std. 91-1984 logic symbol

C5/2,3,4+

G3

M1

M2

(3) (14)

(4) (13)

(5) (12)

(6) (11)

[1]

[2]

[4]

[8]

1, 5 D

RCO

(a) Traditional block symbol

CLR

Q
0

CTR DIV 16

Q
1

Q
2

Q
3

D
3

D
2

D
1

D
0

(1)

LOAD
(9)

CCLK
(2)

(3) (4) (5) (6)

(14) (13) (12) (11)

(15)
RCO

ENP
(7)

ENT
(10)

FIGURE 9–55 The 74HC163 4-bit synchronous counter.

541

SECTION 9–9 CHECKUP

1. In dependency notation, what do the letters C, M, and G stand for?

2. By what letter is data storage denoted?

Counters

