
449

CHAPTER OUTLINE

8–1 Shift Register Operations

8–2 Types of Shift Register Data I/Os

8–3 Bidirectional Shift Registers

8–4 Shift Register Counters

8–5 Shift Register Applications

8–6 Logic Symbols with Dependency Notation

8–7 Troubleshooting

 Applied Logic

CHAPTER OBJECTIVES

■ Identify the basic forms of data movement in shift

registers

■ Explain how serial in/serial out, serial in/parallel

out, parallel in/serial out, and parallel in/parallel

out shift registers operate

■ Describe how a bidirectional shift register operates

■ Determine the sequence of a Johnson counter

■ Set up a ring counter to produce a specified

sequence

■ Construct a ring counter from a shift register

■ Use a shift register as a time-delay device

■ Use a shift register to implement a serial-to-parallel

data converter

■ Implement a basic shift-register-controlled

keyboard encoder

■ Interpret ANSI/IEEE Standard 91-1984 shift

register symbols with dependency notation

■ Use shift registers in a system application

KEY TERMS

Key terms are in order of appearance in the chapter.

Shift Registers

8

■ Register

■ Stage

■ Load

■ Bidirectional

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

Shift registers are a type of sequential logic circuit

used primarily for the storage of digital data and

 typically do not possess a characteristic internal

sequence of states. There are exceptions, however,

and these are covered in Section 8–4.

In this chapter, the basic types of shift registers are

studied and several applications are presented. Also,

a troubleshooting method is introduced.

CHAPTER

450 Shift Registers

8–1 Shift Register Operations

Shift registers consist of arrangements of flip-flops and are important in applications

involving the storage and transfer of data in a digital system. A register has no specified

sequence of states, except in certain very specialized applications. A register, in general, is

used solely for storing and shifting data (1s and 0s) entered into it from an external source

and typically possesses no characteristic internal sequence of states.

After completing this section, you should be able to

u Explain how a flip-flop stores a data bit

u Define the storage capacity of a shift register

u Describe the shift capability of a register

A register is a digital circuit with two basic functions: data storage and data movement.

The storage capability of a register makes it an important type of memory device. Figure 8–1

illustrates the concept of storing a 1 or a 0 in a D flip-flop. A 1 is applied to the data input as

shown, and a clock pulse is applied that stores the 1 by setting the flip-flop. When the 1 on the

input is removed, the flip-flop remains in the SET state, thereby storing the 1. A similar pro-

cedure applies to the storage of a 0 by resetting the flip-flop, as also illustrated in Figure 8–1.

A register can consist of one or
more flip-flops used to store and
shift data.

Q1 1

When a 1 is on D,

Q becomes a 1 at the

triggering edge of CLK

or remains a 1 if already

in the SET state.

1 is stored and appears on output.

CLK

D

C

Q 0

When a 0 is on D,

Q becomes a 0 at the

triggering edge of CLK

or remains a 0 if already

in the RESET state.

CLK

0 D

C

0 is stored and appears on output.

FIGURE 8–1 The flip-flop as a storage element.

The storage capacity of a register is the total number of bits (1s and 0s) of digital data

it can retain. Each stage (flip-flop) in a shift register represents one bit of storage capacity;

therefore, the number of stages in a register determines its storage capacity.

The shift capability of a register permits the movement of data from stage to stage

within the register or into or out of the register upon application of clock pulses. Figure 8–2

Data outData in

(a) Serial in/shift right/serial out

Data out Data in

(b) Serial in/shift left/serial out (c) Parallel in/serial out

Data in

Data out

(e) Parallel in/parallel out

Data in

Data out

(d) Serial in/parallel out

Data out

Data in

(f) Rotate right (g) Rotate left

FIGURE 8–2 Basic data movement in shift registers. (Four bits are used for illustration. The

bits move in the direction of the arrows.)

 Types of Shift Register Data I/Os 451

SECTION 8–1 CHECKUP

Answers are at the end of the chapter.

 1. What determines the storage capacity of a shift register?

 2. What two principal functions are performed by a shift register?

Table 8–1 shows the entry of the four bits 1010 into the register in Figure 8–3, begin-

ning with the least significant bit. The register is initially clear. The 0 is put onto the data

input line, making D = 0 for FF0. When the first clock pulse is applied, FF0 is reset, thus

storing the 0.

8–2 Types of Shift Register Data I/Os

In this section, four types of shift registers based on data input and output (inputs/outputs)

are discussed: serial in/serial out, serial in/parallel out, parallel in/serial out, and parallel

in/parallel out.

After completing this section, you should be able to

u Describe the operation of four types of shift registers

u Explain how data bits are entered into a shift register

u Describe how data bits are shifted through a register

u Explain how data bits are taken out of a shift register

u Develop and analyze timing diagrams for shift registers

Serial In/Serial Out Shift Registers

The serial in/serial out shift register accepts data serially—that is, one bit at a time on a

single line. It produces the stored information on its output also in serial form. Let’s first

look at the serial entry of data into a typical shift register. Figure 8–3 shows a 4-bit device

implemented with D flip-flops. With four stages, this register can store up to four bits of

data.

D

C

Q0
Serial

data

input

FF0

CLK

D

C

Q1

FF1

D

C

Q2

FF2

D

C

Q3

FF3

Serial data output

Serial data output
Q3

FIGURE 8–3 Serial in/serial out shift register.

InfoNote

Frequently, it is necessary to clear

an internal register in a processor.

For example, a register may be

cleared prior to an arithmetic or

other operation. One way that

registers in a processor are cleared

is using software to subtract the

contents of the register from itself.

The result, of course, will always

be zero. For example, a processor

instruction that performs this

operation is SUB AL,AL. with this

instruction, the register named AL

is cleared.

illustrates the types of data movement in shift registers. The block represents any arbitrary

4-bit register, and the arrows indicate the direction of data movement.

452 Shift Registers

Next the second bit, which is a 1, is applied to the data input, making D = 1 for FF0

and D = 0 for FF1 because the D input of FF1 is connected to the Q0 output. When the

second clock pulse occurs, the 1 on the data input is shifted into FF0, causing FF0 to set;

and the 0 that was in FF0 is shifted into FF1.

The third bit, a 0, is now put onto the data-input line, and a clock pulse is applied. The

0 is entered into FF0, the 1 stored in FF0 is shifted into FF1, and the 0 stored in FF1 is

shifted into FF2.

The last bit, a 1, is now applied to the data input, and a clock pulse is applied. This time

the 1 is entered into FF0, the 0 stored in FF0 is shifted into FF1, the 1 stored in FF1 is

shifted into FF2, and the 0 stored in FF2 is shifted into FF3. This completes the serial entry

of the four bits into the shift register, where they can be stored for any length of time as long

as the flip-flops have dc power.

If you want to get the data out of the register, the bits must be shifted out serially to the

Q3 output, as Table 8–2 illustrates. After CLK4 in the data-entry operation just described,

the LSB, 0, appears on the Q3 output. When clock pulse CLK5 is applied, the second bit

appears on the Q3 output. Clock pulse CLK6 shifts the third bit to the output, and CLK7

shifts the fourth bit to the output. While the original four bits are being shifted out, more

bits can be shifted in. All zeros are shown being shifted in, after CLK8.

For serial data, one bit at a time is
transferred.

TABLE 8–2

Shifting a 4-bit code out of the shift register in Figure 8–3.
Data bits are indicated by a beige screen.

CLK FF0 (Q0) FF1 (Q1) FF2 (Q2) FF3 (Q3)

Initial 1 0 1 0

5 0 1 0 1

6 0 0 1 0

7 0 0 0 1

8 0 0 0 0

TABLE 8–1

Shifting a 4-bit code into the shift register in Figure 8–3.
Data bits are indicated by a beige screen.

CLK FF0 (Q0) FF1 (Q1) FF2 (Q2) FF3 (Q3)

Initial 0 0 0 0

1 0 0 0 0

2 1 0 0 0

3 0 1 0 0

4 1 0 1 0

EXAMPLE 8–1

Show the states of the 5-bit register in Figure 8–4(a) for the specified data input and

clock waveforms. Assume that the register is initially cleared (all 0s).

Solution

The first data bit (1) is entered into the register on the first clock pulse and then shifted

from left to right as the remaining bits are entered and shifted. The register contains

Q4Q3Q2Q1Q0 = 11010 after five clock pulses. See Figure 8–4(b).

 Types of Shift Register Data I/Os 453

*Answers are at the end of the chapter.

Data

input

Data

output

Q4

CLK

CLK

Data

input

0

1

0

1

1

1 1 0 1 0

(b)

Data bits stored

after five

clock pulses

(a)

D

C

D

C

D

C

D

C

D

C

Q0 Q1 Q2 Q3

Q0

Q1

Q2

Q3

Q4

FF0 FF1 FF2 FF3 FF4

FIGURE 8–4 Open file F08-04 to verify operation. A Multisim tutorial is available on

the website.

Related Problem*

Show the states of the register if the data input is inverted. The register is initially

cleared.

A traditional logic block symbol for an 8-bit serial in/serial out shift register is shown in

Figure 8–5. The “SRG 8” designation indicates a shift register (SRG) with an 8-bit capacity.

CLK

Data in

Q7

Q7

C

SRG 8

FIGURE 8–5 Logic symbol for an 8-bit serial in/serial out shift register.

454 Shift Registers

Serial In/Parallel Out Shift Registers

Data bits are entered serially (least-significant bit first) into a serial in/parallel out shift

register in the same manner as in serial in/serial out registers. The difference is the way

in which the data bits are taken out of the register; in the parallel output register, the out-

put of each stage is available. Once the data are stored, each bit appears on its respective

output line, and all bits are available simultaneously, rather than on a bit-by-bit basis as

with the serial output. Figure 8–6 shows a 4-bit serial in/parallel out shift register and its

logic block symbol.

Data input

CLK

(a)

D

C

D

C

D

C

D

C

Q3Q2Q1Q0

CLK

Data input

C

D
SRG 4

Q0 Q1 Q2 Q3

(b)

FIGURE 8–6 A serial in/parallel out shift register.

EXAMPLE 8–2

Show the states of the 4-bit register (SRG 4) for the data input and clock waveforms in

Figure 8–7(a). The register initially contains all 1s.

(a)

Data in

CLK

0 11 0

(b)

Q1

Q0

Q2

Q3

Q0 Q1 Q2 Q3

D

C

SRG 4

FIGURE 8–7

Solution

The register contains 0110 after four clock pulses. See Figure 8–7(b).

Related Problem

If the data input remains 0 after the fourth clock pulse, what is the state of the register

after three additional clock pulses?

 Types of Shift Register Data I/Os 455

IMPLEMENTATION: 8-BIT SERIAL IN/PARALLEL OUT SHIFT REGISTER

Fixed-Function Device The 74HC164 is an example of a fixed-function IC shift register

having serial in/parallel out operation. The logic block symbol is shown in Figure 8–8.

This device has two gated serial inputs, A and B, and an asynchronous clear (CLR) input

that is active-LOW. The parallel outputs are Q0 through Q7.

(1)

C

SRG 8

Q0 Q1 Q2 Q3

(2)

(9)

(8)

A

B

CLR

CLK

Q4 Q5 Q6 Q7

(3) (4) (5) (6) (10) (11) (12) (13)

FIGURE 8–8 The 74HC164 8-bit serial in/parallel out shift register.

CLR

Serial

inputs

A

B

CLK

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Outputs

Clear Clear

FIGURE 8–9 Sample timing diagram for a 74HC164 shift register.

A sample timing diagram for the 74HC164 is shown in Figure 8–9. Notice that

the serial input data on input A are shifted into and through the register after input B

goes HIGH.

456 Shift Registers

Programmable Logic Device (PLD) The 8-bit serial in/parallel out shift register can be

described using VHDL and implemented as hardware in a PLD. The program code is as

follows. (Blue comments are not part of the program.)

library ieee;

use ieee.std_logic_1164.all;

entity SerInParOutShift is

 port (D0, Clock, Clr: in std_logic; Q0, Q1, Q2, Q3,

Q4, Q5, Q6, Q7: inout std_logic);

end entity SerInParOutShift;

architecture LogicOperation of SerInParOutShift is

component dffl is

 port (D, Clock: in std_logic; Q: inout std_logic);

end component dff1;

begin

FF0: dff1 port map(D=7D0 and Clr, Clock=7Clock, Q=7Q0);

FF1: dff1 port map(D=7Q0 and Clr, Clock=7Clock, Q=7Q1);

FF2: dff1 port map(D=7Q1 and Clr, Clock=7Clock, Q=7Q2);

FF3: dff1 port map(D=7Q2 and Clr, Clock=7Clock, Q=7Q3);

FF4: dff1 port map(D=7Q3 and Clr, Clock=7Clock, Q=7Q4);

FF5: dff1 port map(D=7Q4 and Clr, Clock=7Clock, Q=7Q5);

FF6: dff1 port map(D=7Q5 and Clr, Clock=7Clock, Q=7Q6);

FF7: dff1 port map(D=7Q6 and Clr, Clock=7Clock, Q=7Q7);

end architecture LogicOperation;

D0: Data input

Clock: System clock

Clr: Clear

Q0–Q7: Register outputs

Instantiations

describe how

the flip-flops

are connected

to form the

register.

¸
˚

˚
˚

˚
˚

˝
˚

˚
˚

˚
˛

D flip-flop with preset and

clear inputs was described in

Chapter 7 and is used as a

component.

¸
˚

˝
˚

˛

Parallel In/Serial Out Shift Registers

For a register with parallel data inputs, the bits are entered simultaneously into their respec-

tive stages on parallel lines rather than on a bit-by-bit basis on one line as with serial data

inputs. The serial output is the same as in serial in/serial out shift registers, once the data

are completely stored in the register.

Figure 8–10 illustrates a 4-bit parallel in/serial out shift register and a typical logic sym-

bol. There are four data-input lines, D0, D1, D2, and D3, and a SHIFT /LOAD input, which

allows four bits of data to load in parallel into the register. When SHIFT /LOAD is LOW,

gates G1 through G4 are enabled, allowing each data bit to be applied to the D input of its

respective flip-flop. When a clock pulse is applied, the flip-flops with D = 1 will set and

those with D = 0 will reset, thereby storing all four bits simultaneously.

When SHIFT /LOAD is HIGH, gates G1 through G4 are disabled and gates G5 through

G7 are enabled, allowing the data bits to shift right from one stage to the next. The OR gates

allow either the normal shifting operation or the parallel data-entry operation, depending

on which AND gates are enabled by the level on the SHIFT /LOAD input. Notice that FF0

has a single AND to disable the parallel input, D0. It does not require an AND/OR arrange-

ment because there is no serial data in.

For parallel data, multiple bits are
transferred at one time.

 Types of Shift Register Data I/Os 457

D0 D1 D3

C

D

D0 D1 D2 D3

CCLK

Serial data out

CLK

G2

C

D

G5

Q0

C

D

G3G6

D2

C

D
Q1

Serial

data

out

Data in

SRG 4

G4G7

Q2 Q3

(a) Logic diagram

(b) Logic symbol

SHIFT/LOAD

SHIFT/LOAD

G1

FF0 FF1 FF2 FF3

FIGURE 8–10 A 4-bit parallel in/serial out shift register. Open file F08-10 to verify

operation.

EXAMPLE 8–3

Show the data-output waveform for a 4-bit register with the parallel input data and the

clock and SHIFT /LOAD waveforms given in Figure 8–11(a). Refer to Figure 8–10(a)

for the logic diagram.

CLK 3 5 6

10 10

Last data bit

D0 D1 D2 D3

0101

CLK

Data out (Q3)

421

SHIFT/LOAD

SHIFT/LOAD(a)

Data out (Q3)(b)

C

SRG 4

FIGURE 8–11

458 Shift Registers

Solution

On clock pulse 1, the parallel data (D0D1D2D3 = 1010) are loaded into the register,

making Q3 a 0. On clock pulse 2 the 1 from Q2 is shifted onto Q3; on clock pulse 3 the

0 is shifted onto Q3; on clock pulse 4 the last data bit (1) is shifted onto Q3; and on clock

pulse 5, all data bits have been shifted out, and only 1s remain in the register (assuming

the D0 input remains a 1). See Figure 8–11(b).

Related Problem

Show the data-output waveform for the clock and SHIFT /LOAD inputs shown in

 Figure 8–11(a) if the parallel data are D0D1D2D3 = 0101.

IMPLEMENTATION: 8-BIT PARALLEL LOAD SHIFT REGISTER

Fixed-Function Device The 74HC165 is an example of a fixed-function IC shift reg-

ister that has a parallel in/serial out operation (it can also be operated as serial in/serial

out). Figure 8–12 shows a typical logic block symbol. A LOW on the SHIFT /LOAD input

(SH /LD) enables asynchronous parallel loading. Data can be entered serially on the SER

input. Also, the clock can be inhibited anytime with a HIGH on the CLK INH input. The

serial data outputs of the register are Q7 and its complement Q7. This implementation is

different from the synchronous method of parallel loading previously discussed, demon-

strating that there are usually several ways to accomplish the same function.

Figure 8–13 is a timing diagram showing an example of the operation of a 74HC165

shift register.

Programmable Logic Device (PLD) The 8-bit parallel load shift register is a parallel in/

serial out device and can be implemented in a PLD with the following VHDL code:

library ieee:

use ieee.std_logic_1164.all;

entity ParSerShift is

port (D0, D1, D2, D3, D4, D5, D6, D7, SHLD, Clock:

in std_logic; Q, QNot: inout std_logic);

end entity ParSerShift;

architecture LogicOperation of ParSerShift is

signal S1, S2, S3, S4, S5, S6, S7,

Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7: std_logic;

function ShiftLoad (A,B,C: in std_logic)return std_logic is

begin

return ((A and B) or (not B and C));

end function ShiftLoad;

D0-D7: Parallel input

SHLD: Shift Load input

Clock: System clock

Q: Serial output

QNot: Inverted serial output

Q0-Q7: Intermediate

variables for flip-flop stages

S1-S7: Shift load signals

from function ShiftLoad
Function ShiftLoad

provides the AND-OR

function shown in Figure

8–10 to allow the parallel

load of data or data shift

from one flip-flop stage to

the next.

¸
˚
˝
˚
˛

D0 D1 D2 D3

SER

D4 D5 D6 D7

CLK INH

CCLK Q7

Q7SH/LD SRG 8
(1)

(10)

(15)

(2)

(11) (12) (13) (14) (3) (4) (5) (6)
(9)

(7)

FIGURE 8–12 The 74HC165 8-bit parallel load shift register.

 Types of Shift Register Data I/Os 459

Load

CLK

D0

Data

11 0 1 0 1 0 1

0 0 1 0 1 0 1 0

D1

D2

D3

D4

D5

D6

D7

Inhibit Serial shift

1

0

1

0

1

0

1

1

CLK INH

SER 0 (LOW)

SH/LD

Q7

Q7

component dff1 is

port (D, Clock: in std_logic;

Q: inout std_logic);

end component dff1;

begin

SL1:S1 6=ShiftLoad(Q0, SHLD, D1);

SL2:S2 6=ShiftLoad(Q1, SHLD, D2);

SL3:S3 6=ShiftLoad(Q2, SHLD, D3);

SL4:S4 6=ShiftLoad(Q3, SHLD, D4);

SL5:S5 6=ShiftLoad(Q4, SHLD, D5);

SL6:S6 6=ShiftLoad(Q5, SHLD, D6);

SL7:S7 6=ShiftLoad(Q6, SHLD, D7);

FF0: dff1 port map(D=7D0 and not SHLD, Clock=7Clock, Q=7Q0);

FF1: dff1 port map(D=7S1, Clock=7Clock, Q=7Q1);

FF2: dff1 port map(D=7S2, Clock=7Clock, Q=7Q2);

FF3: dff1 port map(D=7S3, Clock=7Clock, Q=7Q3);

FF4: dff1 port map(D=7S4, Clock=7Clock, Q=7Q4);

FF5: dff1 port map(D=7S5, Clock=7Clock, Q=7Q5);

FF6: dff1 port map(D=7S6, Clock=7Clock, Q=7Q6);

FF7: dff1 port map(D=7S7, Clock=7Clock, Q=7Q);

QNot 6=not Q;

end architecture LogicOperation;

D flip-flop component used as

storage for shift register

¸
˚

˝
˚

˛

ShiftLoad instances

SL1–SL7 allow eight bits

of data to load into

flip-flop stages FF0–FF7 or

to shift through the register

providing the parallel load

serial out function.

¸̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̊

˝̊
˚̊

˚̊
˚̊

˚̊
˚̊

˚̊
˚̊

˛

FIGURE 8–13 Sample timing

diagram for a 74HC165 shift

register.

460 Shift Registers

Parallel In/Parallel Out Shift Registers

Parallel entry and parallel output of data have been discussed. The parallel in/parallel out

register employs both methods. Immediately following the simultaneous entry of all data

bits, the bits appear on the parallel outputs. Figure 8–14 shows a parallel in/parallel out

shift register.

D

C

CLK

D0

D

C

D1

D

C

D2

D

C

D3

Parallel data inputs

Q0 Q1 Q2 Q3

Parallel data outputs

FIGURE 8–14 A parallel in/parallel out register.

IMPLEMENTATION: 4-BIT PARALLEL-ACCESS SHIFT REGISTER

Fixed-Function Device The 74HC195 can be used for parallel in/parallel out operation.

Because it also has a serial input, it can be used for serial in/serial out and serial in/parallel

out operations. It can be used for parallel in/serial out operation by using Q3 as the output.

A typical logic block symbol is shown in Figure 8–15.

Q0

SH/LD

CLK

(15)

Q1

(14)

Q2

(13)

Q3

(12)

D0

(4)

D1

(5)

D2

(6)

D3

(7)

K

J

CLR

(2)

(3)

(9)

(1)

(10)

Serial

inputs

C

SRG 4

FIGURE 8–15 The 74HC195 4-bit parallel access shift register.

When the SHIFT /LOAD input (SH /LD) is LOW, the data on the parallel inputs are

entered synchronously on the positive transition of the clock. When (SH /LD) is HIGH,

stored data will shift right (Q0 to Q3) synchronously with the clock. Inputs J and K are the

serial data inputs to the first stage of the register (Q0); Q3 can be used for serial output data.

The active-LOW clear input is asynchronous.

 Types of Shift Register Data I/Os 461

Programmable Logic Device (PLD) The VHDL code for a 4-bit parallel in/parallel

out shift register is as follows:

library ieee;

use ieee.std logic_1164.all;

entity ParInParOut is

 port (D0, D1, D2, D3, Clock: in std_logic;

 Q0, Q1, Q2, Q3: inout std_logic);

end entity ParInParOut;

architecture LogicOperation of ParInParOut is

 component dff1 is

 port (D, Clock: in std_logic;

 Q: inout std_logic);

end component dff1;

begin

 FF0: dff1 port map (D=7D0, Clock=7Clock, Q=7Q0);

 FF1: dff1 port map (D=7D1, Clock=7Clock, Q=7Q1);

 FF2: dff1 port map (D=7D2, Clock=7Clock, Q=7Q2);

 FF3: dff1 port map (D=7D3, Clock=7Clock, Q=7Q3);

end architecture LogicOperation;

Load

Parallel

data

inputs

Serial shift

Serial

inputs

Parallel

outputs

Clear

Serial shift

CLR

CLK

J

K

SH/LD

D0

D1

D2

D3

Q0

Q1

Q2

Q3

FIGURE 8–16 Sample timing diagram for a 74HC195 shift register.

The timing diagram in Figure 8–16 illustrates the operation of this register.

462 Shift Registers

SECTION 8–2 CHECKUP

 1. Develop the logic diagram for the shift register in Figure 8–3, using J-K flip-flops to

replace the D flip-flops.

 2. How many clock pulses are required to enter a byte of data serially into an 8-bit shift

register?

 3. The bit sequence 1101 is serially entered (least-significant bit first) into a 4-bit parallel

out shift register that is initially clear. What are the Q outputs after two clock pulses?

 4. How can a serial in/parallel out register be used as a serial in/serial out register?

 5. Explain the function of the SHIFT /LOAD input.

 6. Is the parallel load operation in a 74HC165 shift register synchronous or asynchro-

nous? What does this mean?

 7. In Figure 8–14, D0 = 1, D1 = 0, D2 = 0, and D3 = 1. After three clock pulses, what

are the data outputs?

 8. For a 74HC195, SH /LD = 1, J = 1, and K = 1. What is Q0 after one clock pulse?

8–3 Bidirectional Shift Registers

A bidirectional shift register is one in which the data can be shifted either left or right. It

can be implemented by using gating logic that enables the transfer of a data bit from one

stage to the next stage to the right or to the left, depending on the level of a control line.

After completing this section, you should be able to

u Explain the operation of a bidirectional shift register

u Discuss the 74HC194 4-bit bidirectional universal shift register

u Develop and analyze timing diagrams for bidirectional shift registers

A 4-bit bidirectional shift register is shown in Figure 8–17. A HIGH on the RIGHT/LEFT

control input allows data bits inside the register to be shifted to the right, and a LOW

Q0 Q1 Q2 Q3

RIGHT/LEFT

Serial

data in
G1 G5 G2 G6 G3 G7 G4 G8

CLK

D

C

D

C

D

C

D

C

FIGURE 8–17 Four-bit bidirectional shift register. Open file F08-17 to verify the

operation.

 Bidirectional Shift Registers 463

enables data bits inside the register to be shifted to the left. An examination of the gating

logic will make the operation apparent. When the RIGHT/LEFT control input is HIGH,

gates G1 through G4 are enabled, and the state of the Q output of each flip-flop is passed

through to the D input of the following flip-flop. When a clock pulse occurs, the data bits

are shifted one place to the right. When the RIGHT/LEFT control input is LOW, gates G5

through G8 are enabled, and the Q output of each flip-flop is passed through to the D input

of the preceding flip-flop. When a clock pulse occurs, the data bits are then shifted one

place to the left.

EXAMPLE 8–4

Determine the state of the shift register of Figure 8–17 after each clock pulse for the

given RIGHT /LEFT control input waveform in Figure 8–18(a). Assume that Q0 = 1,

Q1 = 1, Q2 = 0, and Q3 = 1 and that the serial data-input line is LOW.

(right) (left) (right) (left)RIGHT/LEFT

CLK

Q0 1

Q1 1

Q2 0

Q3

0 0 0 1 1 0 0 0 1

1 0 1 1 0 1 0 1 0

1 1 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0 01

(a)

(b)

FIGURE 8–18

Solution

See Figure 8–18(b).

Related Problem

Invert the RIGHT /LEFT waveform, and determine the state of the shift register in

 Figure 8–17 after each clock pulse.

IMPLEMENTATION: 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER

Fixed-Function Device The 74HC194 is an example of a universal bidirectional shift

register in integrated circuit form. A universal shift register has both serial and parallel

input and output capability. A logic block symbol is shown in Figure 8–19, and a sample

timing diagram is shown in Figure 8–20.

Parallel loading, which is synchronous with a positive transition of the clock, is accom-

plished by applying the four bits of data to the parallel inputs and a HIGH to the S0 and S1

inputs. Shift right is accomplished synchronously with the positive edge of the clock when

S0 is HIGH and S1 is LOW. Serial data in this mode are entered at the shift-right serial

input (SR SER). When S0 is LOW and S1 is HIGH, data bits shift left synchronously with

the clock, and new data are entered at the shift-left serial input (SL SER). Input SR SER

goes into the Q0 stage, and SL SER goes into the Q3 stage.

464 Shift Registers

(1)

CLK

(15)

Q0

(14)

Q1

(13)

Q2

(12)

Q3

(3)

D0

(4)

D1

(5)

D2

(6)

D3

CLR
(9)

(10)

(2)
SR SER

(7)
SL SER

(11)

S0

S1

C

SRG 4

Parallel

data

inputs

Shift right

Mode

control

inputs

Parallel

outputs

Clear Load

Shift left Inhibit

Clear

CLR

S1

SR SER

SL SER

D0

D1

D2

D3

Q0

Q1

Q2

Q3

S0

CLK

Serial

data

inputs

FIGURE 8–20 Sample timing diagram for a 74HC194 shift register.

Programmable Logic Device (PLD) The following code describes a 4-bit bidirectional

shift register with a serial input:

library ieee;

use ieee.std_logic_1164.all;

entity FourBitBiDirSftReg is

port (R_L, DataIn, Clock: in std_logic;

 Q0, Q1, Q2, Q3: buffer std_logic);

end entity FourBitBiDirSftReg;

R_L: Right/left

DataIn: Serial input data

Clock: System clock

Q0-Q3: Register outputs

FIGURE 8–19 The 74HC194 4-bit

bidirectional universal shift register.

architecture LogicOperation of FourBitBiDirSftReg is

component dff1 is

 port(D,Clock: in std_logic; Q: out std_logic);

end component dff1;

signal D0, D1, D2, D3: std_logic;

begin

 DO 6= (DataIn and R_L) or (not R_L and Q1);

 D1 6= (Q0 and R_L) or (not R_L and Q2);

 D2 6= (Q1 and R_L) or (not R_L and Q3);

 D3 6= (Q2 and R_L) or (not R_L and DataIn);

FF0: dff1 port map(D =7 D0, Clock =7 Clock, Q =7 Q0);

FF1: dff1 port map(D =7 D1, Clock =7 Clock, Q =7 Q1);

FF2: dff1 port map(D =7 D2, Clock =7 Clock, Q =7 Q2);

FF3: dff1 port map(D =7 D3, Clock =7 Clock, Q =7 Q3);

end architecture LogicOperation;

 Shift Register Counters 465

SECTION 8–3 CHECKUP

 1. Assume that the 4-bit bidirectional shift register in Figure 8–17 has the following

contents: Q0 = 1, Q1 = 1, Q2 = 0, and Q3 = 0. There is a 1 on the serial data-input

line. If RIGHT /LEFT is HIGH for three clock pulses and LOW for two more clock

pulses, what are the contents after the fifth clock pulse?

8–4 Shift Register Counters

A shift register counter is basically a shift register with the serial output connected back to

the serial input to produce special sequences. These devices are often classified as counters

because they exhibit a specified sequence of states. Two of the most common types of shift

register counters, the Johnson counter and the ring counter, are introduced in this section.

After completing this section, you should be able to

u Discuss how a shift register counter differs from a basic shift register

u Explain the operation of a Johnson counter

u Specify a Johnson sequence for any number of bits

u Explain the operation of a ring counter and determine the sequence of any specific

ring counter

The Johnson Counter

In a Johnson counter the complement of the output of the last flip-flop is connected back

to the D input of the first flip-flop (it can be implemented with other types of flip-flops

as well). If the counter starts at 0, this feedback arrangement produces a characteristic

sequence of states, as shown in Table 8–3 for a 4-bit device and in Table 8–4 for a 5-bit

device. Notice that the 4-bit sequence has a total of eight states, or bit patterns, and that

the 5-bit sequence has a total of ten states. In general, a Johnson counter will produce a

modulus of 2n, where n is the number of stages in the counter.

¸
˝
˛ D flip-flop component declaration

¸
˚
˚
˝
˚
˚
˛

¸
˚
˚
˝
˚
˚
˛

Describes the internal signals

with Boolean equations

Internal flip-flop inputs

Describes how the

flip-flops are connected

466 Shift Registers

The implementations of the 4-stage and 5-stage Johnson counters are shown in Figure 8–21.

The implementation of a Johnson counter is very straightforward and is the same regardless

of the number of stages. The Q output of each stage is connected to the D input of the next

TABLE 8–3

Four-bit Johnson sequence.

Clock Pulse Q0 Q1 Q2 Q3

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

TABLE 8–4

Five-bit Johnson sequence.

Clock Pulse Q0 Q1 Q2 Q3 Q4

0 0 0 0 0 0

1 1 0 0 0 0

2 1 1 0 0 0

3 1 1 1 0 0

4 1 1 1 1 0

5 1 1 1 1 1

6 0 1 1 1 1

7 0 0 1 1 1

8 0 0 0 1 1

9 0 0 0 0 1

D

C

CLK

FF0

D

C

FF1

Q0 Q1 Q2
D

C

FF2

Q3

D

C

FF3

D

C

CLK

FF0

D

C

FF1

Q0 Q1 Q2
D

C

FF2

Q4

D

C

FF3

D

C

FF4

Q3

(a) Four-bit Johnson counter

(b) Five-bit Johnson counter

FIGURE 8–21 Four-bit and 5-bit Johnson counters.

 Shift Register Counters 467

stage (assuming that D flip-flops are used). The single exception is that the Q output of the

last stage is connected back to the D input of the first stage. As the sequences in Table 8–3

and 8–4 show, if the counter starts at 0, it will “fill up” with 1s from left to right, and then

it will “fill up” with 0s again.

Diagrams of the timing operations of the 4-bit and 5-bit counters are shown in Figures

8–22 and 8–23, respectively.

CLK

Q0

1 2 3 4 5 6 7 8

Q1

Q2

Q3

FIGURE 8–22 Timing sequence for a 4-bit Johnson counter.

1 2 3 4 7 8 9 105 6CLK

Q0

Q1

Q3

Q4

Q2

FIGURE 8–23 Timing sequence for a 5-bit Johnson counter.

The Ring Counter

A ring counter utilizes one flip-flop for each state in its sequence. It has the advantage

that decoding gates are not required. In the case of a 10-bit ring counter, there is a unique

output for each decimal digit.

A logic diagram for a 10-bit ring counter is shown in Figure 8–24. The sequence for this

ring counter is given in Table 8–5. Initially, a 1 is preset into the first flip-flop, and the rest of

the flip-flops are cleared. Notice that the interstage connections are the same as those for a

PRE

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

CLR

CLK

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

FIGURE 8–24 A 10-bit ring counter. Open file F08-24 to verify operation.

468 Shift Registers

Johnson counter, except that Q rather than Q is fed back from the last stage. The ten outputs

of the counter indicate directly the decimal count of the clock pulse. For instance, a 1 on Q0

represents a zero, a 1 on Q1 represents a one, a 1 on Q2 represents a two, a 1 on Q3 represents a

three, and so on. You should verify for yourself that the 1 is always retained in the counter and

simply shifted “around the ring,” advancing one stage for each clock pulse.

Modified sequences can be achieved by having more than a single 1 in the counter, as

illustrated in Example 8–5.

TABLE 8–5

Ten-bit ring counter sequence.

Clock Pulse Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0

6 0 0 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 1 0 0

8 0 0 0 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 0 0 1

EXAMPLE 8–5

If a 10-bit ring counter similar to Figure 8–24 has the initial state 1010000000, deter-

mine the waveform for each of the Q outputs.

Solution

See Figure 8–25.

1 2 3 4 7 8 9 105 6CLK

Q0

Q1

Q3

Q4

Q2

Q5

Q6

Q8

Q9

Q7

FIGURE 8–25

 Shift Register Applications 469

Related Problem

If a 10-bit ring counter has an initial state 0101001111, determine the waveform for

each Q output.

SECTION 8–4 CHECKUP

 1. How many states are there in an 8-bit Johnson counter sequence?

 2. Write the sequence of states for a 3-bit Johnson counter starting with 000.

8–5 Shift Register Applications

Shift registers are found in many types of applications, a few of which are presented in this

section.

After completing this section, you should be able to

u Use a shift register to generate a time delay

u Implement a specified ring counter sequence using a 74HC195 shift register

u Discuss how shift registers are used for serial-to-parallel conversion of data

u Define UART

u Explain the operation of a keyboard encoder and how registers are used in this

application

Time Delay

A serial in/serial out shift register can be used to provide a time delay from input to output

that is a function of both the number of stages (n) in the register and the clock frequency.

When a data pulse is applied to the serial input as shown in Figure 8–26, it enters the first

stage on the triggering edge of the clock pulse. It is then shifted from stage to stage on each

successive clock pulse until it appears on the serial output n clock periods later. This time-

delay operation is illustrated in Figure 8–26, in which an 8-bit serial in/serial out shift register

is used with a clock frequency of 1 MHz to achieve a time delay (td) of 8 ms (8 3 1 ms). This

time can be adjusted up or down by changing the clock frequency. The time delay can also be

increased by cascading shift registers and decreased by taking the outputs from successively

lower stages in the register if the outputs are available, as illustrated in Example 8–6.

Q7

Q7

Data out

CLK
1 MHz

Data in

CLK

Data in

Data out

td = 8 s

1 sµ

µ

C

SRG 8

FIGURE 8–26 The shift register as a time-delay device.

InfoNote

Microprocessors have special

instructions that can emulate

a serial shift register. The

accumulator register can shift

data to the left or right. A right

shift is equivalent to a divide-by-2

operation and a left shift is

equivalent to a multiply-by-2

operation. Data in the accumulator

can be shifted left or right with

the rotate instructions; ROR is the

rotate right instruction, and ROL

is the rotate left instruction. Two

other instructions treat the carry

flag bit as an additional bit for the

rotate operation. These are the

RCR for rotate carry right and RCL

for rotate carry left.

470 Shift Registers

Related Problem

Determine the clock frequency required to obtain a time delay of 24 ms to the Q7 output

in Figure 8–27.

EXAMPLE 8–6

Determine the amount of time delay between the serial input and each output in Figure

8–27. Show a timing diagram to illustrate.

Solution

The clock period is 2 ms. Thus, the time delay can be increased or decreased in 2 ms incre-

ments from a minimum of 2 ms to a maximum of 16 ms, as illustrated in Figure 8–28.

CLR

CLK
500 kHz

Data in

Q7Q6Q5Q4Q3Q2Q1Q0

* Data shifts from Q0 toward Q7.

C

SRG 8*

FIGURE 8–27

2 s

4 s

6 s

8 s

10 s

12 s

14 s

16 s

CLK

Data in

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Data
outputs

µ

µ

µ

µ

µ

µ

µ

µ

FIGURE 8–28 Timing diagram showing time delays for the register in Figure 8–27.

 Shift Register Applications 471

IMPLEMENTATION: A RING COUNTER

Fixed-Function Device If the output is connected back to the serial input, a shift register

can be used as a ring counter. Figure 8–29 illustrates this application with a 74HC195 4-bit

shift register.

Initially, a bit pattern of 1000 (or any other pattern) can be synchronously preset into

the counter by applying the bit pattern to the parallel data inputs, taking the SH /LD input

LOW, and applying a clock pulse. After this initialization, the 1 continues to circulate

through the ring counter, as the timing diagram in Figure 8–30 shows.

C

SRG 4

Q0 Q1

CLR

CLK

Q2 Q3

K

J

SH /LD

D0 D1 D2 D3

HIGH LOW

(3)

(4) (5) (6) (7)

(2)

(9)

(1)

(10)

(15) (14) (13) (12)

FIGURE 8–29 74HC195 connected as a ring counter.

SH /LD

CLK

Q0

Q1

Q2

Q3

FIGURE 8–30 Timing diagram showing two complete cycles of the ring counter in Figure

8–29 when it is initially preset to 1000.

Programmable Logic Device (PLD) The VHDL code for a 4-bit ring counter using D flip-

flops is as follows:

library ieee;

use ieee.std_logic_1164.all;

entity RingCtr is

 port (I, Clr, Clock: in std_logic;

Q0, Q1, Q2, Q3: inout std_logic);

end entity RingCtr;

architecture LogicOperation of RingCtr is

I: Serial input bit to clock data into

the shift register

Clr: Ring counter clear input

Clock: System clock

Q0-Q3: Ring counter output stages

472 Shift Registers

Serial-to-Parallel Data Converter

Serial data transmission from one digital system to another is commonly used to reduce the

number of wires in the transmission line. For example, eight bits can be sent serially over

one wire, but it takes eight wires to send the same data in parallel.

Serial data transmission is widely used by peripherals to pass data back and forth to a

computer. For example, USB (universal serial bus) is used to connect keyboards printers,

scanners, and more to the computer. All computers process data in parallel form, thus the

requirement for serial-to-parallel conversion. A simplified serial-to-parallel data converter,

in which two types of shift registers are used, is shown in Figure 8–31.

Q1 Q2 Q3 Q4 Q5 Q6 Q7Q0

D1 D2 D3 D4 D5 D6 D7

C

SRG 8

C

D0

LOAD

Data-input
register

J

K

EN

TC

TC•CLKOne-shot

Q Q

Serial
data in Control flip-flop

CLK

CLR

CLR

CLK GEN

Parallel data out

D

C

SRG 8

Data-output
register

Q

C

C

CTR DIV 8

HIGH

FIGURE 8–31 Simplified logic diagram of a serial-to-parallel converter.

To illustrate the operation of this serial-to-parallel converter, the serial data for-

mat shown in Figure 8–32 is used. It consists of eleven bits. The first bit (start bit) is

always 0 and always begins with a HIGH-to-LOW transition. The next eight bits (D7

through D0) are the data bits (one of the bits can be parity), and the last one or two

bits (stop bits) are always 1s. When no data are being sent, there is a continuous HIGH

on the serial data line.

component dff1 is

 port (D, Clock, Pre, Clr: in std_logic;

 Q: inout std_logic);

end component dff1;

begin

 FF0: dff1 port map(D=7 Q3, Clock=7Clock, Q=7Q0, Pre=7 not I, Clr=7‘1’);

 FF1: dff1 port map(D=7 Q0, Clock=7Clock, Q=7Q1, Pre=7‘1’, Clr=7not Clr);

 FF2: dff1 port map(D=7 Q1, Clock=7Clock, Q=7Q2, Pre=7‘1’, Clr=7not Clr);

 FF3: dff1 port map(D=7 Q2, Clock=7Clock, Q=7Q3, Pre=7‘1’, Clr=7not Clr);

end architecture LogicOperation;

¸
˚
˚
˝
˚
˚
˛

D flip-flop component used as storage

for shift register

¸̊
˚̊

˝̊
˚̊

˛

FF0-FF3 flip-flop instan-

tiations show how flip-

flops are connected and

represent one flip-flop

for each state in the ring

counter sequence. FF0 Pre

input acts as a serial input

when I is high. FF1-FF3

Clr input clears flip-flop

stages when Clr is low.

 Shift Register Applications 473

The HIGH-to-LOW transition of the start bit sets the control flip-flop, which enables

the clock generator. After a fixed delay time, the clock generator begins producing a pulse

waveform, which is applied to the data-input register and to the divide-by-8 counter. The

clock has a frequency precisely equal to that of the incoming serial data, and the first clock

pulse after the start bit occurs during the first data bit.

The timing diagram in Figure 8–33 illustrates the following basic operation: The eight

data bits (D7 through D0) are serially shifted into the data-input register. Shortly after the

Start
bit (0)

Stop
bit (1)

Stop
bit (1)

D7 D6 D5 D4 D3 D2 D1 D0
t

FIGURE 8–32 Serial data format.

Start
bit Stop bits

D7 D6 D5 D4 D3 D2 D1 D0

Serial
data in

Control
flip-flop

Q0

Q

CLK

Q1

Q2

Q3

Q4

Q5

Q6

Q7

TC•CLK

CLR

D0

D1

D2

D3

D4

D5

D6

D7

Data
output

register

Data
input

register

1 0 0 1 1 0 1 0

0

1

0

1

1

0

0

1

0

1

0

1

1

0

0

1

Load data out register

FIGURE 8–33 Timing diagram illustrating the operation of the serial-to-parallel data

converter in Figure 8–31.

474 Shift Registers

eighth clock pulse, the terminal count (TC) goes from LOW to HIGH, indicating the coun-

ter is at the last state. This rising edge is ANDed with the clock pulse, which is still HIGH,

producing a rising edge at TC # CLK. This parallel loads the eight data bits from the data-

input shift register to the data-output register. A short time later, the clock pulse goes LOW

and this HIGH-to-LOW transition triggers the one-shot, which produces a short-duration

pulse to clear the counter and reset the control flip-flop and thus disable the clock genera-

tor. The system is now ready for the next group of eleven bits, and it waits for the next

HIGH-to-LOW transition at the beginning of the start bit.

By reversing the process just stated, parallel-to-serial data conversion can be accomplished.

Since the serial data format must be produced, start and stop bits must be added to the sequence.

Universal Asynchronous Receiver Transmitter (UART)

As mentioned, computers and microprocessor-based systems often send and receive data in

a parallel format. Frequently, these systems must communicate with external devices that

send and/or receive serial data. An interfacing device used to accomplish these conversions

is the UART (Universal Asynchronous Receiver Transmitter). Figure 8–34 illustrates the

UART in a general microprocessor-based system application.

UART
Micro-

processor
system

Parallel
data bus

External
device

(printer, communications
system, etc.)

Serial data out

Serial data in

FIGURE 8–34 UART interface.

A UART includes both serial-to-parallel and parallel-to-serial conversion, as shown in

the block diagram in Figure 8–35. The data bus is basically a set of parallel conductors

along which data move between the UART and the microprocessor system. Buffers inter-

face the data registers with the data bus.

Receiver
data register

Transmitter
data register

Buffers

Data bus

CLK

Transmitter

parallel in/serial

out shift register

Receiver

serial in/parallel

out shift register

Serial data out Serial data in

CLK

FIGURE 8–35 Basic UART block diagram.

 Shift Register Applications 475

The UART receives data in serial format, converts the data to parallel format, and places

them on the data bus. The UART also accepts parallel data from the data bus, converts the

data to serial format, and transmits them to an external device.

Keyboard Encoder

The keyboard encoder is a good example of the application of a shift register used as a

ring counter in conjunction with other devices. Recall that a simplified computer keyboard

encoder without data storage was presented in Chapter 6.

Figure 8–36 shows a simplified keyboard encoder for encoding a key closure in a 64-key

matrix organized in eight rows and eight columns. Two parallel in/parallel out 4-bit shift

Q0 Q1 Q2 Q3 Q4 Q5

D0 D1 D2 D3 D4 D5

Q5 Q6 Q7Q4Q1 Q2 Q3

D4 D5 D6 D7D1 D2 D3

Q

COLUMN encoder

1 2 3 4 5 6 7 8

1 2 4

ROW encoder

1 2 3 4 5 6 7 8

1 2 4

Key code register

Q
C

Clock inhibit

+V

One-shots To ROM

Switch closure

Q

D0

Q0

J

K

C

J

K

C

SRG 4 SRG 4
CLK

(5 kHz)

Power on LOAD

SH/LD +VCC
Ring counter

CC

FIGURE 8–36 Simplified keyboard encoding circuit.

476 Shift Registers

8–6 Logic Symbols with Dependency Notation

Two examples of ANSI/IEEE Standard 91-1984 symbols with dependency notation for

shift registers are presented. Two specific IC shift registers are used as examples.

After completing this section, you should be able to

u Understand and interpret the logic symbols with dependency notation for the

74HC164 and the 74HC194 shift registers

The logic symbol for a 74HC164 8-bit serial in/parallel out shift register is shown in

Figure 8–37. The common control inputs are shown on the notched block. The clear (CLR)

input is indicated by an R (for RESET) inside the block. Since there is no dependency

prefix to link R with the clock (C1), the clear function is asynchronous. The right arrow

symbol after C1 indicates data flow from Q0 to Q7. The A and B inputs are ANDed, as

indicated by the embedded AND symbol, to provide the synchronous data input, 1D, to the

first stage (Q0). Note the dependency of D on C, as indicated by the 1 suffix on C and the

1 prefix on D.

Figure 8–38 is the logic symbol for the 74HC194 4-bit bidirectional universal shift

register. Starting at the top left side of the control block, note that the CLR input is active-

LOW and is asynchronous (no prefix link with C). Inputs S0 and S1 are mode inputs that

SECTION 8–5 CHECKUP

 1. In the keyboard encoder, how many times per second does the ring counter scan the

keyboard?

 2. What is the 6-bit ROW/COLUMN code (key code) for the top row and the left-most

column in the keyboard encoder?

 3. What is the purpose of the diodes in the keyboard encoder? What is the purpose of

the resistors?

registers are connected as an 8-bit ring counter with a fixed bit pattern of seven 1s and one

0 preset into it when the power is turned on. Two priority encoders (introduced in Chapter

6) are used as eight-line-to-three-line encoders (9 input HIGH, 8 output unused) to encode

the ROW and COLUMN lines of the keyboard matrix. A parallel in/parallel out register

(key code) stores the ROW/COLUMN code from the priority encoders.

The basic operation of the keyboard encoder in Figure 8–36 is as follows: The ring

counter “scans” the rows for a key closure as the clock signal shifts the 0 around the coun-

ter at a 5 kHz rate. The 0 (LOW) is sequentially applied to each ROW line, while all other

ROW lines are HIGH. All the ROW lines are connected to the ROW encoder inputs, so the

3-bit output of the ROW encoder at any time is the binary representation of the ROW line

that is LOW. When there is a key closure, one COLUMN line is connected to one ROW

line. When the ROW line is taken LOW by the ring counter, that particular COLUMN line

is also pulled LOW. The COLUMN encoder produces a binary output corresponding to the

COLUMN in which the key is closed. The 3-bit ROW code plus the 3-bit COLUMN code

uniquely identifies the key that is closed. This 6-bit code is applied to the inputs of the key

code register. When a key is closed, the two one-shots produce a delayed clock pulse to

parallel-load the 6-bit code into the key code register. This delay allows the contact bounce

to die out. Also, the first one-shot output inhibits the ring counter to prevent it from scan-

ning while the data are being loaded into the key code register.

The 6-bit code in the key code register is now applied to a ROM (read-only memory)

to be converted to an appropriate alphanumeric code that identifies the keyboard character.

ROMs are studied in Chapter 11.

 Logic Symbols with Dependency Notation 477

determine the shift-right, shift-left, and parallel load modes of operation, as indicated by

the 0
3 dependency designation following the M. The 0

3 represents the binary states of 0, 1,

2, and 3 on the S0 and S1 inputs. When one of these digits is used as a prefix for another

input, a dependency is established. The 1 S >2 d symbol on the clock input indicates the

following: 1 S indicates that a right shift (Q0 toward Q3) occurs when the mode inputs (S0, S1)

are in the binary 1 state (S0 = 1, S1 = 0), 2 d indicates that a left shift (Q3 toward Q0)

occurs when the mode inputs are in the binary 2 state (S0 = 0, S1 = 1). The shift-right

serial input (SR SER) is both mode-dependent and clock-dependent, as indicated by 1, 4D.

The parallel inputs (D0, D1, D2, and D3) are all mode-dependent (prefix 3 indicates parallel

load mode) and clock-dependent, as indicated by 3, 4D. The shift-left serial input (SL SER)

is both mode-dependent and clock-dependent, as indicated by 2, 4D.

The four modes for the 74HC194 are summarized as follows:

Do nothing: S0 = 0, S1 = 0 (mode 0)

Shift right: S0 = 1, S1 = 0 (mode 1, as in 1, 4D)

Shift left: S0 = 0, S1 = 1 (mode 2, as in 2, 4D)

Parallel load: S0 = 1, S1 = 1 (mode 3, as in 3, 4D)

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

1D

SRG 8(9)

&A

B

(1)

(2)

CLR

CLK

(3)

(4)

(5)

(6)

(10)

(11)

(12)

(13)

C1/

R

(8)

FIGURE 8–37 Logic symbol for the 74HC164.

1, 4DSR SER

D0

D1

D2

D3

SL SER

(2)

(3)

(4)

(5)

(6)

(7)

(15)

(14)

(13)

(12)

Q1

Q0

Q2

Q3

3, 4D

3, 4D

3, 4D

3, 4D

2, 4D

CLK

S1

S0

CLR R

0

1
M

SRG 4(1)

(9)

(10)

(11)
C4

1 /2

0–
3

FIGURE 8–38 Logic symbol for the 74HC194.

478 Shift Registers

SECTION 8–6 CHECKUP

1. In Figure 8–38, are there any inputs that are dependent on the mode inputs being in

the 0 state?

2. Is the parallel load synchronous with the clock?

