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I/O System Design Tool

In addition to the processor and a set of memory modules, the third key element 
of a computer system is a set of I/O modules. Each module interfaces to the system 
bus or central switch and controls one or more peripheral devices. An I/O module 
is not simply a set of mechanical connectors that wire a device into the system bus. 
Rather, the I/O module contains logic for performing a communication function 
between the peripheral and the bus.

The reader may wonder why one does not connect peripherals directly to the 
system bus. The reasons are as follows:

■■ There are a wide variety of peripherals with various methods of operation. It 
would be impractical to incorporate the necessary logic within the processor to 
control a range of devices.

■■ The data transfer rate of peripherals is often much slower than that of the 
memory or processor. Thus, it is impractical to use the high-​speed system bus 
to communicate directly with a peripheral.

■■ On the other hand, the data transfer rate of some peripherals is faster than 
that of the memory or processor. Again, the mismatch would lead to ineffi-
ciencies if not managed properly.

■■ Peripherals often use different data formats and word lengths than the com-
puter to which they are attached.

■■ Thus, an I/O module is required. This module has two major functions (Figure 7.1):
■■ Interface to the processor and memory via the system bus or central switch.
■■ Interface to one or more peripheral devices by tailored data links.

We begin this chapter with a brief discussion of external devices, followed 
by an overview of the structure and function of an I/O module. Then we look at 
the various ways in which the I/O function can be performed in cooperation with 
the processor and memory: the internal I/O interface. Next, we examine in some 

Learning Objectives

After studying this chapter, you should be able to:

rr Explain the use of I/O modules as part of a computer organization.
rr Understand the difference between programmed I/O and interrupt-​driven 
I/O and discuss their relative merits.

rr Present an overview of the operation of direct memory access.
rr Present an overview of direct cache access.
rr Explain the function and use of I/O channels.
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detail direct memory access and the more recent innovation of direct cache access. 
Finally, we examine the external I/O interface, between the I/O module and the 
outside world.

	 7.1	 External Devices

I/O operations are accomplished through a wide assortment of external devices 
that provide a means of exchanging data between the external environment and the 
computer. An external device attaches to the computer by a link to an I/O module 
(Figure 7.1). The link is used to exchange control, status, and data between the I/O 
module and the external device. An external device connected to an I/O module is 
often referred to as a peripheral device or, simply, a peripheral.

We can broadly classify external devices into three categories:

■■ Human readable: Suitable for communicating with the computer user;
■■ Machine readable: Suitable for communicating with equipment;
■■ Communication: Suitable for communicating with remote devices.

Examples of human-​readable devices are video display terminals (VDTs) and 
printers. Examples of machine-​readable devices are magnetic disk and tape sys-
tems, and sensors and actuators, such as are used in a robotics application. Note 
that we are viewing disk and tape systems as I/O devices in this chapter, whereas 
in Chapter 6 we viewed them as memory devices. From a functional point of view, 
these devices are part of the memory hierarchy, and their use is appropriately dis-
cussed in Chapter 6. From a structural point of view, these devices are controlled by 
I/O modules and are hence to be considered in this chapter.

I/O module

Links to
peripheral
devices

Control lines

Data lines

Address lines

System
bus

Figure 7.1  Generic Model of an I/O Module
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Communication devices allow a computer to exchange data with a remote 
device, which may be a human-​readable device, such as a terminal, a machine-​
readable device, or even another computer.

In very general terms, the nature of an external device is indicated in Figure 7.2. 
The interface to the I/O module is in the form of control, data, and status signals. Con-
trol signals determine the function that the device will perform, such as send data to 
the I/O module (INPUT or READ), accept data from the I/O module (OUTPUT or 
WRITE), report status, or perform some control function particular to the device (e.g., 
position a disk head). Data are in the form of a set of bits to be sent to or received from 
the I/O module. Status signals indicate the state of the device. Examples are READY/
NOT-​READY to show whether the device is ready for data transfer.

Control logic associated with the device controls the device’s operation in 
response to direction from the I/O module. The transducer converts data from elec-
trical to other forms of energy during output and from other forms to electrical 
during input. Typically, a buffer is associated with the transducer to temporarily 
hold data being transferred between the I/O module and the external environment. 
A buffer size of 8 to 16 bits is common for serial devices, whereas block-​oriented 
devices such as disk drive controllers may have much larger buffers.

The interface between the I/O module and the external device will be exam-
ined in Section 7.7. The interface between the external device and the environment 
is beyond the scope of this book, but several brief examples are given here.

Keyboard/Monitor

The most common means of computer/user interaction is a keyboard/monitor 
arrangement. The user provides input through the keyboard, the input is then trans-
mitted to the computer and may also be displayed on the monitor. In addition, the 
monitor displays data provided by the computer.

Buffer

Transducer

Control
logic

Control
signals from
I/O module

Status
signals to
I/O module

Data bits
to and from
I/O module

Data (device-unique)
to and from
environment

Figure 7.2  Block Diagram of an External Device
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The basic unit of exchange is the character. Associated with each charac-
ter is a code, typically 7 or 8 bits in length. The most commonly used text code 
is the International Reference Alphabet (IRA).1 Each character in this code is 
represented by a unique 7-bit binary code; thus, 128 different characters can be 
represented. Characters are of two types: printable and control. Printable char-
acters are the alphabetic, numeric, and special characters that can be printed on 
paper or displayed on a screen. Some of the control characters have to do with 
controlling the printing or displaying of characters; an example is carriage return. 
Other control characters are concerned with communications procedures. See 
Appendix H for details.

For keyboard input, when the user depresses a key, this generates an elec-
tronic signal that is interpreted by the transducer in the keyboard and translated 
into the bit pattern of the corresponding IRA code. This bit pattern is then trans-
mitted to the I/O module in the computer. At the computer, the text can be stored 
in the same IRA code. On output, IRA code characters are transmitted to an exter-
nal device from the I/O module. The transducer at the device interprets this code 
and sends the required electronic signals to the output device either to display the 
indicated character or perform the requested control function.

Disk Drive

A disk drive contains electronics for exchanging data, control, and status signals with 
an I/O module plus the electronics for controlling the disk read/write mechanism. 
In a fixed-​head disk, the transducer is capable of converting between the magnetic 
patterns on the moving disk surface and bits in the device’s buffer (Figure 7.2). A 
moving-​head disk must also be able to cause the disk arm to move radially in and 
out across the disk’s surface.

	 7.2	I /O Modules

Module Function

The major functions or requirements for an I/O module fall into the following 
categories:

■■ Control and timing
■■ Processor communication
■■ Device communication
■■ Data buffering
■■ Error detection

During any period of time, the processor may communicate with one or more 
external devices in unpredictable patterns, depending on the program’s need for 

1IRA is defined in ITU-​T Recommendation T.50 and was formerly known as International Alphabet 
Number 5 (IA5). The U.S. national version of IRA is referred to as the American Standard Code for 
Information Interchange (ASCII).
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I/O. The internal resources, such as main memory and the system bus, must be shared 
among a number of activities, including data I/O. Thus, the I/O function includes a 
control and timing requirement, to coordinate the flow of traffic between internal 
resources and external devices. For example, the control of the transfer of data from 
an external device to the processor might involve the following sequence of steps:

1.	 The processor interrogates the I/O module to check the status of the attached 
device.

2.	 The I/O module returns the device status.

3.	 If the device is operational and ready to transmit, the processor requests the 
transfer of data, by means of a command to the I/O module.

4.	 The I/O module obtains a unit of data (e.g., 8 or 16 bits) from the external 
device.

5.	 The data are transferred from the I/O module to the processor.

If the system employs a bus, then each of the interactions between the proces-
sor and the I/O module involves one or more bus arbitrations.

The preceding simplified scenario also illustrates that the I/O module must 
communicate with the processor and with the external device. Processor communi-
cation involves the following:

■■ Command decoding: The I/O module accepts commands from the processor, 
typically sent as signals on the control bus. For example, an I/O module for a 
disk drive might accept the following commands: READ SECTOR, WRITE 
SECTOR, SEEK track number, and SCAN record ID. The latter two com-
mands each include a parameter that is sent on the data bus.

■■ Data: Data are exchanged between the processor and the I/O module over the 
data bus.

■■ Status reporting: Because peripherals are so slow, it is important to know the 
status of the I/O module. For example, if an I/O module is asked to send data 
to the processor (read), it may not be ready to do so because it is still working 
on the previous I/O command. This fact can be reported with a status signal. 
Common status signals are BUSY and READY. There may also be signals to 
report various error conditions.

■■ Address recognition: Just as each word of memory has an address, so does 
each I/O device. Thus, an I/O module must recognize one unique address for 
each peripheral it controls.

On the other side, the I/O module must be able to perform device communication. 
This communication involves commands, status information, and data (Figure 7.2).

An essential task of an I/O module is data buffering. The need for this func-
tion is apparent from Figure 2.1. Whereas the transfer rate into and out of main 
memory or the processor is quite high, the rate is orders of magnitude lower for 
many peripheral devices and covers a wide range. Data coming from main memory 
are sent to an I/O module in a rapid burst. The data are buffered in the I/O module 
and then sent to the peripheral device at its data rate. In the opposite direction, data 
are buffered so as not to tie up the memory in a slow transfer operation. Thus, the 



234    Chapter 7 / Input/Output

I/O module must be able to operate at both device and memory speeds. Similarly, if 
the I/O device operates at a rate higher than the memory access rate, then the I/O 
module performs the needed buffering operation.

Finally, an I/O module is often responsible for error detection and for subse-
quently reporting errors to the processor. One class of errors includes mechanical 
and electrical malfunctions reported by the device (e.g., paper jam, bad disk track). 
Another class consists of unintentional changes to the bit pattern as it is transmit-
ted from device to I/O module. Some form of error-​detecting code is often used 
to detect transmission errors. A simple example is the use of a parity bit on each 
character of data. For example, the IRA character code occupies 7 bits of a byte. 
The eighth bit is set so that the total number of 1s in the byte is even (even parity) 
or odd (odd parity). When a byte is received, the I/O module checks the parity to 
determine whether an error has occurred.

I/O Module Structure

I/O modules vary considerably in complexity and the number of external devices 
that they control. We will attempt only a very general description here. (One 
specific device, the Intel 8255A, is described in Section 7.4.) Figure 7.3 provides a 
general block diagram of an I/O module. The module connects to the rest of the 
computer through a set of signal lines (e.g., system bus lines). Data transferred to 
and from the module are buffered in one or more data registers. There may also 
be one or more status registers that provide current status information. A status 
register may also function as a control register, to accept detailed control informa-
tion from the processor. The logic within the module interacts with the processor 
via a set of control lines. The processor uses the control lines to issue commands 
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Figure 7.3  Block Diagram of an I/O Module
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to the I/O module. Some of the control lines may be used by the I/O module (e.g., 
for arbitration and status signals). The module must also be able to recognize and 
generate addresses associated with the devices it controls. Each I/O module has 
a unique address or, if it controls more than one external device, a unique set of 
addresses. Finally, the I/O module contains logic specific to the interface with each 
device that it controls.

An I/O module functions to allow the processor to view a wide range of devices 
in a simple-​minded way. There is a spectrum of capabilities that may be provided. 
The I/O module may hide the details of timing, formats, and the electromechanics 
of an external device so that the processor can function in terms of simple read and 
write commands, and possibly open and close file commands. In its simplest form, 
the I/O module may still leave much of the work of controlling a device (e.g., rewind 
a tape) visible to the processor.

An I/O module that takes on most of the detailed processing burden, present-
ing a high-​level interface to the processor, is usually referred to as an I/O channel or 
I/O processor. An I/O module that is quite primitive and requires detailed control 
is usually referred to as an I/O controller or device controller. I/O controllers are 
commonly seen on microcomputers, whereas I/O channels are used on mainframes.

In what follows, we will use the generic term I/O module when no confusion 
results and will use more specific terms where necessary.

	 7.3	 Programmed I/O

Three techniques are possible for I/O operations. With programmed I/O, data are 
exchanged between the processor and the I/O module. The processor executes a 
program that gives it direct control of the I/O operation, including sensing device 
status, sending a read or write command, and transferring the data. When the pro-
cessor issues a command to the I/O module, it must wait until the I/O operation is 
complete. If the processor is faster than the I/O module, this is waste of processor 
time. With interrupt-​driven I/O, the processor issues an I/O command, continues 
to execute other instructions, and is interrupted by the I/O module when the latter 
has completed its work. With both programmed and interrupt I/O, the processor is 
responsible for extracting data from main memory for output and storing data in 
main memory for input. The alternative is known as direct memory access (DMA). 
In this mode, the I/O module and main memory exchange data directly, without 
processor involvement.

Table 7.1 indicates the relationship among these three techniques. In this sec-
tion, we explore programmed I/O. Interrupt I/O and DMA are explored in the fol-
lowing two sections, respectively.

Table 7.1  I/O Techniques

No Interrupts Use of Interrupts

I/O-​to-​memory transfer through processor Programmed I/O Interrupt-​driven I/O

Direct I/O-​to-​memory transfer Direct memory access (DMA)



236    Chapter 7 / Input/Output

Overview of Programmed I/O

When the processor is executing a program and encounters an instruction relating to 
I/O, it executes that instruction by issuing a command to the appropriate I/O module. 
With programmed I/O, the I/O module will perform the requested action and then 
set the appropriate bits in the I/O status register (Figure 7.3). The I/O module takes 
no further action to alert the processor. In particular, it does not interrupt the pro-
cessor. Thus, it is the responsibility of the processor to periodically check the status 
of the I/O module until it finds that the operation is complete.

To explain the programmed I/O technique, we view it first from the point of 
view of the I/O commands issued by the processor to the I/O module, and then from 
the point of view of the I/O instructions executed by the processor.

I/O Commands

To execute an I/O-​related instruction, the processor issues an address, specifying 
the particular I/O module and external device, and an I/O command. There are four 
types of I/O commands that an I/O module may receive when it is addressed by a 
processor:

■■ Control: Used to activate a peripheral and tell it what to do. For example, a 
magnetic-​tape unit may be instructed to rewind or to move forward one record. 
These commands are tailored to the particular type of peripheral device.

■■ Test: Used to test various status conditions associated with an I/O module and 
its peripherals. The processor will want to know that the peripheral of inter-
est is powered on and available for use. It will also want to know if the most 
recent I/O operation is completed and if any errors occurred.

■■ Read: Causes the I/O module to obtain an item of data from the peripheral 
and place it in an internal buffer (depicted as a data register in Figure 7.3). The 
processor can then obtain the data item by requesting that the I/O module 
place it on the data bus.

■■ Write: Causes the I/O module to take an item of data (byte or word) from the 
data bus and subsequently transmit that data item to the peripheral.

Figure 7.4a gives an example of the use of programmed I/O to read in a block of 
data from a peripheral device (e.g., a record from tape) into memory. Data are read 
in one word (e.g., 16 bits) at a time. For each word that is read in, the processor must 
remain in a status-​checking cycle until it determines that the word is available in the 
I/O module’s data register. This flowchart highlights the main disadvantage of this 
technique: it is a time-​consuming process that keeps the processor busy needlessly.

I/O Instructions

With programmed I/O, there is a close correspondence between the I/O-​related 
instructions that the processor fetches from memory and the I/O commands that the 
processor issues to an I/O module to execute the instructions. That is, the instructions 
are easily mapped into I/O commands, and there is often a simple one-​to-​one rela-
tionship. The form of the instruction depends on the way in which external devices 
are addressed.
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Typically, there will be many I/O devices connected through I/O modules to 
the system. Each device is given a unique identifier or address. When the processor 
issues an I/O command, the command contains the address of the desired device. 
Thus, each I/O module must interpret the address lines to determine if the com-
mand is for itself.

When the processor, main memory, and I/O share a common bus, two modes 
of addressing are possible: memory mapped and isolated. With memory-​mapped 
I/O, there is a single address space for memory locations and I/O devices. The pro-
cessor treats the status and data registers of I/O modules as memory locations and 
uses the same machine instructions to access both memory and I/O devices. So, for 
example, with 10 address lines, a combined total of 210 = 1024 memory locations 
and I/O addresses can be supported, in any combination.

With memory-​mapped I/O, a single read line and a single write line are needed 
on the bus. Alternatively, the bus may be equipped with memory read and write plus 
input and output command lines. The command line specifies whether the address 
refers to a memory location or an I/O device. The full range of addresses may be 
available for both. Again, with 10 address lines, the system may now support both 
1024 memory locations and 1024 I/O addresses. Because the address space for I/O is 
isolated from that for memory, this is referred to as isolated I/O.
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Figure 7.5 contrasts these two programmed I/O techniques. Figure 7.5a shows 
how the interface for a simple input device such as a terminal keyboard might appear 
to a programmer using memory-​mapped I/O. Assume a 10-bit address, with a 512-bit 
memory (locations 0–511) and up to 512 I/O addresses (locations 512–1023). Two 
addresses are dedicated to keyboard input from a particular terminal. Address 516 
refers to the data register and address 517 refers to the status register, which also func-
tions as a control register for receiving processor commands. The program shown will 
read 1 byte of data from the keyboard into an accumulator register in the processor. 
Note that the processor loops until the data byte is available.

With isolated I/O (Figure 7.5b), the I/O ports are accessible only by special 
I/O commands, which activate the I/O command lines on the bus.

For most types of processors, there is a relatively large set of different instruc-
tions for referencing memory. If isolated I/O is used, there are only a few I/O 
instructions. Thus, an advantage of memory-​mapped I/O is that this large repertoire 
of instructions can be used, allowing more efficient programming. A disadvantage is 
that valuable memory address space is used up. Both memory-​mapped and isolated 
I/O are in common use.
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 ADDRESS INSTRUCTION OPERAND COMMENT
 200 Load AC “1” Load accumulator
  Store AC 517 Initiate keyboard read
 202 Load AC 517 Get status byte
  Branch if Sign = 0 202 Loop until ready
  Load AC 516 Load data byte

(b) Isolated I/O

 ADDRESS INSTRUCTION OPERAND COMMENT
 200 Load I/O 5 Initiate keyboard read
 201 Test I/O 5 Check for completion
  Branch Not Ready 201 Loop until complete
  In 5 Load data byte

Figure 7.5  Memory-​Mapped and Isolated I/O
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	 7.4	I nterrupt-​Driven I/O

The problem with programmed I/O is that the processor has to wait a long time 
for the I/O module of concern to be ready for either reception or transmission of 
data. The processor, while waiting, must repeatedly interrogate the status of the I/O 
module. As a result, the level of the performance of the entire system is severely 
degraded.

An alternative is for the processor to issue an I/O command to a module and 
then go on to do some other useful work. The I/O module will then interrupt the 
processor to request service when it is ready to exchange data with the processor. 
The processor then executes the data transfer, as before, and then resumes its for-
mer processing.

Let us consider how this works, first from the point of view of the I/O module. 
For input, the I/O module receives a READ command from the processor. The I/O 
module then proceeds to read data in from an associated peripheral. Once the data 
are in the module’s data register, the module signals an interrupt to the processor 
over a control line. The module then waits until its data are requested by the pro-
cessor. When the request is made, the module places its data on the data bus and is 
then ready for another I/O operation.

From the processor’s point of view, the action for input is as follows. The pro-
cessor issues a READ command. It then goes off and does something else (e.g., the 
processor may be working on several different programs at the same time). At the 
end of each instruction cycle, the processor checks for interrupts (Figure 3.9). When 
the interrupt from the I/O module occurs, the processor saves the context (e.g., pro-
gram counter and processor registers) of the current program and processes the 
interrupt. In this case, the processor reads the word of data from the I/O module 
and stores it in memory. It then restores the context of the program it was working 
on (or some other program) and resumes execution.

Figure 7.4b shows the use of interrupt I/O for reading in a block of data. 
Compare this with Figure 7.4a. Interrupt I/O is more efficient than programmed 
I/O because it eliminates needless waiting. However, interrupt I/O still consumes 
a lot of processor time, because every word of data that goes from memory to I/O 
module or from I/O module to memory must pass through the processor.

Interrupt Processing

Let us consider the role of the processor in interrupt-​driven I/O in more detail. The 
occurrence of an interrupt triggers a number of events, both in the processor hard-
ware and in software. Figure 7.6 shows a typical sequence. When an I/O device com-
pletes an I/O operation, the following sequence of hardware events occurs:

	 1.	 The device issues an interrupt signal to the processor.

	 2.	 The processor finishes execution of the current instruction before responding 
to the interrupt, as indicated in Figure 3.9.

	 3.	 The processor tests for an interrupt, determines that there is one, and sends an 
acknowledgment signal to the device that issued the interrupt. The acknowl-
edgment allows the device to remove its interrupt signal.
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	 4.	 The processor now needs to prepare to transfer control to the interrupt rou-
tine. To begin, it needs to save information needed to resume the current pro-
gram at the point of interrupt. The minimum information required is (a) the 
status of the processor, which is contained in a register called the program 
status word (PSW); and (b) the location of the next instruction to be executed, 
which is contained in the program counter. These can be pushed onto the sys-
tem control stack.2

	 5.	 The processor now loads the program counter with the entry location of the 
interrupt-​handling program that will respond to this interrupt. Depending on 
the computer architecture and operating system design, there may be a single 
program; one program for each type of interrupt; or one program for each 
device and each type of interrupt. If there is more than one interrupt-​handling 
routine, the processor must determine which one to invoke. This information 
may have been included in the original interrupt signal, or the processor may 
have to issue a request to the device that issued the interrupt to get a response 
that contains the needed information.

Device controller or
other system hardware
issues an interrupt

Processor 
nishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Hardware Software

Figure 7.6  Simple Interrupt Processing

2See Appendix I for a discussion of stack operation.
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Once the program counter has been loaded, the processor proceeds to the 
next instruction cycle, which begins with an instruction fetch. Because the instruc-
tion fetch is determined by the contents of the program counter, the result is that 
control is transferred to the interrupt-​handler program. The execution of this pro-
gram results in the following operations:

6.	 At this point, the program counter and PSW relating to the interrupted pro-
gram have been saved on the system stack. However, there is other infor-
mation that is considered part of the “state” of the executing program. In 
particular, the contents of the processor registers need to be saved, because 
these registers may be used by the interrupt handler. So, all of these values, 
plus any other state information, need to be saved. Typically, the interrupt 
handler will begin by saving the contents of all registers on the stack. Fig-
ure 7.7a shows a simple example. In this case, a user program is interrupted 
after the instruction at location N. The contents of all of the registers plus the 
address of the next instruction (N + 1) are pushed onto the stack. The stack 
pointer is updated to point to the new top of stack, and the program counter is 
updated to point to the beginning of the interrupt service routine.

7.	 The interrupt handler next processes the interrupt. This includes an exam-
ination of status information relating to the I/O operation or other event that 
caused an interrupt. It may also involve sending additional commands or 
acknowledgments to the I/O device.

8.	 When interrupt processing is complete, the saved register values are retrieved 
from the stack and restored to the registers (e.g., see Figure 7.7b).

9.	 The final act is to restore the PSW and program counter values from the stack. 
As a result, the next instruction to be executed will be from the previously 
interrupted program.

Note that it is important to save all the state information about the interrupted 
program for later resumption. This is because the interrupt is not a routine called 
from the program. Rather, the interrupt can occur at any time and therefore at any 
point in the execution of a user program. Its occurrence is unpredictable. Indeed, as 
we will see in the next chapter, the two programs may not have anything in common 
and may belong to two different users.

Design Issues

Two design issues arise in implementing interrupt I/O.  First, because there will 
almost invariably be multiple I/O modules, how does the processor determine which 
device issued the interrupt? And second, if multiple interrupts have occurred, how 
does the processor decide which one to process?

Let us consider device identification first. Four general categories of tech-
niques are in common use:

■■ Multiple interrupt lines
■■ Software poll
■■ Daisy chain (hardware poll, vectored)
■■ Bus arbitration (vectored)
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The most straightforward approach to the problem is to provide multiple inter-
rupt lines between the processor and the I/O modules. However, it is impractical to 
dedicate more than a few bus lines or processor pins to interrupt lines. Consequently, 
even if multiple lines are used, it is likely that each line will have multiple I/O mod-
ules attached to it. Thus, one of the other three techniques must be used on each line.

One alternative is the software poll. When the processor detects an interrupt, 
it branches to an interrupt-​service routine that polls each I/O module to determine 
which module caused the interrupt. The poll could be in the form of a separate com-
mand line (e.g., TESTI/O). In this case, the processor raises TESTI/O and places the 
address of a particular I/O module on the address lines. The I/O module responds 
positively if it set the interrupt. Alternatively, each I/O module could contain an 
addressable status register. The processor then reads the status register of each I/O 
module to identify the interrupting module. Once the correct module is identified, 
the processor branches to a device-​service routine specific to that device.
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The disadvantage of the software poll is that it is time consuming. A more 
efficient technique is to use a daisy chain, which provides, in effect, a hardware poll. 
An example of a daisy-​chain configuration is shown in Figure 3.26. For interrupts, 
all I/O modules share a common interrupt request line. The interrupt acknowledge 
line is daisy chained through the modules. When the processor senses an interrupt, 
it sends out an interrupt acknowledge. This signal propagates through a series of 
I/O modules until it gets to a requesting module. The requesting module typically 
responds by placing a word on the data lines. This word is referred to as a vector and 
is either the address of the I/O module or some other unique identifier. In either 
case, the processor uses the vector as a pointer to the appropriate device-​service 
routine. This avoids the need to execute a general interrupt-​service routine first. 
This technique is called a vectored interrupt.

There is another technique that makes use of vectored interrupts, and that is 
bus arbitration. With bus arbitration, an I/O module must first gain control of the 
bus before it can raise the interrupt request line. Thus, only one module can raise the 
line at a time. When the processor detects the interrupt, it responds on the interrupt 
acknowledge line. The requesting module then places its vector on the data lines.

The aforementioned techniques serve to identify the requesting I/O module. 
They also provide a way of assigning priorities when more than one device is request-
ing interrupt service. With multiple lines, the processor just picks the interrupt line 
with the highest priority. With software polling, the order in which modules are 
polled determines their priority. Similarly, the order of modules on a daisy chain 
determines their priority. Finally, bus arbitration can employ a priority scheme, as 
discussed in Section 3.4.

We now turn to two examples of interrupt structures.

Intel 82C59A Interrupt Controller

The Intel 80386 provides a single Interrupt Request (INTR) and a single Interrupt 
Acknowledge (INTA) line. To allow the 80386 to handle a variety of devices and 
priority structures, it is usually configured with an external interrupt arbiter, the 
82C59A. External devices are connected to the 82C59A, which in turn connects to 
the 80386.

Figure 7.8 shows the use of the 82C59A to connect multiple I/O modules for 
the 80386. A single 82C59A can handle up to eight modules. If control for more 
than eight modules is required, a cascade arrangement can be used to handle up to 
64 modules.

The 82C59A’s sole responsibility is the management of interrupts. It accepts 
interrupt requests from attached modules, determines which interrupt has the 
highest priority, and then signals the processor by raising the INTR line. The pro-
cessor acknowledges via the INTA line. This prompts the 82C59A to place the 
appropriate vector information on the data bus. The processor can then proceed 
to process the interrupt and to communicate directly with the I/O module to read 
or write data.

The 82C59A is programmable. The 80386 determines the priority scheme to be 
used by setting a control word in the 82C59A. The following interrupt modes are possible:

■■ Fully nested: The interrupt requests are ordered in priority from 0 (IR0) 
through 7 (IR7).
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■■ Rotating: In some applications a number of interrupting devices are of equal 
priority. In this mode a device, after being serviced, receives the lowest prior-
ity in the group.

■■ Special mask: This allows the processor to inhibit interrupts from certain 
devices.
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The Intel 8255A Programmable Peripheral Interface

As an example of an I/O module used for programmed I/O and interrupt-​driven 
I/O, we consider the Intel 8255A Programmable Peripheral Interface. The 8255A is 
a single-​chip, general-​purpose I/O module originally designed for use with the Intel 
80386 processor. It has since been cloned by other manufacturers and is a widely 
used peripheral controller chip. Its uses include as a controller for simple I/O devices 
for microprocessors and in embedded systems, including microcontroller systems.

architecture and operation Figure 7.9 shows a general block diagram plus 
the pin assignment for the 40-pin package in which it is housed. As shown on the pin 
layout, the 8255A includes the following lines:

■■ D0–D7: These are the data I/O lines for the device. All information read from 
and written to the 8255A occurs via these eight data lines.

■■ CS (Chip Select Input): If this line is a logical 0, the microprocessor can read 
and write to the 8255A.

■■ RD (Read Input): If this line is a logical 0 and the CS input is a logical 0, the 
8255A data outputs are enabled onto the system data bus.

■■ WR (Write Input): If this input line is a logical 0 and the CS input is a logical 
0, data are written to the 8255A from the system data bus.

■■ RESET: The 8255A is placed into its reset state if this input line is a logical 1. 
All peripheral ports are set to the input mode.
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■■ PA0–PA7, PB0–PB7, PC0–PC7: These signal lines are used as 8-bit I/O ports. 
They can be connected to peripheral devices.

■■ A0, A1: The logical combination of these two input lines determine which 
internal register of the 8255A data are written to or read from.

The right side of the block diagram of Figure 7.9a is the external interface 
of the 8255A. The 24 I/O lines are divided into three 8-bit groups (A, B, C). Each 
group can function as an 8-bit I/O port, thus providing connection for three periph-
eral devices. In addition, group C is subdivided into 4-bit groups (CA and CB), which 
may be used in conjunction with the A and B I/O ports. Configured in this manner, 
group C lines carry control and status signals.

The left side of the block diagram is the internal interface to the microproces-
sor system bus. It includes an 8-bit bidirectional data bus (D0 through D7), used to 
transfer data between the microprocessor and the I/O ports and to transfer control 
information.

The processor controls the 8255A by means of an 8-bit control register in the 
processor. The processor can set the value of the control register to specify a variety 
of operating modes and configurations. From the processor point of view, there is 
a control port, and the control register bits are set in the processor and then sent to 
the control port over lines D0–D7. The two address lines specify one of the three 
I/O ports or the control register, as follows:

A1 A2 Selects

0 0 Port A

0 1 Port B

1 0 Port C

1 1 Control register

Thus, when the processor sets both A1 and A2 to 1, the 8255A interprets the 
8-bit value on the data bus as a control word. When the processor transfers an 8-bit 
control word with line D7 set to 1 (Figure 7.10a), the control word is used to config-
ure the operating mode of the 24 I/O lines. The three modes are:

■■ Mode 0: This is the basic I/O mode. The three groups of eight external lines 
function as three 8-bit I/O ports. Each port can be designated as input or out-
put. Data may only be sent to a port if the port is defined as output, and data 
may only be read from a port if the port is set to input.

■■ Mode 1: In this mode, ports A and B can be configured as either input or 
output, and lines from port C serve as control lines for A and B. The control 
signals serve two principal purposes: “handshaking” and interrupt request. 
Handshaking is a simple timing mechanism. One control line is used by the 
sender as a DATA READY line, to indicate when the data are present on the 
I/O data lines. Another line is used by the receiver as an ACKNOWLEDGE, 
indicating that the data have been read and the data lines may be cleared. 
Another line may be designated as an INTERRUPT REQUEST line and tied 
back to the system bus.
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■■ Mode 2: This is a bidirectional mode. In this mode, port A can be configured 
as either the input or output lines for bidirectional traffic on port B, with the 
port B lines providing the opposite direction. Again, port C lines are used for 
control signaling.

When the processor sets D7 to 0 (Figure 7.10b), the control word is used to 
program the bit values of port C individually. This feature is rarely used.

keyboard/display example Because the 8255A is programmable via the 
control register, it can be used to control a variety of simple peripheral devices. 
Figure 7.11 illustrates its use to control a keyboard/display terminal. The keyboard 
provides 8 bits of input. Two of these bits, SHIFT and CONTROL, have special 
meaning to the keyboard-​handling program executing in the processor. However, 
this interpretation is transparent to the 8255A, which simply accepts the 8 bits of 
data and presents them on the system data bus. Two handshaking control lines are 
provided for use with the keyboard.

The display is also linked by an 8-bit data port. Again, two of the bits have 
special meanings that are transparent to the 8255A. In addition to two handshaking 
lines, two lines provide additional control functions.
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	 7.5	 Direct Memory Access

Drawbacks of Programmed and Interrupt-​Driven I/O

Interrupt-​driven I/O, though more efficient than simple programmed I/O, still 
requires the active intervention of the processor to transfer data between memory 
and an I/O module, and any data transfer must traverse a path through the proces-
sor. Thus, both these forms of I/O suffer from two inherent drawbacks:

1.	 The I/O transfer rate is limited by the speed with which the processor can test 
and service a device.

A0
A1
A2
A3
A4
A5
A6
A7

C3

Interrupt
request

Interrupt
request

C0

INPUT
PORT

KEYBOARD

OUTPUT
PORT

82C55A

B0
B1
B2
B3
B4
B5
B6
B7

C1
C2
C6
C7

C4
C5

R0
R1
R2
R3
R4
R5
Shift
Control

Data ready
Acknowledge

DISPLAY

S0
S1
S2
S3
S4
S5
Backspace
Clear

Data ready
Acknowledge
Blanking
Clear line

Figure 7.11  Keyboard/Display Interface to 8255A



7.5 / Direct Memory Access   249

2.	 The processor is tied up in managing an I/O transfer; a number of instructions 
must be executed for each I/O transfer (e.g., Figure 7.5).

There is somewhat of a trade-​off between these two drawbacks. Consider the 
transfer of a block of data. Using simple programmed I/O, the processor is dedi-
cated to the task of I/O and can move data at a rather high rate, at the cost of doing 
nothing else. Interrupt I/O frees up the processor to some extent at the expense of 
the I/O transfer rate. Nevertheless, both methods have an adverse impact on both 
processor activity and I/O transfer rate.

When large volumes of data are to be moved, a more efficient technique is 
required: direct memory access (DMA).

DMA Function

DMA involves an additional module on the system bus. The DMA module 
(Figure 7.12) is capable of mimicking the processor and, indeed, of taking over con-
trol of the system from the processor. It needs to do this to transfer data to and from 
memory over the system bus. For this purpose, the DMA module must use the bus 
only when the processor does not need it, or it must force the processor to suspend 
operation temporarily. The latter technique is more common and is referred to as 
cycle stealing, because the DMA module in effect steals a bus cycle.

When the processor wishes to read or write a block of data, it issues a command 
to the DMA module, by sending to the DMA module the following information:

■■ Whether a read or write is requested, using the read or write control line 
between the processor and the DMA module.

■■ The address of the I/O device involved, communicated on the data lines.
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■■ The starting location in memory to read from or write to, communicated on 
the data lines and stored by the DMA module in its address register.

■■ The number of words to be read or written, again communicated via the data 
lines and stored in the data count register.

The processor then continues with other work. It has delegated this I/O oper-
ation to the DMA module. The DMA module transfers the entire block of data, 
one word at a time, directly to or from memory, without going through the proces-
sor. When the transfer is complete, the DMA module sends an interrupt signal to 
the processor. Thus, the processor is involved only at the beginning and end of the 
transfer (Figure 7.4c).

Figure 7.13 shows where in the instruction cycle the processor may be sus-
pended. In each case, the processor is suspended just before it needs to use the bus. 
The DMA module then transfers one word and returns control to the processor. 
Note that this is not an interrupt; the processor does not save a context and do 
something else. Rather, the processor pauses for one bus cycle. The overall effect 
is to cause the processor to execute more slowly. Nevertheless, for a multiple-​word 
I/O transfer, DMA is far more efficient than interrupt-​driven or programmed I/O.

The DMA mechanism can be configured in a variety of ways. Some possibili-
ties are shown in Figure 7.14. In the first example, all modules share the same system 
bus. The DMA module, acting as a surrogate processor, uses programmed I/O to 
exchange data between memory and an I/O module through the DMA module. This 
configuration, while it may be inexpensive, is clearly inefficient. As with processor-​
controlled programmed I/O, each transfer of a word consumes two bus cycles.

The number of required bus cycles can be cut substantially by integrating the 
DMA and I/O functions. As Figure 7.14b indicates, this means that there is a path 
between the DMA module and one or more I/O modules that does not include 
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the system bus. The DMA logic may actually be a part of an I/O module, or it may 
be a separate module that controls one or more I/O modules. This concept can 
be taken one step further by connecting I/O modules to the DMA module using 
an I/O bus (Figure 7.14c). This reduces the number of I/O interfaces in the DMA 
module to one and provides for an easily expandable configuration. In both of 
these cases (Figures 7.14b and c), the system bus that the DMA module shares with 
the processor and memory is used by the DMA module only to exchange data with 
memory. The exchange of data between the DMA and I/O modules takes place off 
the system bus.

Intel 8237A DMA Controller

The Intel 8237A DMA controller interfaces to the 80 * 86 family of processors and 
to DRAM memory to provide a DMA capability. Figure 7.15 indicates the location 
of the DMA module. When the DMA module needs to use the system buses (data, 
address, and control) to transfer data, it sends a signal called HOLD to the processor. 
The processor responds with the HLDA (hold acknowledge) signal, indicating that 
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the DMA module can use the buses. For example, if the DMA module is to transfer 
a block of data from memory to disk, it will do the following:

1.	 The peripheral device (such as the disk controller) will request the service of 
DMA by pulling DREQ (DMA request) high.

2.	 The DMA will put a high on its HRQ (hold request), signaling the CPU 
through its HOLD pin that it needs to use the buses.

3.	 The CPU will finish the present bus cycle (not necessarily the present instruc-
tion) and respond to the DMA request by putting high on its HDLA (hold 
acknowledge), thus telling the 8237 DMA that it can go ahead and use the 
buses to perform its task. HOLD must remain active high as long as DMA is 
performing its task.

4.	 DMA will activate DACK (DMA acknowledge), which tells the peripheral 
device that it will start to transfer the data.

5.	 DMA starts to transfer the data from memory to peripheral by putting the 
address of the first byte of the block on the address bus and activating MEMR, 
thereby reading the byte from memory into the data bus; it then activates IOW 
to write it to the peripheral. Then DMA decrements the counter and incre-
ments the address pointer and repeats this process until the count reaches zero 
and the task is finished.

6.	 After the DMA has finished its job it will deactivate HRQ, signaling the CPU 
that it can regain control over its buses.
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While the DMA is using the buses to transfer data, the processor is idle. Simi-
larly, when the processor is using the bus, the DMA is idle. The 8237 DMA is known 
as a fly-​by DMA controller. This means that the data being moved from one location 
to another does not pass through the DMA chip and is not stored in the DMA chip. 
Therefore, the DMA can only transfer data between an I/O port and a memory address, 
and not between two I/O ports or two memory locations. However, as explained subse-
quently, the DMA chip can perform a memory-​to-​memory transfer via a register.

The 8237 contains four DMA channels that can be programmed inde-
pendently, and any one of the channels may be active at any moment. These chan-
nels are numbered 0, 1, 2, and 3.

The 8237 has a set of five control/command registers to program and control 
DMA operation over one of its channels (Table 7.2):

■■ Command: The processor loads this register to control the operation of 
the DMA. D0 enables a memory-​to-​memory transfer, in which channel 0 is 
used to transfer a byte into an 8237 temporary register and channel 1 is used 
to transfer the byte from the register to memory. When memory-​to-​memory 
is enabled, D1 can be used to disable increment/decrement on channel 0 
so that a fixed value can be written into a block of memory. D2 enables or 
disables DMA.

■■ Status: The processor reads this register to determine DMA status. Bits 
D0–D3 are used to indicate if channels 0–3 have reached their TC (terminal 
count). Bits D4–D7 are used by the processor to determine if any channel has 
a DMA request pending.

■■ Mode: The processor sets this register to determine the mode of operation of 
the DMA. Bits D0 and D1 are used to select a channel. The other bits select 
various operation modes for the selected channel. Bits D2 and D3 determine 
if the transfer is from an I/O device to memory (write) or from memory to 
I/O (read), or a verify operation. If D4 is set, then the memory address regis-
ter and the count register are reloaded with their original values at the end of 
a DMA data transfer. Bits D6 and D7 determine the way in which the 8237 is 
used. In single mode, a single byte of data is transferred. Block and demand 
modes are used for a block transfer, with the demand mode allowing for 
premature ending of the transfer. Cascade mode allows multiple 8237s to be 
cascaded to expand the number of channels to more than 4.

■■ Single Mask: The processor sets this register. Bits D0 and D1 select the chan-
nel. Bit D2 clears or sets the mask bit for that channel. It is through this reg-
ister that the DREQ input of a specific channel can be masked (disabled) or 
unmasked (enabled). While the command register can be used to disable the 
whole DMA chip, the single mask register allows the programmer to disable 
or enable a specific channel.

■■ All Mask: This register is similar to the single mask register except that all four 
channels can be masked or unmasked with one write operation.

In addition, the 8237A has eight data registers: one memory address register 
and one count register for each channel. The processor sets these registers to indi-
cate the location of size of main memory to be affected by the transfers.
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Table 7.2  Intel 8237A Registers

Bit Command Status Mode Single Mask All Mask

D0 Memory-​to-​
memory E/D

Channel 0 has 
reached TC

Channel select
Select channel 
mask bit

Clear/set chan-
nel 0 mask bit

D1 Channel 0 
address hold E/D

Channel 1 has 
reached TC

Clear/set chan-
nel 1 mask bit

D2 Controller E/D Channel 2 has 
reached TC

Verify/write/read 
transfer

Clear/set 
mask bit

Clear/set chan-
nel 2 mask bit

D3 Normal/com-
pressed timing

Channel 3 has 
reached TC

Not used

Clear/set chan-
nel 3 mask bit

D4 Fixed/rotating 
priority

Channel 0 request Auto-​initialization 
E/D

Not used

D5 Late/extended 
write selection

Channel 0 request Address increment/
decrement select

D6 DREQ sense 
active high/low

Channel 0 request

D7 DACK sense 
active high/low

Channel 0 request Demand/single/
block/cascade mode 
select

E/D = enable/disable
TC = terminal count

	 7.6	 Direct Cache Access

DMA has proved an effective means of enhancing performance of I/O with periph-
eral devices and network I/O traffic. However, for the dramatic increases in data 
rates for network I/O, DMA is not able to scale to meet the increased demand. 
This demand is coming primarily from the widespread deployment of 10-Gbps and 
100-Gbps Ethernet switches to handle massive amounts of data transfer to and from 
database servers and other high-​performance systems [STAL14a]. A secondary 
but increasingly important source of traffic comes from Wi-​Fi in the gigabit range. 
Network Wi-​Fi devices that handle 3.2 Gbps and 6.76 Gbps are becoming widely 
available and producing demand on enterprise systems [STAL14b].

In this section, we will show how enabling the I/O function to have direct 
access to the cache can enhance performance, a technique known as direct cache 
access (DCA). Throughout this section, we are concerned only with the cache that 
is closest to main memory, referred to as the last-​level cache. In some systems, this 
will be an L2 cache, in others an L3 cache.

To begin, we describe the way in which contemporary multicore systems use 
on-​chip shared cache to enhance DMA performance. This approach involves ena-
bling the DMA function to have direct access to the last-​level cache. Next we exam-
ine cache-​related performance issues that manifest when high-​speed network traffic 
is processed. From there, we look at several different strategies for DCA that are 
designed to enhance network protocol processing performance. Finally, this section 
describes a DCA approach implemented by Intel, referred to as Direct Data I/O.



7.6 / Direct Cache Access   255

DMA Using Shared Last-​Level Cache

As was discussed in Chapter  1 (see Figure  1.2), contemporary multicore systems 
include both cache dedicated to each core and an additional level of shared cache, 
either L2 or L3. With the increasing size of available last-​level cache, system design-
ers have enhanced the DMA function so that the DMA controller has access to the 
shared cache in a manner similar to the cores. To clarify the interaction of DMA and 
cache, it will be useful to first describe a specific system architecture. For this pur-
pose, the following is an overview of the Intel Xeon system.

xeon multicore processor Intel Xeon is Intel’s high-​end, high-​performance 
processor family, used in servers, high-​performance workstations, and 
supercomputers. Many of the members of the Xeon family use a ring interconnect 
system, as illustrated for the Xeon E5-2600/4600 in Figure 7.16.

The E5-2600/4600 can be configured with up to eight cores on a single chip. 
Each core has dedicated L1 and L2 caches. There is a shared L3 cache of up to 
20 MB. The L3 cache is divided into slices, one associated with each core although 
each core can address the entire cache. Further, each slice has its own cache pipe-
line, so that requests can be sent in parallel to the slices.

The bidirectional high-​speed ring interconnect links cores, last-​level cache, 
PCIe, and integrated memory controller (IMC).

In essence, the ring operates as follows:

1.	 Each component that attaches to the bidirectional ring (QPI, PCIe, L3 cache, 
L2 cache) is considered a ring agent, and implements ring agent logic.

2.	 The ring agents cooperate via a distributed protocol to request and allocate 
access to the ring, in the form of time slots.

3.	 When an agent has data to send, it chooses the ring direction that results in the 
shortest path to the destination and transmits when a scheduling slot is available.

The ring architecture provides good performance and scales well for multiple 
cores, up to a point. For systems with a greater number of cores, multiple rings are 
used, with each ring supporting some of the cores.

dma use of the cache In traditional DMA operation, data are exchanged 
between main memory and an I/O device by means of the system interconnection 
structure, such as a bus, ring, or QPI point-​to-​point matrix. So, for example, if the 
Xeon E5-2600/4600 used a traditional DMA technique, output would proceed as 
follows. An I/O driver running on a core would send an I/O command to the I/O 
controller (labeled PCIe in Figure 7.16) with the location and size of the buffer in 
main memory containing the data to be transferred. The I/O controller issues a read 
request that is routed to the memory controller hub (MCH), which accesses the data 
on DDR3 memory and puts it on the system ring for delivery to the I/O controller. 
The L3 cache is not involved in this transaction and one or more off-​chip memory 
reads are required. Similarly, for input, data arrive from the I/O controller and is 
delivered over the system ring to the MCH and written out to main memory. The 
MCH must also invalidate any L3 cache lines corresponding to the updated memory 
locations. In this case, one or more off-​chip memory writes are required. Further, if 
an application wants to access the new data, a main memory read is required.
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With the availability of large amounts of last-​level cache, a more efficient 
technique is possible, and is used by the Xeon E5-2600/4600. For output, when the 
I/O controller issues a read request, the MCH first checks to see if the data are in 
the L3 cache. This is likely to be the case, if an application has recently written data 
into the memory block to be output. In that case, the MCH directs data from the L3 
cache to the I/O controller; no main memory accesses are needed. However, it also 
causes the data to be evicted from cache, that is, the act of reading by an I/O device 
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causes data to be evicted. Thus, the I/O operation proceeds efficiently because it 
does not require main memory access. But, if an application does need that data 
in the future, it must be read back into the L3 cache from main memory. The input 
operation on the Xeon E5-2600/4600 operates as described in the previous para-
graph; the L3 cache is not involved. Thus, the performance improvement involves 
only output operations.

A final point. Although the output transfer is directly from cache to the I/O 
controller, the term direct cache access is not used for this feature. Rather, the term 
is reserved for the I/O protocol application, as described in the remainder of this 
section.

Cache-​Related Performance Issues

Network traffic is transmitted in the form of a sequence of protocol blocks, called 
packets or protocol data units. The lowest, or link, level protocol is typically 
Ethernet, so that each arriving and departing block of data consists of an Ethernet 
packet containing as payload the higher-​level protocol packet. The higher-​level pro-
tocols are usually the Internet Protocol (IP), operating on top of Ethernet, and 
the Transmission Control Protocol (TCP), operating on top of IP. Accordingly, the 
Ethernet payload consists of a block of data with a TCP header and an IP header. 
For outgoing data, Ethernet packets are formed in a peripheral component, such 
as an I/O controller or network interface controller (NIC). Similarly, for incoming 
traffic, the I/O controller strips off the Ethernet information and delivers the TCP/
IP packet to the host CPU.

For both outgoing and incoming traffic, the core, main memory, and cache 
are all involved. In a DMA scheme, when an application wishes to transmit data, it 
places that data in an application-​assigned buffer in main memory. The core trans-
fers this to a system buffer in main memory and creates the necessary TCP and IP 
headers, which are also buffered in system memory. The packet is then picked up 
via DMA for transfer via the NIC. This activity engages not only main memory but 
also the cache. For incoming traffic, similar transfers between system and applica-
tion buffers are required.

When large volumes of protocol traffic are processed, two factors in this sce-
nario degrade performance. First, the core consumes valuable clock cycles in copy-
ing data between system and application buffers. Second, because memory speeds 
have not kept up with CPU speeds, the core loses time waiting on memory reads 
and writes. In this traditional way of processing protocol traffic, the cache does not 
help because the data and protocol headers are constantly changing and thus the 
cache must constantly be updated.

To clarify the performance issue and to explain the benefit of DCA as a way 
of improving performance, let us look at the processing of protocol traffic in more 
detail for incoming traffic. In general terms, the following steps occur:

1.	 Packet arrives:  The NIC receives an incoming Ethernet packet. The NIC pro-
cesses and strips off the Ethernet control information. This includes doing an 
error detection calculation. The remaining TCP/IP packet is then transferred 
to the system’s DMA module, which generally is part of the NIC. The NIC 
also creates a packet descriptor with information about the packet, such as its 
buffer location in memory.
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2.	 DMA:  The DMA module transfers data, including the packet descriptor, to 
main memory. It must also invalidate the corresponding cache lines, if any.

3.	 NIC interrupts host:  After a number of packets have been transferred, the 
NIC issues an interrupt to the host processor.

4.	 Retrieve descriptors and headers:  The core processes the interrupt, invoking 
an interrupt handling procedure, which reads the descriptor and header of the 
received packets.

5.	 Cache miss occurs:  Because this is new data coming in, the cache lines corre-
sponding to the system buffer containing the new data are invalidated. Thus, 
the core must stall to read the data from main memory into cache, and then to 
core registers.

6.	 Header is processed:  The protocol software executes on the core to analyze 
the contents of the TCP and IP headers. This will likely include accessing a 
transport control block (TCB), which contains context information related 
to TCP. The TCB access may or may not trigger a cache miss, necessitating a 
main memory access.

7.	 Payload transferred:  The data portion of the packet is transferred from the 
system buffer to the appropriate application buffer.

A similar sequence of steps occurs for outgoing packet traffic, but there are 
some differences that affect how the cache is managed. For outgoing traffic, the 
following steps occur:

1.	 Packet transfer requested:  When an application has a block of data to transfer 
to a remote system, it places the data in an application buffer and alerts the 
OS with some type of system call.

2.	 Packet created:  The OS invokes a TCP/IP process to create the TCP/IP packet 
for transmission. The TCP/IP process accesses the TCB (which may involve a 
cache miss) and creates the appropriate headers. It also reads the data from 
the application buffer, and then places the completed packet (headers plus 
data) in a system buffer. Note that the data that is written into the system buf-
fer also exists in the cache. The TCP/IP process also creates a packet descrip-
tor that is placed in memory shared with the DMA module.

3.	 Output operation invoked:  This uses a device driver program to signal the 
DMA module that output is ready for the NIC.

4.	 DMA transfer:  The DMA module reads the packet descriptor, then a 
DMA transfer is performed from main memory or the last-​level cache to 
the NIC. Note that DMA transfers invalidate the cache line in cache even in 
the case of a read (by the DMA module). If the line is modified, this causes a 
write back. The core does not do the invalidates. The invalidates happen when 
the DMA module reads the data.

5.	 NIC signals completion:  After the transfer is complete, the NIC signals the 
driver on the core that originated the send signal.

6.	 Driver frees buffer:  Once the driver receives the completion notice, it frees 
up the buffer space for reuse. The core must also invalidate the cache lines 
containing the buffer data.
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As can be seen, network I/O involves a number of accesses to cache and main 
memory and the movement of data between an application buffer and a system 
buffer. The heavy involvement of main memory becomes a bottleneck, as both core 
and network performance outstrip gains in memory access times.

Direct Cache Access Strategies

Several strategies have been proposed for making more efficient use of caches for 
network I/O, with the general term direct cache access applied to all of these strategies.

The simplest strategy is one that was implemented as a prototype on a number 
of Intel Xeon processors between 2006 and 2010 [KUMA07, INTE08]. This form 
of DCA applies only to incoming network traffic. The DCA function in the mem-
ory controller sends a prefetch hint to the core as soon as the data are available in 
system memory. This enables the core to prefetch the data packet from the system 
buffer, thus avoiding cache misses and the associated waste of core cycles.

While this simple form of DCA does provide some improvement, much more 
substantial gains can be realized by avoiding the system buffer in main memory 
altogether. For the specific function of protocol processing, note that the packet 
and packet descriptor information are accessed only once in the system buffer by 
the core. For incoming packets, the core reads the data from the buffer and trans-
fers the packet payload to an application buffer. It has no need to access that data 
in the system buffer again. Similarly, for outgoing packets, once the core has placed 
the data in the system buffer, it has no need to access that data again. Suppose, 
therefore, that the I/O system were equipped not only with the capability of directly 
accessing main memory, but also of accessing the cache, both for input and output 
operations. Then it would be possible to use the last-​level cache instead of the main 
memory to buffer packets and descriptors of incoming and outgoing packets.

This last approach, which is a true DCA, was proposed in [HUGG05]. It has 
also been described as cache injection [LEON06]. A version of this more complete 
form of DCA is implemented in Intel’s Xeon processor line, referred to as Direct 
Data I/O [INTE12].

Direct Data I/O

Intel Direct Data I/O (DDIO) is implemented on all of the Xeon E5 family of pro-
cessors. Its operation is best explained with a side-​by-​side comparison of transfers 
with and without DDIO.

packet input First, we look at the case of a packet arriving at the NIC from the 
network. Figure 7.17a shows the steps involved for a DMA operation. The NIC 
initiates a memory write (1). Then the NIC invalidates the cache lines corresponding 
to the system buffer (2). Next, the DMA operation is performed, depositing the 
packet directly into main memory (3). Finally, after the appropriate core receives a 
DMA interrupt signal, the core can read the packet data from memory through the 
cache (4).

Before discussing the processing of an incoming packet using DDIO, we need 
to summarize the discussion of cache write policy from Chapter 4, and introduce a 
new technique. For the following discussion, there are issues relating to cache coher-
ency that arise in a multiprocessor or multicore environment. These are discussed 
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in Chapter 17 but the details need not concern us here. Recall that there are two 
techniques for dealing with an update to a cache line:

■■ Write through: All write operations are made to main memory as well as to 
the cache, ensuring that main memory is always valid. Any other core–​cache 
module can monitor traffic to main memory to maintain consistency within its 
own local cache.

■■ Write back: Updates are made only in the cache. When an update occurs, a 
dirty bit associated with the line is set. Then, when a block is replaced, it is 
written back to main memory if and only if the dirty bit is set.

DDIO uses the write-​back strategy in the L3 cache.
A cache write operation may encounter a cache miss, which is dealt with by 

one of two strategies:

■■ Write allocate: The required line is loaded into the cache from main memory. 
Then, the line in the cache is updated by the write operation. This scheme is 
typically used with the write-​back method.

■■ Non-​write allocate: The block is modified directly in main memory. No change is 
made to the cache. This scheme is typically used with the write-​through method.

With the above in mind, we can describe the DDIO strategy for inbound 
transfers initiated by the NIC.

1.	 If there is a cache hit, the cache line is updated, but not main memory; this is 
simply the write-​back strategy for a cache hit. The Intel literature refers to this 
as write update.
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2.	 If there is a cache miss, the write operation occurs to a line in the cache that will not 
be written back to main memory. Subsequent writes update the cache line, again 
with no reference to main memory or no future action that writes this data to main 
memory. The Intel documentation [INTE12] refers to this as write allocate, which 
unfortunately is not the same meaning for the term in the general cache literature.

The DDIO strategy is effective for a network protocol application because the 
incoming data need not be retained for future use. The protocol application is going 
to write the data to an application buffer, and there is no need to temporarily store 
it in a system buffer.

Figure 7.17b shows the operation for DDIO input. The NIC initiates a memory 
write (1). Then the NIC invalidates the cache lines corresponding to the system buffer 
and deposits the incoming data in the cache (2). Finally, after the appropriate core 
receives a DCA interrupt signal, the core can read the packet data from the cache (3).

packet output Figure 7.17c shows the steps involved for a DMA operation for 
outbound packet transmission. The TCP/IP protocol handler executing on the core reads 
data in from an application buffer and writes it out to a system buffer. These data access 
operations result in cache misses and cause data to be read from memory and into the L3 
cache (1). When the NIC receives notification for starting a transmit operation, it reads 
the data from the L3 cache and transmits it (2). The cache access by the NIC causes the 
data to be evicted from the cache and written back to main memory (3).

Figure 7.17d shows the steps involved for a DDIO operation for packet trans-
mission. The TCP/IP protocol handler creates the packet to be transmitted and 
stores it in allocated space in the L3 cache (1), but not in main memory (2). The 
read operation initiated by the NIC is satisfied by data from the cache, without 
causing evictions to main memory.

It should be clear from these side-​by-​side comparisons that DDIO is more 
efficient than DMA for both incoming and outgoing packets and is therefore better 
able to keep up with the high packet traffic rate.

	 7.7	I /O Channels and Processors

The Evolution of the I/O Function

As computer systems have evolved, there has been a pattern of increasing complex-
ity and sophistication of individual components. Nowhere is this more evident than 
in the I/O function. We have already seen part of that evolution. The evolutionary 
steps can be summarized as follows:

1.	 The CPU directly controls a peripheral device. This is seen in simple 
microprocessor-​controlled devices.

2.	 A controller or I/O module is added. The CPU uses programmed I/O without 
interrupts. With this step, the CPU becomes somewhat divorced from the spe-
cific details of external device interfaces.

3.	 The same configuration as in step 2 is used, but now interrupts are employed. 
The CPU need not spend time waiting for an I/O operation to be performed, 
thus increasing efficiency.
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4.	 The I/O module is given direct access to memory via DMA. It can now move 
a block of data to or from memory without involving the CPU, except at the 
beginning and end of the transfer.

5.	 The I/O module is enhanced to become a processor in its own right, with a 
specialized instruction set tailored for I/O. The CPU directs the I/O processor 
to execute an I/O program in memory. The I/O processor fetches and executes 
these instructions without CPU intervention. This allows the CPU to specify a 
sequence of I/O activities and to be interrupted only when the entire sequence 
has been performed.

6.	 The I/O module has a local memory of its own and is, in fact, a computer in its 
own right. With this architecture, a large set of I/O devices can be controlled, 
with minimal CPU involvement. A common use for such an architecture has 
been to control communication with interactive terminals. The I/O processor 
takes care of most of the tasks involved in controlling the terminals.

As one proceeds along this evolutionary path, more and more of the I/O func-
tion is performed without CPU involvement. The CPU is increasingly relieved of 
I/O-​related tasks, improving performance. With the last two steps (5–6), a major 
change occurs with the introduction of the concept of an I/O module capable of 
executing a program. For step 5, the I/O module is often referred to as an I/O 
channel. For step 6, the term I/O processor is often used. However, both terms are 
on occasion applied to both situations. In what follows, we will use the term I/O 
channel.

Characteristics of I/O Channels

The I/O channel represents an extension of the DMA concept. An I/O channel 
has the ability to execute I/O instructions, which gives it complete control over 
I/O operations. In a computer system with such devices, the CPU does not execute 
I/O instructions. Such instructions are stored in main memory to be executed by a 
special-​purpose processor in the I/O channel itself. Thus, the CPU initiates an I/O 
transfer by instructing the I/O channel to execute a program in memory. The pro-
gram will specify the device or devices, the area or areas of memory for storage, 
priority, and actions to be taken for certain error conditions. The I/O channel follows 
these instructions and controls the data transfer.

Two types of I/O channels are common, as illustrated in Figure  7.18. A 
selector channel controls multiple high-​speed devices and, at any one time, is 
dedicated to the transfer of data with one of those devices. Thus, the I/O chan-
nel selects one device and effects the data transfer. Each device, or a small set of 
devices, is handled by a controller, or I/O module, that is much like the I/O mod-
ules we have been discussing. Thus, the I/O channel serves in place of the CPU 
in controlling these I/O controllers. A multiplexor channel can handle I/O with 
multiple devices at the same time. For low-​speed devices, a byte multiplexor 
accepts or transmits characters as fast as possible to multiple devices. For example, 
the resultant character stream from three devices with different rates and indi-
vidual streams A1A2A3A4  c ,  B1B2B3B4  c ,  and  C1C2C3C4  c  might be 
A1B1C1A2C2A3B2C3A4, and so on. For high-​speed devices, a block multiplexor 
interleaves blocks of data from several devices.
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	 7.8	 External Interconnection Standards

In this section, we provide a brief overview of the most widely used external inter-
face standards to support I/O. Two of these, Thunderbolt and InfiniBand, are exam-
ined in detail in Appendix J.

Universal Serial Bus (USB)

USB is widely used for peripheral connections. It is the default interface for slower- 
speed devices, such as keyboard and pointing devices, but is also commonly used for 
high-​speed I/O, including printers, disk drives, and network adapters.

USB has gone through multiple generations. The first version, USB 1.0, 
defined a Low Speed data rate of 1.5 Mbps and a Full Speed rate of 12 Mbps. USB 
2.0 provides a data rate of 480 Mbps. USB 3.0 includes a new, higher speed bus 
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called SuperSpeed in parallel with the USB 2.0 bus. The signaling speed of Super-
Speed is 5 Gbps, but due to signaling overhead, the usable data rate is up to 4 Gbps. 
The most recent specification is USB 3.1, which includes a faster transfer mode 
called SuperSpeed+. This transfer mode achieves a signaling rate of 10 Gbps and a 
theoretical usable data rate of 9.7 Gbps.

A USB system is controlled by a root host controller, which attaches to devices 
to create a local network with a hierarchical tree topology.

FireWire Serial Bus

FireWire was developed as an alternative to the small computer system interface 
(SCSI) to be used on smaller systems, such as personal computers, workstations, 
and servers. The objective was to meet the increasing demands for high I/O rates 
on these systems, while avoiding the bulky and expensive I/O channel technologies 
developed for mainframe and supercomputer systems. The result is the IEEE stan-
dard 1394, for a High Performance Serial Bus, commonly known as FireWire.

FireWire uses a daisy-​chain configuration, with up to 63 devices connected 
off a single port. Moreover, up to 1022 FireWire buses can be interconnected using 
bridges, enabling a system to support as many peripherals as required.

FireWire provides for what is known as hot plugging, which makes it possible 
to connect and disconnect peripherals without having to power the computer system 
down or reconfigure the system. Also, FireWire provides for automatic configur-
ation; it is not necessary manually to set device IDs or to be concerned with the rela-
tive position of devices. With FireWire, there are no terminations, and the system 
automatically performs a configuration function to assign addresses. A FireWire bus 
need not be a strict daisy chain. Rather, a tree-​structured configuration is possible.

An important feature of the FireWire standard is that it specifies a set of three 
layers of protocols to standardize the way in which the host system interacts with the 
peripheral devices over the serial bus. The physical layer defines the transmission media 
that are permissible under FireWire and the electrical and signaling characteristics of 
each. Data rates from 25 Mbps to 3.2 Gbps are defined. The link layer describes the 
transmission of data in the packets. The transaction layer defines a request–​response 
protocol that hides the lower-​layer details of FireWire from applications.

Small Computer System Interface (SCSI)

SCSI is a once common standard for connecting peripheral devices (disks, modems, 
printers, etc.) to small and medium-​sized computers. Although SCSI has evolved to 
higher data rates, it has lost popularity to such competitors as USB and FireWire 
in smaller systems. However, high-​speed versions of SCSI remain popular for mass 
memory support on enterprise systems. For example, the IBM zEnterprise EC12 
and other IBM mainframes offer support for SCSI, and a number of Seagate hard 
drive systems use SCSI.

The physical organization of SCSI is a shared bus, which can support up to 16 
or 32 devices, depending on the generation of the standard. The bus provides for 
parallel transmission rather than serial, with a bus width of 16 bits on earlier gener-
ations and 32 bits on later generations. Speeds range from 5 Mbps on the original 
SCSI-​1 specification to 160 Mbps on SCSI-​3 U3.



Thunderbolt

The most recent, and one of fastest, peripheral connection technology to become 
available for general-​purpose use is Thunderbolt, developed by Intel with collabora-
tion from Apple. One Thunderbolt cable can manage the work previously required 
of multiple cables. The technology combines data, video, audio, and power into a 
single high-​speed connection for peripherals such as hard drives, RAID (Redundant 
Array of Independent Disks) arrays, video-​capture boxes, and network interfaces. It 
provides up to 10 Gbps throughput in each direction and up to 10 watts of power to 
connected peripherals.

Thunderbolt is described in detail in Appendix J.

InfiniBand

InfiniBand is an I/O specification aimed at the high-​end server market. The first 
version of the specification was released in early 2001 and has attracted numerous 
vendors. For example, IBM zEnterprise series of mainframes has relied heavily on 
InfiniBand for a number of years. The standard describes an architecture and speci-
fications for data flow among processors and intelligent I/O devices. InfiniBand has 
become a popular interface for storage area networking and other large storage con-
figurations. In essence, InfiniBand enables servers, remote storage, and other network 
devices to be attached in a central fabric of switches and links. The switch-​based archi-
tecture can connect up to 64,000 servers, storage systems, and networking devices.

Infiniband is described in detail in Appendix J.

PCI Express

PCI Express is a high-​speed bus system for connecting peripherals of a wide variety 
of types and speeds. Chapter 3 discusses PCI Express in detail.

SATA

Serial ATA (Serial Advanced Technology Attachment) is an interface for disk stor-
age systems. It provides data rates of up to 6 Gbps, with a maximum per device of 
300 Mbps. SATA is widely used in desktop computers, and in industrial and embed-
ded applications.

Ethernet

Ethernet is the predominant wired networking technology, used in homes, offices, 
data centers, enterprises, and wide-​area networks. As Ethernet has evolved to sup-
port data rates up to 100 Gbps and distances from a few meters to tens of km, it 
has become essential for supporting personal computers, workstations, servers, and 
massive data storage devices in organizations large and small.

Ethernet began as an experimental bus-​based 3-Mbps system. With a bus sys-
tem, all of the attached devices, such as PCs, connect to a common coaxial cable, 
much like residential cable TV systems. The first commercially-​available Ether-
net, and the first version of IEEE 802.3, were bus-​based systems operating at 10 
Mbps. As technology has advanced, Ethernet has moved from bus-​based to switch-​
based, and the data rate has periodically increased by an order of magnitude. With 
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switch-​based systems, there is a central switch, with all of the devices connected 
directly to the switch. Currently, Ethernet systems are available at speeds up to 100 
Gbps. Here is a brief chronology.

■■ 1983: 10 Mbps (megabit per second, million bits per second)
■■ 1995: 100 Mbps
■■ 1998: 1 Gbps (gigabit per second, billion bits per second)
■■ 2003: 10 Gbps
■■ 2010: 40 Gbps and 100 Gbps

Wi-​Fi

Wi-​Fi is the predominant wireless Internet access technology, used in homes, offices, 
and public spaces. Wi-​Fi in the home now connects computers, tablets, smart phones, 
and a host of electronic devices, such as video cameras, TVs, and thermostats. Wi-​Fi 
in the enterprise has become an essential means of enhancing worker productivity 
and network effectiveness. And public Wi-​Fi hotspots have expanded dramatically 
to provide free Internet access in most public places.

As the technology of antennas, wireless transmission techniques, and wireless 
protocol design has evolved, the IEEE 802.11 committee has been able to introduce 
standards for new versions of Wi-​Fi at ever-​higher speeds. Once the standard is 
issued, industry quickly develops the products. Here is a brief chronology, starting 
with the original standard, which was simply called IEEE 802.11, and showing the 
maximum data rate for each version:

■■ 802.11 (1997): 2 Mbps (megabit per second, million bits per second)
■■ 802.11a (1999): 54 Mbps
■■ 802.11b (1999): 11 Mbps
■■ 802.11n (1999): 600 Mbps
■■ 802.11g (2003): 54 Mbps
■■ 802.11ad (2012): 6.76 Gbps (billion bits per second)
■■ 802.11ac (2014): 3.2 Gbps
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The zEnterprise EC12 is IBM’s latest mainframe computer offering (at the time of 
this writing). The system is based on the use of the zEC12 processor chip, which is a 
5.5-GHz multicore chip with six cores. The zEC12 architecture can have a maximum 
of 101 processor chips for a total of 606 cores. In this section, we look at the I/O 
structure of the zEnterprise EC12.

Channel Structure

The zEnterprise EC12 has a dedicated I/O subsystem that manages all I/O oper-
ations, completely off-​loading this processing and memory burden from the main 



processors. Figure 7. 21 shows the logical structure of the I/O subsystem. Of the 96 
core processors, up to 4 of these can be dedicated for I/O use, creating 4 channel 
subsystems (CSS). Each CSS is made up of the following elements:

■■ System assist processor (SAP): The SAP is a core processor configured for I/O 
operation. Its role is to offload I/O operations and manage channels and the 
I/O operations queues. It relieves the other processors of all I/O tasks, allowing 
them to be dedicated to application logic.

■■ Hardware system area (HSA): The HSA is a reserved part of the system mem-
ory containing the I/O configuration. It is used by SAPs. A fixed amount of 
32 GB is reserved, which is not part of the customer-​purchased memory. This 
provides for greater configuration flexibility and higher availability by elimi-
nating planned and preplanned outages.

■■ Logical partitions: A logical partition is a form of virtual machine, which is in 
essence, a logical processor defined at the operating system level.3 Each CSS 
supports up to 16 logical partitions.
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Figure 7.19  IBM zEC12 I/O Channel Subsystem Structure

3A virtual machine is an instance of an operating system along with one or more applications running in 
an isolated memory partition within the computer. It enables different operating systems to run in the 
same computer at the same time as well as prevents applications from interfering with each other. See 
[STAL12] for a discussion of virtual machines.
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■■ Subchannels: A subchannel appears to a program as a logical device and con-
tains the information required to perform an I/O operation. One subchannel 
exists for each I/O device addressable by the CSS. A subchannel is used by the 
channel subsystem code running on a partition to pass an I/O request to the 
channel subsystem. A subchannel is assigned for each device defined to the 
logical partition. Up to 196k subchannels are supported per CSS.

■■ Channel path: A channel path is a single interface between a channel subsys-
tem and one or more control units, via a channel. Commands and data are sent 
across a channel path to perform I/O requests. Each CSS can have up to 256 
channel paths.

■■ Channel: Channels are small processors that communicate with the I/O con-
trol units (CUs). They manage the data transfer between memory and the 
external devices.

This elaborate structure enables the mainframe to manage a massive num-
ber of I/O devices and communication links. All I/O processing is offloaded from 
the application and server processors, enhancing performance. The channel subsys-
tem processors are somewhat general in configuration, enabling them to manage 
a wide variety of I/O duties and to keep up with evolving requirements. The chan-
nel processors are specifically programmed for the I/O control units to which they 
interface.

I/O System Organization

To explain the I/O system organization, we need to first briefly explain the physical 
layout of the zEnterprise EC12. Figure 7. 20 is a front view of the water-​cooled version 
of the machine (there is also an air-​cooled version). The system has the following 
characteristics:

■■ Weight: 2430 kg (5358 lbs)
■■ Width: 1.568 m (5.14 ft)
■■ Depth: 1.69 m (6.13 ft)
■■ Height: 2.015 m (6.6 ft)

Not exactly a laptop.
The system consists of two large bays, called frames, that house the various 

components of the zEnterprise EC12. The right-hand A frame includes two large 
cages, plus room for cabling and other components. The upper cage is a processor 
cage, with four slots to house up to four processor books that are fully intercon-
nected. Each book contains a multichip module (MCM), memory cards, and I/O 
cage connections. Each MCM is a board that houses six multicore chips and two 
storage control chips.

The lower cage in the A frame is an I/O cage, which contains I/O hardware, 
including multiplexors and channels. The I/O cage is a fixed unit installed by IBM to 
the customer specifications at the factory.

The left-hand Z frame contains internal batteries and power supplies and 
room for one or more support elements, which are used by a system manager for 
platform management. The Z frame also contains slots for two or more I/O drawers. 



An I/O drawer contains similar components to an I/O cage. The differences are that 
the drawer is smaller and easily swapped in and out at the customer site to meet 
changing requirements.

With this background, we now show a typical configuration of the zEnterprise 
EC12 I/O system structure (Figure 7.21). Each zEC12 processor book supports two 
internal (i.e., internal to the A and Z frames) I/O infrastructures: InfiniBand for 
I/O cages and I/O drawers, and PCI Express (PCIe) for I/O drawers. These channel 
controllers are referred to as fanouts.

The InfiniBand connections from the processor book to the I/O cages and 
I/O drawers are via a Host Channel Adapter (HCA) fanout, which has InfiniBand 
links to InfiniBand multiplexors in the I/O cage or drawer. The InfiniBand multi-
plexors are used to interconnect servers, communications infrastructure equipment, 
storage, and embedded systems. In addition to using InfiniBand to interconnect 
systems, all of which use InfiniBand, the InfiniBand multiplexor supports other I/O 
technologies. ESCON (Enterprise Systems Connection) supports connectivity to 
disks, tapes, and printer devices using a proprietary fiber-​based technology. Eth-
ernet connections provide 1-Gbps and 10-Gbps connections to a variety of devices 
that support this popular local area network technology. One noteworthy use of 
Ethernet is to construct large server farms, particularly to interconnect blade serv-
ers with each other and with other mainframes.4
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Figure 7.20  IBM zEC12 I/O Frames–​Front View

4A blade server is a server architecture that houses multiple server modules (blades) in a single chassis. It 
is widely used in data centers to save space and improve system management. Either self-​standing or rack 
mounted, the chassis provides the power supply, and each blade has its own CPU, memory, and hard disk.
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The PCIe connections from the processor book to the I/O drawers are via a 
PCIe fanout to PCIe switches. The PCIe switches can connect to a number of I/O 
device controllers. Typical examples for zEnterprise EC12 are 1-Gbps and 10-Gbps 
Ethernet and Fiber Channel.

Each book contains a combination of up to 8 InfiniBand HCA and PCIe 
fanouts. Each fanout supports up to 32 connections, for a total maximum of 256 
connections per processor book, each connection controlled by a channel processor.
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