
Input/Output
7.1	 External Devices	

7.2	 I/O Modules	

7.3	 Programmed I/O	

7.4	 Interrupt-​Driven I/O	

7.5	 Direct Memory Access	

7.6	 Direct Cache Access	

7.7	 I/O Channels and Processors	

7.8	 External Interconnection Standards	

7.9	 IBM zEnterprise EC12 I/O Structure	

7.10	 Key Terms, Review Questions, and Problems	

Chapter

228

Input/Output   229

I/O System Design Tool

In addition to the processor and a set of memory modules, the third key element
of a computer system is a set of I/O modules. Each module interfaces to the system
bus or central switch and controls one or more peripheral devices. An I/O module
is not simply a set of mechanical connectors that wire a device into the system bus.
Rather, the I/O module contains logic for performing a communication function
between the peripheral and the bus.

The reader may wonder why one does not connect peripherals directly to the
system bus. The reasons are as follows:

■■ There are a wide variety of peripherals with various methods of operation. It
would be impractical to incorporate the necessary logic within the processor to
control a range of devices.

■■ The data transfer rate of peripherals is often much slower than that of the
memory or processor. Thus, it is impractical to use the high-​speed system bus
to communicate directly with a peripheral.

■■ On the other hand, the data transfer rate of some peripherals is faster than
that of the memory or processor. Again, the mismatch would lead to ineffi-
ciencies if not managed properly.

■■ Peripherals often use different data formats and word lengths than the com-
puter to which they are attached.

■■ Thus, an I/O module is required. This module has two major functions (Figure 7.1):
■■ Interface to the processor and memory via the system bus or central switch.
■■ Interface to one or more peripheral devices by tailored data links.

We begin this chapter with a brief discussion of external devices, followed
by an overview of the structure and function of an I/O module. Then we look at
the various ways in which the I/O function can be performed in cooperation with
the processor and memory: the internal I/O interface. Next, we examine in some

Learning Objectives

After studying this chapter, you should be able to:

rr Explain the use of I/O modules as part of a computer organization.
rr Understand the difference between programmed I/O and interrupt-​driven
I/O and discuss their relative merits.

rr Present an overview of the operation of direct memory access.
rr Present an overview of direct cache access.
rr Explain the function and use of I/O channels.

230   Chapter 7 / Input/Output

detail direct memory access and the more recent innovation of direct cache access.
Finally, we examine the external I/O interface, between the I/O module and the
outside world.

	 7.1	 External Devices

I/O operations are accomplished through a wide assortment of external devices
that provide a means of exchanging data between the external environment and the
computer. An external device attaches to the computer by a link to an I/O module
(Figure 7.1). The link is used to exchange control, status, and data between the I/O
module and the external device. An external device connected to an I/O module is
often referred to as a peripheral device or, simply, a peripheral.

We can broadly classify external devices into three categories:

■■ Human readable: Suitable for communicating with the computer user;
■■ Machine readable: Suitable for communicating with equipment;
■■ Communication: Suitable for communicating with remote devices.

Examples of human-​readable devices are video display terminals (VDTs) and
printers. Examples of machine-​readable devices are magnetic disk and tape sys-
tems, and sensors and actuators, such as are used in a robotics application. Note
that we are viewing disk and tape systems as I/O devices in this chapter, whereas
in Chapter 6 we viewed them as memory devices. From a functional point of view,
these devices are part of the memory hierarchy, and their use is appropriately dis-
cussed in Chapter 6. From a structural point of view, these devices are controlled by
I/O modules and are hence to be considered in this chapter.

I/O module

Links to
peripheral
devices

Control lines

Data lines

Address lines

System
bus

Figure 7.1  Generic Model of an I/O Module

7.1 / External Devices   231

Communication devices allow a computer to exchange data with a remote
device, which may be a human-​readable device, such as a terminal, a machine-​
readable device, or even another computer.

In very general terms, the nature of an external device is indicated in Figure 7.2.
The interface to the I/O module is in the form of control, data, and status signals. Con-
trol signals determine the function that the device will perform, such as send data to
the I/O module (INPUT or READ), accept data from the I/O module (OUTPUT or
WRITE), report status, or perform some control function particular to the device (e.g.,
position a disk head). Data are in the form of a set of bits to be sent to or received from
the I/O module. Status signals indicate the state of the device. Examples are READY/
NOT-​READY to show whether the device is ready for data transfer.

Control logic associated with the device controls the device’s operation in
response to direction from the I/O module. The transducer converts data from elec-
trical to other forms of energy during output and from other forms to electrical
during input. Typically, a buffer is associated with the transducer to temporarily
hold data being transferred between the I/O module and the external environment.
A buffer size of 8 to 16 bits is common for serial devices, whereas block-​oriented
devices such as disk drive controllers may have much larger buffers.

The interface between the I/O module and the external device will be exam-
ined in Section 7.7. The interface between the external device and the environment
is beyond the scope of this book, but several brief examples are given here.

Keyboard/Monitor

The most common means of computer/user interaction is a keyboard/monitor
arrangement. The user provides input through the keyboard, the input is then trans-
mitted to the computer and may also be displayed on the monitor. In addition, the
monitor displays data provided by the computer.

Buffer

Transducer

Control
logic

Control
signals from
I/O module

Status
signals to
I/O module

Data bits
to and from
I/O module

Data (device-unique)
to and from
environment

Figure 7.2  Block Diagram of an External Device

232   Chapter 7 / Input/Output

The basic unit of exchange is the character. Associated with each charac-
ter is a code, typically 7 or 8 bits in length. The most commonly used text code
is the International Reference Alphabet (IRA).1 Each character in this code is
represented by a unique 7-bit binary code; thus, 128 different characters can be
represented. Characters are of two types: printable and control. Printable char-
acters are the alphabetic, numeric, and special characters that can be printed on
paper or displayed on a screen. Some of the control characters have to do with
controlling the printing or displaying of characters; an example is carriage return.
Other control characters are concerned with communications procedures. See
Appendix H for details.

For keyboard input, when the user depresses a key, this generates an elec-
tronic signal that is interpreted by the transducer in the keyboard and translated
into the bit pattern of the corresponding IRA code. This bit pattern is then trans-
mitted to the I/O module in the computer. At the computer, the text can be stored
in the same IRA code. On output, IRA code characters are transmitted to an exter-
nal device from the I/O module. The transducer at the device interprets this code
and sends the required electronic signals to the output device either to display the
indicated character or perform the requested control function.

Disk Drive

A disk drive contains electronics for exchanging data, control, and status signals with
an I/O module plus the electronics for controlling the disk read/write mechanism.
In a fixed-​head disk, the transducer is capable of converting between the magnetic
patterns on the moving disk surface and bits in the device’s buffer (Figure 7.2). A
moving-​head disk must also be able to cause the disk arm to move radially in and
out across the disk’s surface.

	 7.2	I /O Modules

Module Function

The major functions or requirements for an I/O module fall into the following
categories:

■■ Control and timing
■■ Processor communication
■■ Device communication
■■ Data buffering
■■ Error detection

During any period of time, the processor may communicate with one or more
external devices in unpredictable patterns, depending on the program’s need for

1IRA is defined in ITU-​T Recommendation T.50 and was formerly known as International Alphabet
Number 5 (IA5). The U.S. national version of IRA is referred to as the American Standard Code for
Information Interchange (ASCII).

7.2 / I/O Modules   233

I/O. The internal resources, such as main memory and the system bus, must be shared
among a number of activities, including data I/O. Thus, the I/O function includes a
control and timing requirement, to coordinate the flow of traffic between internal
resources and external devices. For example, the control of the transfer of data from
an external device to the processor might involve the following sequence of steps:

1.	 The processor interrogates the I/O module to check the status of the attached
device.

2.	 The I/O module returns the device status.

3.	 If the device is operational and ready to transmit, the processor requests the
transfer of data, by means of a command to the I/O module.

4.	 The I/O module obtains a unit of data (e.g., 8 or 16 bits) from the external
device.

5.	 The data are transferred from the I/O module to the processor.

If the system employs a bus, then each of the interactions between the proces-
sor and the I/O module involves one or more bus arbitrations.

The preceding simplified scenario also illustrates that the I/O module must
communicate with the processor and with the external device. Processor communi-
cation involves the following:

■■ Command decoding: The I/O module accepts commands from the processor,
typically sent as signals on the control bus. For example, an I/O module for a
disk drive might accept the following commands: READ SECTOR, WRITE
SECTOR, SEEK track number, and SCAN record ID. The latter two com-
mands each include a parameter that is sent on the data bus.

■■ Data: Data are exchanged between the processor and the I/O module over the
data bus.

■■ Status reporting: Because peripherals are so slow, it is important to know the
status of the I/O module. For example, if an I/O module is asked to send data
to the processor (read), it may not be ready to do so because it is still working
on the previous I/O command. This fact can be reported with a status signal.
Common status signals are BUSY and READY. There may also be signals to
report various error conditions.

■■ Address recognition: Just as each word of memory has an address, so does
each I/O device. Thus, an I/O module must recognize one unique address for
each peripheral it controls.

On the other side, the I/O module must be able to perform device communication.
This communication involves commands, status information, and data (Figure 7.2).

An essential task of an I/O module is data buffering. The need for this func-
tion is apparent from Figure 2.1. Whereas the transfer rate into and out of main
memory or the processor is quite high, the rate is orders of magnitude lower for
many peripheral devices and covers a wide range. Data coming from main memory
are sent to an I/O module in a rapid burst. The data are buffered in the I/O module
and then sent to the peripheral device at its data rate. In the opposite direction, data
are buffered so as not to tie up the memory in a slow transfer operation. Thus, the

234   Chapter 7 / Input/Output

I/O module must be able to operate at both device and memory speeds. Similarly, if
the I/O device operates at a rate higher than the memory access rate, then the I/O
module performs the needed buffering operation.

Finally, an I/O module is often responsible for error detection and for subse-
quently reporting errors to the processor. One class of errors includes mechanical
and electrical malfunctions reported by the device (e.g., paper jam, bad disk track).
Another class consists of unintentional changes to the bit pattern as it is transmit-
ted from device to I/O module. Some form of error-​detecting code is often used
to detect transmission errors. A simple example is the use of a parity bit on each
character of data. For example, the IRA character code occupies 7 bits of a byte.
The eighth bit is set so that the total number of 1s in the byte is even (even parity)
or odd (odd parity). When a byte is received, the I/O module checks the parity to
determine whether an error has occurred.

I/O Module Structure

I/O modules vary considerably in complexity and the number of external devices
that they control. We will attempt only a very general description here. (One
specific device, the Intel 8255A, is described in Section 7.4.) Figure 7.3 provides a
general block diagram of an I/O module. The module connects to the rest of the
computer through a set of signal lines (e.g., system bus lines). Data transferred to
and from the module are buffered in one or more data registers. There may also
be one or more status registers that provide current status information. A status
register may also function as a control register, to accept detailed control informa-
tion from the processor. The logic within the module interacts with the processor
via a set of control lines. The processor uses the control lines to issue commands

Status/Control registers

Data registers

Interface to
system bus

I/O
logic

Control
lines

Address
lines

Data
lines

External
device

interface
logic

Data

Status

Control

External
device

interface
logic

Data

Status

Control

Interface to
external device

Figure 7.3  Block Diagram of an I/O Module

7.3 / Programmed I/O   235

to the I/O module. Some of the control lines may be used by the I/O module (e.g.,
for arbitration and status signals). The module must also be able to recognize and
generate addresses associated with the devices it controls. Each I/O module has
a unique address or, if it controls more than one external device, a unique set of
addresses. Finally, the I/O module contains logic specific to the interface with each
device that it controls.

An I/O module functions to allow the processor to view a wide range of devices
in a simple-​minded way. There is a spectrum of capabilities that may be provided.
The I/O module may hide the details of timing, formats, and the electromechanics
of an external device so that the processor can function in terms of simple read and
write commands, and possibly open and close file commands. In its simplest form,
the I/O module may still leave much of the work of controlling a device (e.g., rewind
a tape) visible to the processor.

An I/O module that takes on most of the detailed processing burden, present-
ing a high-​level interface to the processor, is usually referred to as an I/O channel or
I/O processor. An I/O module that is quite primitive and requires detailed control
is usually referred to as an I/O controller or device controller. I/O controllers are
commonly seen on microcomputers, whereas I/O channels are used on mainframes.

In what follows, we will use the generic term I/O module when no confusion
results and will use more specific terms where necessary.

	 7.3	 Programmed I/O

Three techniques are possible for I/O operations. With programmed I/O, data are
exchanged between the processor and the I/O module. The processor executes a
program that gives it direct control of the I/O operation, including sensing device
status, sending a read or write command, and transferring the data. When the pro-
cessor issues a command to the I/O module, it must wait until the I/O operation is
complete. If the processor is faster than the I/O module, this is waste of processor
time. With interrupt-​driven I/O, the processor issues an I/O command, continues
to execute other instructions, and is interrupted by the I/O module when the latter
has completed its work. With both programmed and interrupt I/O, the processor is
responsible for extracting data from main memory for output and storing data in
main memory for input. The alternative is known as direct memory access (DMA).
In this mode, the I/O module and main memory exchange data directly, without
processor involvement.

Table 7.1 indicates the relationship among these three techniques. In this sec-
tion, we explore programmed I/O. Interrupt I/O and DMA are explored in the fol-
lowing two sections, respectively.

Table 7.1  I/O Techniques

No Interrupts Use of Interrupts

I/O-​to-​memory transfer through processor Programmed I/O Interrupt-​driven I/O

Direct I/O-​to-​memory transfer Direct memory access (DMA)

236   Chapter 7 / Input/Output

Overview of Programmed I/O

When the processor is executing a program and encounters an instruction relating to
I/O, it executes that instruction by issuing a command to the appropriate I/O module.
With programmed I/O, the I/O module will perform the requested action and then
set the appropriate bits in the I/O status register (Figure 7.3). The I/O module takes
no further action to alert the processor. In particular, it does not interrupt the pro-
cessor. Thus, it is the responsibility of the processor to periodically check the status
of the I/O module until it finds that the operation is complete.

To explain the programmed I/O technique, we view it first from the point of
view of the I/O commands issued by the processor to the I/O module, and then from
the point of view of the I/O instructions executed by the processor.

I/O Commands

To execute an I/O-​related instruction, the processor issues an address, specifying
the particular I/O module and external device, and an I/O command. There are four
types of I/O commands that an I/O module may receive when it is addressed by a
processor:

■■ Control: Used to activate a peripheral and tell it what to do. For example, a
magnetic-​tape unit may be instructed to rewind or to move forward one record.
These commands are tailored to the particular type of peripheral device.

■■ Test: Used to test various status conditions associated with an I/O module and
its peripherals. The processor will want to know that the peripheral of inter-
est is powered on and available for use. It will also want to know if the most
recent I/O operation is completed and if any errors occurred.

■■ Read: Causes the I/O module to obtain an item of data from the peripheral
and place it in an internal buffer (depicted as a data register in Figure 7.3). The
processor can then obtain the data item by requesting that the I/O module
place it on the data bus.

■■ Write: Causes the I/O module to take an item of data (byte or word) from the
data bus and subsequently transmit that data item to the peripheral.

Figure 7.4a gives an example of the use of programmed I/O to read in a block of
data from a peripheral device (e.g., a record from tape) into memory. Data are read
in one word (e.g., 16 bits) at a time. For each word that is read in, the processor must
remain in a status-​checking cycle until it determines that the word is available in the
I/O module’s data register. This flowchart highlights the main disadvantage of this
technique: it is a time-​consuming process that keeps the processor busy needlessly.

I/O Instructions

With programmed I/O, there is a close correspondence between the I/O-​related
instructions that the processor fetches from memory and the I/O commands that the
processor issues to an I/O module to execute the instructions. That is, the instructions
are easily mapped into I/O commands, and there is often a simple one-​to-​one rela-
tionship. The form of the instruction depends on the way in which external devices
are addressed.

7.3 / Programmed I/O   237

Typically, there will be many I/O devices connected through I/O modules to
the system. Each device is given a unique identifier or address. When the processor
issues an I/O command, the command contains the address of the desired device.
Thus, each I/O module must interpret the address lines to determine if the com-
mand is for itself.

When the processor, main memory, and I/O share a common bus, two modes
of addressing are possible: memory mapped and isolated. With memory-​mapped
I/O, there is a single address space for memory locations and I/O devices. The pro-
cessor treats the status and data registers of I/O modules as memory locations and
uses the same machine instructions to access both memory and I/O devices. So, for
example, with 10 address lines, a combined total of 210 = 1024 memory locations
and I/O addresses can be supported, in any combination.

With memory-​mapped I/O, a single read line and a single write line are needed
on the bus. Alternatively, the bus may be equipped with memory read and write plus
input and output command lines. The command line specifies whether the address
refers to a memory location or an I/O device. The full range of addresses may be
available for both. Again, with 10 address lines, the system may now support both
1024 memory locations and 1024 I/O addresses. Because the address space for I/O is
isolated from that for memory, this is referred to as isolated I/O.

Issue Read
command to
I/O module

Read status
of I/O
module

Check
status

Read word
from I/O
module

Write word
into memory

Done?

Next instruction
(a) Programmed I/O

CPU I/O

CPU memory

I/O CPU

I/O CPU

Error
condition

Ready Ready

Yes Yes

No

Not
ready

Issue Read
command to
I/O module

Do something
else

InterruptRead status
of I/O
module

Check
status

Read word
from I/O
Module

Write word
into memory

Done?

Next instruction
(b) Interrupt-driven I/O

CPU memory

Do something
else

Interrupt

CPU DMA

DMA CPU

I/O CPU

Error
condition

No

Issue Read
block command
to I/O module

Read status
of DMA
module

Next instruction

(c) Direct memory access

CPU I/O

I/O CPU

Figure 7.4  Three Techniques for Input of a Block of Data

238   Chapter 7 / Input/Output

Figure 7.5 contrasts these two programmed I/O techniques. Figure 7.5a shows
how the interface for a simple input device such as a terminal keyboard might appear
to a programmer using memory-​mapped I/O. Assume a 10-bit address, with a 512-bit
memory (locations 0–511) and up to 512 I/O addresses (locations 512–1023). Two
addresses are dedicated to keyboard input from a particular terminal. Address 516
refers to the data register and address 517 refers to the status register, which also func-
tions as a control register for receiving processor commands. The program shown will
read 1 byte of data from the keyboard into an accumulator register in the processor.
Note that the processor loops until the data byte is available.

With isolated I/O (Figure 7.5b), the I/O ports are accessible only by special
I/O commands, which activate the I/O command lines on the bus.

For most types of processors, there is a relatively large set of different instruc-
tions for referencing memory. If isolated I/O is used, there are only a few I/O
instructions. Thus, an advantage of memory-​mapped I/O is that this large repertoire
of instructions can be used, allowing more efficient programming. A disadvantage is
that valuable memory address space is used up. Both memory-​mapped and isolated
I/O are in common use.

7 6 5

516 Keyboard input data register

4 3 2 1 0

7 6 5

517

(a) Memory-mapped I/O

Keyboard input status
and control register

1 = ready
0 = busy

4 3 2 1 0

Set to 1 to
start read

 ADDRESS INSTRUCTION OPERAND COMMENT
 200 Load AC “1” Load accumulator
 Store AC 517 Initiate keyboard read
 202 Load AC 517 Get status byte
 Branch if Sign = 0 202 Loop until ready
 Load AC 516 Load data byte

(b) Isolated I/O

 ADDRESS INSTRUCTION OPERAND COMMENT
 200 Load I/O 5 Initiate keyboard read
 201 Test I/O 5 Check for completion
 Branch Not Ready 201 Loop until complete
 In 5 Load data byte

Figure 7.5  Memory-​Mapped and Isolated I/O

7.4 / Interrupt-Driven I/   239

	 7.4	I nterrupt-​Driven I/O

The problem with programmed I/O is that the processor has to wait a long time
for the I/O module of concern to be ready for either reception or transmission of
data. The processor, while waiting, must repeatedly interrogate the status of the I/O
module. As a result, the level of the performance of the entire system is severely
degraded.

An alternative is for the processor to issue an I/O command to a module and
then go on to do some other useful work. The I/O module will then interrupt the
processor to request service when it is ready to exchange data with the processor.
The processor then executes the data transfer, as before, and then resumes its for-
mer processing.

Let us consider how this works, first from the point of view of the I/O module.
For input, the I/O module receives a READ command from the processor. The I/O
module then proceeds to read data in from an associated peripheral. Once the data
are in the module’s data register, the module signals an interrupt to the processor
over a control line. The module then waits until its data are requested by the pro-
cessor. When the request is made, the module places its data on the data bus and is
then ready for another I/O operation.

From the processor’s point of view, the action for input is as follows. The pro-
cessor issues a READ command. It then goes off and does something else (e.g., the
processor may be working on several different programs at the same time). At the
end of each instruction cycle, the processor checks for interrupts (Figure 3.9). When
the interrupt from the I/O module occurs, the processor saves the context (e.g., pro-
gram counter and processor registers) of the current program and processes the
interrupt. In this case, the processor reads the word of data from the I/O module
and stores it in memory. It then restores the context of the program it was working
on (or some other program) and resumes execution.

Figure 7.4b shows the use of interrupt I/O for reading in a block of data.
Compare this with Figure 7.4a. Interrupt I/O is more efficient than programmed
I/O because it eliminates needless waiting. However, interrupt I/O still consumes
a lot of processor time, because every word of data that goes from memory to I/O
module or from I/O module to memory must pass through the processor.

Interrupt Processing

Let us consider the role of the processor in interrupt-​driven I/O in more detail. The
occurrence of an interrupt triggers a number of events, both in the processor hard-
ware and in software. Figure 7.6 shows a typical sequence. When an I/O device com-
pletes an I/O operation, the following sequence of hardware events occurs:

	 1.	 The device issues an interrupt signal to the processor.

	 2.	 The processor finishes execution of the current instruction before responding
to the interrupt, as indicated in Figure 3.9.

	 3.	 The processor tests for an interrupt, determines that there is one, and sends an
acknowledgment signal to the device that issued the interrupt. The acknowl-
edgment allows the device to remove its interrupt signal.

240   Chapter 7 / Input/Output

	 4.	 The processor now needs to prepare to transfer control to the interrupt rou-
tine. To begin, it needs to save information needed to resume the current pro-
gram at the point of interrupt. The minimum information required is (a) the
status of the processor, which is contained in a register called the program
status word (PSW); and (b) the location of the next instruction to be executed,
which is contained in the program counter. These can be pushed onto the sys-
tem control stack.2

	 5.	 The processor now loads the program counter with the entry location of the
interrupt-​handling program that will respond to this interrupt. Depending on
the computer architecture and operating system design, there may be a single
program; one program for each type of interrupt; or one program for each
device and each type of interrupt. If there is more than one interrupt-​handling
routine, the processor must determine which one to invoke. This information
may have been included in the original interrupt signal, or the processor may
have to issue a request to the device that issued the interrupt to get a response
that contains the needed information.

Device controller or
other system hardware
issues an interrupt

Processor
nishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Hardware Software

Figure 7.6  Simple Interrupt Processing

2See Appendix I for a discussion of stack operation.

7.4 / Interrupt-Driven I/   241

Once the program counter has been loaded, the processor proceeds to the
next instruction cycle, which begins with an instruction fetch. Because the instruc-
tion fetch is determined by the contents of the program counter, the result is that
control is transferred to the interrupt-​handler program. The execution of this pro-
gram results in the following operations:

6.	 At this point, the program counter and PSW relating to the interrupted pro-
gram have been saved on the system stack. However, there is other infor-
mation that is considered part of the “state” of the executing program. In
particular, the contents of the processor registers need to be saved, because
these registers may be used by the interrupt handler. So, all of these values,
plus any other state information, need to be saved. Typically, the interrupt
handler will begin by saving the contents of all registers on the stack. Fig-
ure 7.7a shows a simple example. In this case, a user program is interrupted
after the instruction at location N. The contents of all of the registers plus the
address of the next instruction (N + 1) are pushed onto the stack. The stack
pointer is updated to point to the new top of stack, and the program counter is
updated to point to the beginning of the interrupt service routine.

7.	 The interrupt handler next processes the interrupt. This includes an exam-
ination of status information relating to the I/O operation or other event that
caused an interrupt. It may also involve sending additional commands or
acknowledgments to the I/O device.

8.	 When interrupt processing is complete, the saved register values are retrieved
from the stack and restored to the registers (e.g., see Figure 7.7b).

9.	 The final act is to restore the PSW and program counter values from the stack.
As a result, the next instruction to be executed will be from the previously
interrupted program.

Note that it is important to save all the state information about the interrupted
program for later resumption. This is because the interrupt is not a routine called
from the program. Rather, the interrupt can occur at any time and therefore at any
point in the execution of a user program. Its occurrence is unpredictable. Indeed, as
we will see in the next chapter, the two programs may not have anything in common
and may belong to two different users.

Design Issues

Two design issues arise in implementing interrupt I/O. First, because there will
almost invariably be multiple I/O modules, how does the processor determine which
device issued the interrupt? And second, if multiple interrupts have occurred, how
does the processor decide which one to process?

Let us consider device identification first. Four general categories of tech-
niques are in common use:

■■ Multiple interrupt lines
■■ Software poll
■■ Daisy chain (hardware poll, vectored)
■■ Bus arbitration (vectored)

242   Chapter 7 / Input/Output

The most straightforward approach to the problem is to provide multiple inter-
rupt lines between the processor and the I/O modules. However, it is impractical to
dedicate more than a few bus lines or processor pins to interrupt lines. Consequently,
even if multiple lines are used, it is likely that each line will have multiple I/O mod-
ules attached to it. Thus, one of the other three techniques must be used on each line.

One alternative is the software poll. When the processor detects an interrupt,
it branches to an interrupt-​service routine that polls each I/O module to determine
which module caused the interrupt. The poll could be in the form of a separate com-
mand line (e.g., TESTI/O). In this case, the processor raises TESTI/O and places the
address of a particular I/O module on the address lines. The I/O module responds
positively if it set the interrupt. Alternatively, each I/O module could contain an
addressable status register. The processor then reads the status register of each I/O
module to identify the interrupting module. Once the correct module is identified,
the processor branches to a device-​service routine specific to that device.

Start

N + 1

Y + L

N

Y

Y

T

Return

User’s
program

Main
Memory

Processor

General
registers

Program
counter

Stack
pointer

N + 1

T – M

T – M

T

Control
stack

Interrupt
service
routine

User’s
program

Interrupt
service
routine

(a) Interrupt occurs after instruction
at location N

(b) Return from interrupt

Start

N + 1

Y + L

N

Y

T

Return

Main
Memory

Processor

General
registers

Program
counter

Stack
pointer

Y + L

T – M

T – M

T

Control
stack

N + 1

Figure 7.7  Changes in Memory and Registers for an Interrupt

7.4 / Interrupt-Driven I/   243

The disadvantage of the software poll is that it is time consuming. A more
efficient technique is to use a daisy chain, which provides, in effect, a hardware poll.
An example of a daisy-​chain configuration is shown in Figure 3.26. For interrupts,
all I/O modules share a common interrupt request line. The interrupt acknowledge
line is daisy chained through the modules. When the processor senses an interrupt,
it sends out an interrupt acknowledge. This signal propagates through a series of
I/O modules until it gets to a requesting module. The requesting module typically
responds by placing a word on the data lines. This word is referred to as a vector and
is either the address of the I/O module or some other unique identifier. In either
case, the processor uses the vector as a pointer to the appropriate device-​service
routine. This avoids the need to execute a general interrupt-​service routine first.
This technique is called a vectored interrupt.

There is another technique that makes use of vectored interrupts, and that is
bus arbitration. With bus arbitration, an I/O module must first gain control of the
bus before it can raise the interrupt request line. Thus, only one module can raise the
line at a time. When the processor detects the interrupt, it responds on the interrupt
acknowledge line. The requesting module then places its vector on the data lines.

The aforementioned techniques serve to identify the requesting I/O module.
They also provide a way of assigning priorities when more than one device is request-
ing interrupt service. With multiple lines, the processor just picks the interrupt line
with the highest priority. With software polling, the order in which modules are
polled determines their priority. Similarly, the order of modules on a daisy chain
determines their priority. Finally, bus arbitration can employ a priority scheme, as
discussed in Section 3.4.

We now turn to two examples of interrupt structures.

Intel 82C59A Interrupt Controller

The Intel 80386 provides a single Interrupt Request (INTR) and a single Interrupt
Acknowledge (INTA) line. To allow the 80386 to handle a variety of devices and
priority structures, it is usually configured with an external interrupt arbiter, the
82C59A. External devices are connected to the 82C59A, which in turn connects to
the 80386.

Figure 7.8 shows the use of the 82C59A to connect multiple I/O modules for
the 80386. A single 82C59A can handle up to eight modules. If control for more
than eight modules is required, a cascade arrangement can be used to handle up to
64 modules.

The 82C59A’s sole responsibility is the management of interrupts. It accepts
interrupt requests from attached modules, determines which interrupt has the
highest priority, and then signals the processor by raising the INTR line. The pro-
cessor acknowledges via the INTA line. This prompts the 82C59A to place the
appropriate vector information on the data bus. The processor can then proceed
to process the interrupt and to communicate directly with the I/O module to read
or write data.

The 82C59A is programmable. The 80386 determines the priority scheme to be
used by setting a control word in the 82C59A. The following interrupt modes are possible:

■■ Fully nested: The interrupt requests are ordered in priority from 0 (IR0)
through 7 (IR7).

244   Chapter 7 / Input/Output

■■ Rotating: In some applications a number of interrupting devices are of equal
priority. In this mode a device, after being serviced, receives the lowest prior-
ity in the group.

■■ Special mask: This allows the processor to inhibit interrupts from certain
devices.

External device 00

Slave
82C59A
interrupt
controller

External device 07

IR0
IR1 INT
IR2
IR3
IR4
IR5
IR6
IR7

External device 01

External device 08

Slave
82C59A
interrupt
controller

External device 15

IR0
IR1 INT
IR2
IR3
IR4
IR5
IR6
IR7

Master
82C59A
interrupt
controller

IR0
IR1 INT
IR2
IR3
IR4
IR5
IR6
IR7

External device 09

80386
processor

INTR

External device 56

Slave
82C59A
interrupt
controller

External device 63

IR0
IR1 INT
IR2
IR3
IR4
IR5
IR6
IR7

External device 57

Figure 7.8  Use of the 82C59A Interrupt Controller

7.4 / Interrupt-Driven I/   245

The Intel 8255A Programmable Peripheral Interface

As an example of an I/O module used for programmed I/O and interrupt-​driven
I/O, we consider the Intel 8255A Programmable Peripheral Interface. The 8255A is
a single-​chip, general-​purpose I/O module originally designed for use with the Intel
80386 processor. It has since been cloned by other manufacturers and is a widely
used peripheral controller chip. Its uses include as a controller for simple I/O devices
for microprocessors and in embedded systems, including microcontroller systems.

architecture and operation Figure 7.9 shows a general block diagram plus
the pin assignment for the 40-pin package in which it is housed. As shown on the pin
layout, the 8255A includes the following lines:

■■ D0–D7: These are the data I/O lines for the device. All information read from
and written to the 8255A occurs via these eight data lines.

■■ CS (Chip Select Input): If this line is a logical 0, the microprocessor can read
and write to the 8255A.

■■ RD (Read Input): If this line is a logical 0 and the CS input is a logical 0, the
8255A data outputs are enabled onto the system data bus.

■■ WR (Write Input): If this input line is a logical 0 and the CS input is a logical
0, data are written to the 8255A from the system data bus.

■■ RESET: The 8255A is placed into its reset state if this input line is a logical 1.
All peripheral ports are set to the input mode.

PA41PA3 40

(b) Pin layout

PA52PA2 39
PA63PA1 38
PA74PA0 37
WR5RD 36
Reset6CS 35
D07GND 34
D18A1 33
D29A0 32
D310PC7 31
D411PC6

8255A

30
D512PC5 29
D613PC4 28
D714PC3 27
V15PC2 26
PB716PC1 25
PB617PC0 24
PB518PB0 23
PB419PB1 22
PB320PB2 21

Data
bus

buffer

Power
supplies

Bi-directional
data bus

8-bit
internal

data bus

D7–D0

I/O
PA7–PA0

I/O
PC7–PC4

I/O
PC3–PC0

I/O
PB7–PB0

RD
WR

A1
A0

Reset
CS

Group
A

control

Group A
port A

(8)

Group B
port B

(8)

Group A
port C

upper (4)

Group B
port C

lower (4)

Group
B

control

Read/
write

control
logic

(a) Block diagram

+5 V
GND

Figure 7.9  The Intel 8255A Programmable Peripheral Interface

246   Chapter 7 / Input/Output

■■ PA0–PA7, PB0–PB7, PC0–PC7: These signal lines are used as 8-bit I/O ports.
They can be connected to peripheral devices.

■■ A0, A1: The logical combination of these two input lines determine which
internal register of the 8255A data are written to or read from.

The right side of the block diagram of Figure 7.9a is the external interface
of the 8255A. The 24 I/O lines are divided into three 8-bit groups (A, B, C). Each
group can function as an 8-bit I/O port, thus providing connection for three periph-
eral devices. In addition, group C is subdivided into 4-bit groups (CA and CB), which
may be used in conjunction with the A and B I/O ports. Configured in this manner,
group C lines carry control and status signals.

The left side of the block diagram is the internal interface to the microproces-
sor system bus. It includes an 8-bit bidirectional data bus (D0 through D7), used to
transfer data between the microprocessor and the I/O ports and to transfer control
information.

The processor controls the 8255A by means of an 8-bit control register in the
processor. The processor can set the value of the control register to specify a variety
of operating modes and configurations. From the processor point of view, there is
a control port, and the control register bits are set in the processor and then sent to
the control port over lines D0–D7. The two address lines specify one of the three
I/O ports or the control register, as follows:

A1 A2 Selects

0 0 Port A

0 1 Port B

1 0 Port C

1 1 Control register

Thus, when the processor sets both A1 and A2 to 1, the 8255A interprets the
8-bit value on the data bus as a control word. When the processor transfers an 8-bit
control word with line D7 set to 1 (Figure 7.10a), the control word is used to config-
ure the operating mode of the 24 I/O lines. The three modes are:

■■ Mode 0: This is the basic I/O mode. The three groups of eight external lines
function as three 8-bit I/O ports. Each port can be designated as input or out-
put. Data may only be sent to a port if the port is defined as output, and data
may only be read from a port if the port is set to input.

■■ Mode 1: In this mode, ports A and B can be configured as either input or
output, and lines from port C serve as control lines for A and B. The control
signals serve two principal purposes: “handshaking” and interrupt request.
Handshaking is a simple timing mechanism. One control line is used by the
sender as a DATA READY line, to indicate when the data are present on the
I/O data lines. Another line is used by the receiver as an ACKNOWLEDGE,
indicating that the data have been read and the data lines may be cleared.
Another line may be designated as an INTERRUPT REQUEST line and tied
back to the system bus.

7.4 / Interrupt-Driven I/   247

■■ Mode 2: This is a bidirectional mode. In this mode, port A can be configured
as either the input or output lines for bidirectional traffic on port B, with the
port B lines providing the opposite direction. Again, port C lines are used for
control signaling.

When the processor sets D7 to 0 (Figure 7.10b), the control word is used to
program the bit values of port C individually. This feature is rarely used.

keyboard/display example Because the 8255A is programmable via the
control register, it can be used to control a variety of simple peripheral devices.
Figure 7.11 illustrates its use to control a keyboard/display terminal. The keyboard
provides 8 bits of input. Two of these bits, SHIFT and CONTROL, have special
meaning to the keyboard-​handling program executing in the processor. However,
this interpretation is transparent to the 8255A, which simply accepts the 8 bits of
data and presents them on the system data bus. Two handshaking control lines are
provided for use with the keyboard.

The display is also linked by an 8-bit data port. Again, two of the bits have
special meanings that are transparent to the 8255A. In addition to two handshaking
lines, two lines provide additional control functions.

D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0

Bit set/reset
1 = set
0 = reset

Bit set/reset
�ag
0 = Active

Mode set
�ag
1 = Active

Port C (upper)
1 = Input
0 = Output
Port A
1= Input
0 = Output
Mode selection
00 = Mode 0
01 = Mode 1
1X = Mode 2

Port C (lower)
1 = Input
0 = Output
Port B
1= Input
0 = Output
Mode selection
0 = Mode 0
1 = Mode 1

Don’t careGroup BGroup A

(a) Mode de�nition of the 8255 control
register to con�gure the 8255

(b) Bit de�nitions of the 8255 control
register to modify single bits of port C

D3
0
0
0
0
1
1
1
1

D2
0
0
1
1
0
0
1
1

D1
0
1
0
1
0
1
0
1

bit 0 of port C
bit 1 of port C
bit 2 of port C
bit 3 of port C
bit 4 of port C
bit 5 of port C
bit 6 of port C
bit 7 of port C

Figure 7.10  The Intel 8255A Control Word

248   Chapter 7 / Input/Output

	 7.5	 Direct Memory Access

Drawbacks of Programmed and Interrupt-​Driven I/O

Interrupt-​driven I/O, though more efficient than simple programmed I/O, still
requires the active intervention of the processor to transfer data between memory
and an I/O module, and any data transfer must traverse a path through the proces-
sor. Thus, both these forms of I/O suffer from two inherent drawbacks:

1.	 The I/O transfer rate is limited by the speed with which the processor can test
and service a device.

A0
A1
A2
A3
A4
A5
A6
A7

C3

Interrupt
request

Interrupt
request

C0

INPUT
PORT

KEYBOARD

OUTPUT
PORT

82C55A

B0
B1
B2
B3
B4
B5
B6
B7

C1
C2
C6
C7

C4
C5

R0
R1
R2
R3
R4
R5
Shift
Control

Data ready
Acknowledge

DISPLAY

S0
S1
S2
S3
S4
S5
Backspace
Clear

Data ready
Acknowledge
Blanking
Clear line

Figure 7.11  Keyboard/Display Interface to 8255A

7.5 / Direct Memory Access   249

2.	 The processor is tied up in managing an I/O transfer; a number of instructions
must be executed for each I/O transfer (e.g., Figure 7.5).

There is somewhat of a trade-​off between these two drawbacks. Consider the
transfer of a block of data. Using simple programmed I/O, the processor is dedi-
cated to the task of I/O and can move data at a rather high rate, at the cost of doing
nothing else. Interrupt I/O frees up the processor to some extent at the expense of
the I/O transfer rate. Nevertheless, both methods have an adverse impact on both
processor activity and I/O transfer rate.

When large volumes of data are to be moved, a more efficient technique is
required: direct memory access (DMA).

DMA Function

DMA involves an additional module on the system bus. The DMA module
(Figure 7.12) is capable of mimicking the processor and, indeed, of taking over con-
trol of the system from the processor. It needs to do this to transfer data to and from
memory over the system bus. For this purpose, the DMA module must use the bus
only when the processor does not need it, or it must force the processor to suspend
operation temporarily. The latter technique is more common and is referred to as
cycle stealing, because the DMA module in effect steals a bus cycle.

When the processor wishes to read or write a block of data, it issues a command
to the DMA module, by sending to the DMA module the following information:

■■ Whether a read or write is requested, using the read or write control line
between the processor and the DMA module.

■■ The address of the I/O device involved, communicated on the data lines.

Address
register

Control
logic

Data
register

Data
count

Data lines

Address lines

Request to DMA
Acknowledge from DMA

Interrupt
Read

Write

Figure 7.12  Typical DMA Block Diagram

250   Chapter 7 / Input/Output

■■ The starting location in memory to read from or write to, communicated on
the data lines and stored by the DMA module in its address register.

■■ The number of words to be read or written, again communicated via the data
lines and stored in the data count register.

The processor then continues with other work. It has delegated this I/O oper-
ation to the DMA module. The DMA module transfers the entire block of data,
one word at a time, directly to or from memory, without going through the proces-
sor. When the transfer is complete, the DMA module sends an interrupt signal to
the processor. Thus, the processor is involved only at the beginning and end of the
transfer (Figure 7.4c).

Figure 7.13 shows where in the instruction cycle the processor may be sus-
pended. In each case, the processor is suspended just before it needs to use the bus.
The DMA module then transfers one word and returns control to the processor.
Note that this is not an interrupt; the processor does not save a context and do
something else. Rather, the processor pauses for one bus cycle. The overall effect
is to cause the processor to execute more slowly. Nevertheless, for a multiple-​word
I/O transfer, DMA is far more efficient than interrupt-​driven or programmed I/O.

The DMA mechanism can be configured in a variety of ways. Some possibili-
ties are shown in Figure 7.14. In the first example, all modules share the same system
bus. The DMA module, acting as a surrogate processor, uses programmed I/O to
exchange data between memory and an I/O module through the DMA module. This
configuration, while it may be inexpensive, is clearly inefficient. As with processor-​
controlled programmed I/O, each transfer of a word consumes two bus cycles.

The number of required bus cycles can be cut substantially by integrating the
DMA and I/O functions. As Figure 7.14b indicates, this means that there is a path
between the DMA module and one or more I/O modules that does not include

Processor
cycle

Fetch
instruction

Processor
cycle

Decode
instruction

Processor
cycle

Instruction cycle

Time

DMA
breakpoints

Interrupt
breakpoint

Fetch
operand

Processor
cycle

Execute
instruction

Processor
cycle

Store
result

Processor
cycle

Process
interrupt

Figure 7.13  DMA and Interrupt Breakpoints during an Instruction Cycle

7.5 / Direct Memory Access   251

the system bus. The DMA logic may actually be a part of an I/O module, or it may
be a separate module that controls one or more I/O modules. This concept can
be taken one step further by connecting I/O modules to the DMA module using
an I/O bus (Figure 7.14c). This reduces the number of I/O interfaces in the DMA
module to one and provides for an easily expandable configuration. In both of
these cases (Figures 7.14b and c), the system bus that the DMA module shares with
the processor and memory is used by the DMA module only to exchange data with
memory. The exchange of data between the DMA and I/O modules takes place off
the system bus.

Intel 8237A DMA Controller

The Intel 8237A DMA controller interfaces to the 80 * 86 family of processors and
to DRAM memory to provide a DMA capability. Figure 7.15 indicates the location
of the DMA module. When the DMA module needs to use the system buses (data,
address, and control) to transfer data, it sends a signal called HOLD to the processor.
The processor responds with the HLDA (hold acknowledge) signal, indicating that

Processor DMA

(a) Single-bus, detached DMA

(b) Single-bus, integrated DMA-I/O

(c) I/O bus

I/O bus

System bus

I/O I/O Memory

Processor DMA Memory

I/O I/O I/O

Processor DMA DMA

I/O

I/O I/O

Memory

Figure 7.14  Alternative DMA Configurations

252   Chapter 7 / Input/Output

the DMA module can use the buses. For example, if the DMA module is to transfer
a block of data from memory to disk, it will do the following:

1.	 The peripheral device (such as the disk controller) will request the service of
DMA by pulling DREQ (DMA request) high.

2.	 The DMA will put a high on its HRQ (hold request), signaling the CPU
through its HOLD pin that it needs to use the buses.

3.	 The CPU will finish the present bus cycle (not necessarily the present instruc-
tion) and respond to the DMA request by putting high on its HDLA (hold
acknowledge), thus telling the 8237 DMA that it can go ahead and use the
buses to perform its task. HOLD must remain active high as long as DMA is
performing its task.

4.	 DMA will activate DACK (DMA acknowledge), which tells the peripheral
device that it will start to transfer the data.

5.	 DMA starts to transfer the data from memory to peripheral by putting the
address of the first byte of the block on the address bus and activating MEMR,
thereby reading the byte from memory into the data bus; it then activates IOW
to write it to the peripheral. Then DMA decrements the counter and incre-
ments the address pointer and repeats this process until the count reaches zero
and the task is finished.

6.	 After the DMA has finished its job it will deactivate HRQ, signaling the CPU
that it can regain control over its buses.

CPU

DACK = DMA acknowledge
DREQ = DMA request
HLDA = HOLD acknowledge
HRQ = HOLD request

Data bus

DACK

DREQ

Address bus

Control bus (IOR, IOW, MEMR, MEMW)

8237 DMA
chip

Main
memory

Disk
controller

HRQ

HLDA

Figure 7.15  8237 DMA Usage of System Bus

7.5 / Direct Memory Access   253

While the DMA is using the buses to transfer data, the processor is idle. Simi-
larly, when the processor is using the bus, the DMA is idle. The 8237 DMA is known
as a fly-​by DMA controller. This means that the data being moved from one location
to another does not pass through the DMA chip and is not stored in the DMA chip.
Therefore, the DMA can only transfer data between an I/O port and a memory address,
and not between two I/O ports or two memory locations. However, as explained subse-
quently, the DMA chip can perform a memory-​to-​memory transfer via a register.

The 8237 contains four DMA channels that can be programmed inde-
pendently, and any one of the channels may be active at any moment. These chan-
nels are numbered 0, 1, 2, and 3.

The 8237 has a set of five control/command registers to program and control
DMA operation over one of its channels (Table 7.2):

■■ Command: The processor loads this register to control the operation of
the DMA. D0 enables a memory-​to-​memory transfer, in which channel 0 is
used to transfer a byte into an 8237 temporary register and channel 1 is used
to transfer the byte from the register to memory. When memory-​to-​memory
is enabled, D1 can be used to disable increment/decrement on channel 0
so that a fixed value can be written into a block of memory. D2 enables or
disables DMA.

■■ Status: The processor reads this register to determine DMA status. Bits
D0–D3 are used to indicate if channels 0–3 have reached their TC (terminal
count). Bits D4–D7 are used by the processor to determine if any channel has
a DMA request pending.

■■ Mode: The processor sets this register to determine the mode of operation of
the DMA. Bits D0 and D1 are used to select a channel. The other bits select
various operation modes for the selected channel. Bits D2 and D3 determine
if the transfer is from an I/O device to memory (write) or from memory to
I/O (read), or a verify operation. If D4 is set, then the memory address regis-
ter and the count register are reloaded with their original values at the end of
a DMA data transfer. Bits D6 and D7 determine the way in which the 8237 is
used. In single mode, a single byte of data is transferred. Block and demand
modes are used for a block transfer, with the demand mode allowing for
premature ending of the transfer. Cascade mode allows multiple 8237s to be
cascaded to expand the number of channels to more than 4.

■■ Single Mask: The processor sets this register. Bits D0 and D1 select the chan-
nel. Bit D2 clears or sets the mask bit for that channel. It is through this reg-
ister that the DREQ input of a specific channel can be masked (disabled) or
unmasked (enabled). While the command register can be used to disable the
whole DMA chip, the single mask register allows the programmer to disable
or enable a specific channel.

■■ All Mask: This register is similar to the single mask register except that all four
channels can be masked or unmasked with one write operation.

In addition, the 8237A has eight data registers: one memory address register
and one count register for each channel. The processor sets these registers to indi-
cate the location of size of main memory to be affected by the transfers.

254   Chapter 7 / Input/Output

Table 7.2  Intel 8237A Registers

Bit Command Status Mode Single Mask All Mask

D0 Memory-​to-​
memory E/D

Channel 0 has
reached TC

Channel select
Select channel
mask bit

Clear/set chan-
nel 0 mask bit

D1 Channel 0
address hold E/D

Channel 1 has
reached TC

Clear/set chan-
nel 1 mask bit

D2 Controller E/D Channel 2 has
reached TC

Verify/write/read
transfer

Clear/set
mask bit

Clear/set chan-
nel 2 mask bit

D3 Normal/com-
pressed timing

Channel 3 has
reached TC

Not used

Clear/set chan-
nel 3 mask bit

D4 Fixed/rotating
priority

Channel 0 request Auto-​initialization
E/D

Not used

D5 Late/extended
write selection

Channel 0 request Address increment/
decrement select

D6 DREQ sense
active high/low

Channel 0 request

D7 DACK sense
active high/low

Channel 0 request Demand/single/
block/cascade mode
select

E/D = enable/disable
TC = terminal count

	 7.6	 Direct Cache Access

DMA has proved an effective means of enhancing performance of I/O with periph-
eral devices and network I/O traffic. However, for the dramatic increases in data
rates for network I/O, DMA is not able to scale to meet the increased demand.
This demand is coming primarily from the widespread deployment of 10-Gbps and
100-Gbps Ethernet switches to handle massive amounts of data transfer to and from
database servers and other high-​performance systems [STAL14a]. A secondary
but increasingly important source of traffic comes from Wi-​Fi in the gigabit range.
Network Wi-​Fi devices that handle 3.2 Gbps and 6.76 Gbps are becoming widely
available and producing demand on enterprise systems [STAL14b].

In this section, we will show how enabling the I/O function to have direct
access to the cache can enhance performance, a technique known as direct cache
access (DCA). Throughout this section, we are concerned only with the cache that
is closest to main memory, referred to as the last-​level cache. In some systems, this
will be an L2 cache, in others an L3 cache.

To begin, we describe the way in which contemporary multicore systems use
on-​chip shared cache to enhance DMA performance. This approach involves ena-
bling the DMA function to have direct access to the last-​level cache. Next we exam-
ine cache-​related performance issues that manifest when high-​speed network traffic
is processed. From there, we look at several different strategies for DCA that are
designed to enhance network protocol processing performance. Finally, this section
describes a DCA approach implemented by Intel, referred to as Direct Data I/O.

7.6 / Direct Cache Access   255

DMA Using Shared Last-​Level Cache

As was discussed in Chapter 1 (see Figure 1.2), contemporary multicore systems
include both cache dedicated to each core and an additional level of shared cache,
either L2 or L3. With the increasing size of available last-​level cache, system design-
ers have enhanced the DMA function so that the DMA controller has access to the
shared cache in a manner similar to the cores. To clarify the interaction of DMA and
cache, it will be useful to first describe a specific system architecture. For this pur-
pose, the following is an overview of the Intel Xeon system.

xeon multicore processor Intel Xeon is Intel’s high-​end, high-​performance
processor family, used in servers, high-​performance workstations, and
supercomputers. Many of the members of the Xeon family use a ring interconnect
system, as illustrated for the Xeon E5-2600/4600 in Figure 7.16.

The E5-2600/4600 can be configured with up to eight cores on a single chip.
Each core has dedicated L1 and L2 caches. There is a shared L3 cache of up to
20 MB. The L3 cache is divided into slices, one associated with each core although
each core can address the entire cache. Further, each slice has its own cache pipe-
line, so that requests can be sent in parallel to the slices.

The bidirectional high-​speed ring interconnect links cores, last-​level cache,
PCIe, and integrated memory controller (IMC).

In essence, the ring operates as follows:

1.	 Each component that attaches to the bidirectional ring (QPI, PCIe, L3 cache,
L2 cache) is considered a ring agent, and implements ring agent logic.

2.	 The ring agents cooperate via a distributed protocol to request and allocate
access to the ring, in the form of time slots.

3.	 When an agent has data to send, it chooses the ring direction that results in the
shortest path to the destination and transmits when a scheduling slot is available.

The ring architecture provides good performance and scales well for multiple
cores, up to a point. For systems with a greater number of cores, multiple rings are
used, with each ring supporting some of the cores.

dma use of the cache In traditional DMA operation, data are exchanged
between main memory and an I/O device by means of the system interconnection
structure, such as a bus, ring, or QPI point-​to-​point matrix. So, for example, if the
Xeon E5-2600/4600 used a traditional DMA technique, output would proceed as
follows. An I/O driver running on a core would send an I/O command to the I/O
controller (labeled PCIe in Figure 7.16) with the location and size of the buffer in
main memory containing the data to be transferred. The I/O controller issues a read
request that is routed to the memory controller hub (MCH), which accesses the data
on DDR3 memory and puts it on the system ring for delivery to the I/O controller.
The L3 cache is not involved in this transaction and one or more off-​chip memory
reads are required. Similarly, for input, data arrive from the I/O controller and is
delivered over the system ring to the MCH and written out to main memory. The
MCH must also invalidate any L3 cache lines corresponding to the updated memory
locations. In this case, one or more off-​chip memory writes are required. Further, if
an application wants to access the new data, a main memory read is required.

256   Chapter 7 / Input/Output

With the availability of large amounts of last-​level cache, a more efficient
technique is possible, and is used by the Xeon E5-2600/4600. For output, when the
I/O controller issues a read request, the MCH first checks to see if the data are in
the L3 cache. This is likely to be the case, if an application has recently written data
into the memory block to be output. In that case, the MCH directs data from the L3
cache to the I/O controller; no main memory accesses are needed. However, it also
causes the data to be evicted from cache, that is, the act of reading by an I/O device

L3
Cache

(2.5 MB)

L
2 (256 K

B
)

L
1 (64 K

B
)

L3
Cache

(2.5 MB)

L3
Cache

(2.5 MB)

L3
Cache

(2.5 MB)

L3
Cache

(2.5 MB)

L3
Cache

(2.5 MB)

L3
Cache

(2.5 MB)

L3
Cache

(2.5 MB)

Core
0

Core
7

L
2 (256 K

B
)

L
1 (64 K

B
)

Core
1

L
2 (256 K

B
)

L
1 (64 K

B
)

Core
2

L
2 (256 K

B
)

L
1 (64 K

B
)

Core
3

L
1

(6
4

K
B

)

L
2

(2
56

 K
B

)

Core
6

L
1

(6
4

K
B

)

L
2

(2
56

 K
B

)

Core
5

L
1

(6
4

K
B

)

L
2

(2
56

 K
B

)
Core

4
L

1
(6

4
K

B
)

L
2

(2
56

 K
B

)

QPI PCIe

Memory
Controller Hub

Chip boundary

To other
processor chips

To I/O
devices

To DDR3
memory

Figure 7.16  Xeon E5-2600/4600 Chip Architecture

7.6 / Direct Cache Access   257

causes data to be evicted. Thus, the I/O operation proceeds efficiently because it
does not require main memory access. But, if an application does need that data
in the future, it must be read back into the L3 cache from main memory. The input
operation on the Xeon E5-2600/4600 operates as described in the previous para-
graph; the L3 cache is not involved. Thus, the performance improvement involves
only output operations.

A final point. Although the output transfer is directly from cache to the I/O
controller, the term direct cache access is not used for this feature. Rather, the term
is reserved for the I/O protocol application, as described in the remainder of this
section.

Cache-​Related Performance Issues

Network traffic is transmitted in the form of a sequence of protocol blocks, called
packets or protocol data units. The lowest, or link, level protocol is typically
Ethernet, so that each arriving and departing block of data consists of an Ethernet
packet containing as payload the higher-​level protocol packet. The higher-​level pro-
tocols are usually the Internet Protocol (IP), operating on top of Ethernet, and
the Transmission Control Protocol (TCP), operating on top of IP. Accordingly, the
Ethernet payload consists of a block of data with a TCP header and an IP header.
For outgoing data, Ethernet packets are formed in a peripheral component, such
as an I/O controller or network interface controller (NIC). Similarly, for incoming
traffic, the I/O controller strips off the Ethernet information and delivers the TCP/
IP packet to the host CPU.

For both outgoing and incoming traffic, the core, main memory, and cache
are all involved. In a DMA scheme, when an application wishes to transmit data, it
places that data in an application-​assigned buffer in main memory. The core trans-
fers this to a system buffer in main memory and creates the necessary TCP and IP
headers, which are also buffered in system memory. The packet is then picked up
via DMA for transfer via the NIC. This activity engages not only main memory but
also the cache. For incoming traffic, similar transfers between system and applica-
tion buffers are required.

When large volumes of protocol traffic are processed, two factors in this sce-
nario degrade performance. First, the core consumes valuable clock cycles in copy-
ing data between system and application buffers. Second, because memory speeds
have not kept up with CPU speeds, the core loses time waiting on memory reads
and writes. In this traditional way of processing protocol traffic, the cache does not
help because the data and protocol headers are constantly changing and thus the
cache must constantly be updated.

To clarify the performance issue and to explain the benefit of DCA as a way
of improving performance, let us look at the processing of protocol traffic in more
detail for incoming traffic. In general terms, the following steps occur:

1.	 Packet arrives: The NIC receives an incoming Ethernet packet. The NIC pro-
cesses and strips off the Ethernet control information. This includes doing an
error detection calculation. The remaining TCP/IP packet is then transferred
to the system’s DMA module, which generally is part of the NIC. The NIC
also creates a packet descriptor with information about the packet, such as its
buffer location in memory.

258   Chapter 7 / Input/Output

2.	 DMA: The DMA module transfers data, including the packet descriptor, to
main memory. It must also invalidate the corresponding cache lines, if any.

3.	 NIC interrupts host: After a number of packets have been transferred, the
NIC issues an interrupt to the host processor.

4.	 Retrieve descriptors and headers: The core processes the interrupt, invoking
an interrupt handling procedure, which reads the descriptor and header of the
received packets.

5.	 Cache miss occurs: Because this is new data coming in, the cache lines corre-
sponding to the system buffer containing the new data are invalidated. Thus,
the core must stall to read the data from main memory into cache, and then to
core registers.

6.	 Header is processed: The protocol software executes on the core to analyze
the contents of the TCP and IP headers. This will likely include accessing a
transport control block (TCB), which contains context information related
to TCP. The TCB access may or may not trigger a cache miss, necessitating a
main memory access.

7.	 Payload transferred: The data portion of the packet is transferred from the
system buffer to the appropriate application buffer.

A similar sequence of steps occurs for outgoing packet traffic, but there are
some differences that affect how the cache is managed. For outgoing traffic, the
following steps occur:

1.	 Packet transfer requested: When an application has a block of data to transfer
to a remote system, it places the data in an application buffer and alerts the
OS with some type of system call.

2.	 Packet created: The OS invokes a TCP/IP process to create the TCP/IP packet
for transmission. The TCP/IP process accesses the TCB (which may involve a
cache miss) and creates the appropriate headers. It also reads the data from
the application buffer, and then places the completed packet (headers plus
data) in a system buffer. Note that the data that is written into the system buf-
fer also exists in the cache. The TCP/IP process also creates a packet descrip-
tor that is placed in memory shared with the DMA module.

3.	 Output operation invoked: This uses a device driver program to signal the
DMA module that output is ready for the NIC.

4.	 DMA transfer: The DMA module reads the packet descriptor, then a
DMA transfer is performed from main memory or the last-​level cache to
the NIC. Note that DMA transfers invalidate the cache line in cache even in
the case of a read (by the DMA module). If the line is modified, this causes a
write back. The core does not do the invalidates. The invalidates happen when
the DMA module reads the data.

5.	 NIC signals completion: After the transfer is complete, the NIC signals the
driver on the core that originated the send signal.

6.	 Driver frees buffer: Once the driver receives the completion notice, it frees
up the buffer space for reuse. The core must also invalidate the cache lines
containing the buffer data.

7.6 / Direct Cache Access   259

As can be seen, network I/O involves a number of accesses to cache and main
memory and the movement of data between an application buffer and a system
buffer. The heavy involvement of main memory becomes a bottleneck, as both core
and network performance outstrip gains in memory access times.

Direct Cache Access Strategies

Several strategies have been proposed for making more efficient use of caches for
network I/O, with the general term direct cache access applied to all of these strategies.

The simplest strategy is one that was implemented as a prototype on a number
of Intel Xeon processors between 2006 and 2010 [KUMA07, INTE08]. This form
of DCA applies only to incoming network traffic. The DCA function in the mem-
ory controller sends a prefetch hint to the core as soon as the data are available in
system memory. This enables the core to prefetch the data packet from the system
buffer, thus avoiding cache misses and the associated waste of core cycles.

While this simple form of DCA does provide some improvement, much more
substantial gains can be realized by avoiding the system buffer in main memory
altogether. For the specific function of protocol processing, note that the packet
and packet descriptor information are accessed only once in the system buffer by
the core. For incoming packets, the core reads the data from the buffer and trans-
fers the packet payload to an application buffer. It has no need to access that data
in the system buffer again. Similarly, for outgoing packets, once the core has placed
the data in the system buffer, it has no need to access that data again. Suppose,
therefore, that the I/O system were equipped not only with the capability of directly
accessing main memory, but also of accessing the cache, both for input and output
operations. Then it would be possible to use the last-​level cache instead of the main
memory to buffer packets and descriptors of incoming and outgoing packets.

This last approach, which is a true DCA, was proposed in [HUGG05]. It has
also been described as cache injection [LEON06]. A version of this more complete
form of DCA is implemented in Intel’s Xeon processor line, referred to as Direct
Data I/O [INTE12].

Direct Data I/O

Intel Direct Data I/O (DDIO) is implemented on all of the Xeon E5 family of pro-
cessors. Its operation is best explained with a side-​by-​side comparison of transfers
with and without DDIO.

packet input First, we look at the case of a packet arriving at the NIC from the
network. Figure 7.17a shows the steps involved for a DMA operation. The NIC
initiates a memory write (1). Then the NIC invalidates the cache lines corresponding
to the system buffer (2). Next, the DMA operation is performed, depositing the
packet directly into main memory (3). Finally, after the appropriate core receives a
DMA interrupt signal, the core can read the packet data from memory through the
cache (4).

Before discussing the processing of an incoming packet using DDIO, we need
to summarize the discussion of cache write policy from Chapter 4, and introduce a
new technique. For the following discussion, there are issues relating to cache coher-
ency that arise in a multiprocessor or multicore environment. These are discussed

260   Chapter 7 / Input/Output

in Chapter 17 but the details need not concern us here. Recall that there are two
techniques for dealing with an update to a cache line:

■■ Write through: All write operations are made to main memory as well as to
the cache, ensuring that main memory is always valid. Any other core–​cache
module can monitor traffic to main memory to maintain consistency within its
own local cache.

■■ Write back: Updates are made only in the cache. When an update occurs, a
dirty bit associated with the line is set. Then, when a block is replaced, it is
written back to main memory if and only if the dirty bit is set.

DDIO uses the write-​back strategy in the L3 cache.
A cache write operation may encounter a cache miss, which is dealt with by

one of two strategies:

■■ Write allocate: The required line is loaded into the cache from main memory.
Then, the line in the cache is updated by the write operation. This scheme is
typically used with the write-​back method.

■■ Non-​write allocate: The block is modified directly in main memory. No change is
made to the cache. This scheme is typically used with the write-​through method.

With the above in mind, we can describe the DDIO strategy for inbound
transfers initiated by the NIC.

1.	 If there is a cache hit, the cache line is updated, but not main memory; this is
simply the write-​back strategy for a cache hit. The Intel literature refers to this
as write update.

(a) Normal DMA transfer to memory

I/O
controller

Main
memory

Core
1

Core
N

Last–level cache

Core
2

1

2

3

4

(b) DDIO transfer to cache

I/O
controller

Main
memory

Core
1

Core
N

Last–level cache

Core
2

1

2

3

(c) Normal DMA transfer to I/O

I/O
controller

Main
memory

Core
1

Core
N

Last–level cache

Core
2

2

3

1

(d) DDIO transfer to I/O

I/O
controller

Main
memory

Core
1

Core
N

Last–level cache

Core
2

1

2

Figure 7.17  Comparison of DMA and DDIO

7.7 / I/O Channels and Processors   261

2.	 If there is a cache miss, the write operation occurs to a line in the cache that will not
be written back to main memory. Subsequent writes update the cache line, again
with no reference to main memory or no future action that writes this data to main
memory. The Intel documentation [INTE12] refers to this as write allocate, which
unfortunately is not the same meaning for the term in the general cache literature.

The DDIO strategy is effective for a network protocol application because the
incoming data need not be retained for future use. The protocol application is going
to write the data to an application buffer, and there is no need to temporarily store
it in a system buffer.

Figure 7.17b shows the operation for DDIO input. The NIC initiates a memory
write (1). Then the NIC invalidates the cache lines corresponding to the system buffer
and deposits the incoming data in the cache (2). Finally, after the appropriate core
receives a DCA interrupt signal, the core can read the packet data from the cache (3).

packet output Figure 7.17c shows the steps involved for a DMA operation for
outbound packet transmission. The TCP/IP protocol handler executing on the core reads
data in from an application buffer and writes it out to a system buffer. These data access
operations result in cache misses and cause data to be read from memory and into the L3
cache (1). When the NIC receives notification for starting a transmit operation, it reads
the data from the L3 cache and transmits it (2). The cache access by the NIC causes the
data to be evicted from the cache and written back to main memory (3).

Figure 7.17d shows the steps involved for a DDIO operation for packet trans-
mission. The TCP/IP protocol handler creates the packet to be transmitted and
stores it in allocated space in the L3 cache (1), but not in main memory (2). The
read operation initiated by the NIC is satisfied by data from the cache, without
causing evictions to main memory.

It should be clear from these side-​by-​side comparisons that DDIO is more
efficient than DMA for both incoming and outgoing packets and is therefore better
able to keep up with the high packet traffic rate.

	 7.7	I /O Channels and Processors

The Evolution of the I/O Function

As computer systems have evolved, there has been a pattern of increasing complex-
ity and sophistication of individual components. Nowhere is this more evident than
in the I/O function. We have already seen part of that evolution. The evolutionary
steps can be summarized as follows:

1.	 The CPU directly controls a peripheral device. This is seen in simple
microprocessor-​controlled devices.

2.	 A controller or I/O module is added. The CPU uses programmed I/O without
interrupts. With this step, the CPU becomes somewhat divorced from the spe-
cific details of external device interfaces.

3.	 The same configuration as in step 2 is used, but now interrupts are employed.
The CPU need not spend time waiting for an I/O operation to be performed,
thus increasing efficiency.

262   Chapter 7 / Input/Output

4.	 The I/O module is given direct access to memory via DMA. It can now move
a block of data to or from memory without involving the CPU, except at the
beginning and end of the transfer.

5.	 The I/O module is enhanced to become a processor in its own right, with a
specialized instruction set tailored for I/O. The CPU directs the I/O processor
to execute an I/O program in memory. The I/O processor fetches and executes
these instructions without CPU intervention. This allows the CPU to specify a
sequence of I/O activities and to be interrupted only when the entire sequence
has been performed.

6.	 The I/O module has a local memory of its own and is, in fact, a computer in its
own right. With this architecture, a large set of I/O devices can be controlled,
with minimal CPU involvement. A common use for such an architecture has
been to control communication with interactive terminals. The I/O processor
takes care of most of the tasks involved in controlling the terminals.

As one proceeds along this evolutionary path, more and more of the I/O func-
tion is performed without CPU involvement. The CPU is increasingly relieved of
I/O-​related tasks, improving performance. With the last two steps (5–6), a major
change occurs with the introduction of the concept of an I/O module capable of
executing a program. For step 5, the I/O module is often referred to as an I/O
channel. For step 6, the term I/O processor is often used. However, both terms are
on occasion applied to both situations. In what follows, we will use the term I/O
channel.

Characteristics of I/O Channels

The I/O channel represents an extension of the DMA concept. An I/O channel
has the ability to execute I/O instructions, which gives it complete control over
I/O operations. In a computer system with such devices, the CPU does not execute
I/O instructions. Such instructions are stored in main memory to be executed by a
special-​purpose processor in the I/O channel itself. Thus, the CPU initiates an I/O
transfer by instructing the I/O channel to execute a program in memory. The pro-
gram will specify the device or devices, the area or areas of memory for storage,
priority, and actions to be taken for certain error conditions. The I/O channel follows
these instructions and controls the data transfer.

Two types of I/O channels are common, as illustrated in Figure 7.18. A
selector channel controls multiple high-​speed devices and, at any one time, is
dedicated to the transfer of data with one of those devices. Thus, the I/O chan-
nel selects one device and effects the data transfer. Each device, or a small set of
devices, is handled by a controller, or I/O module, that is much like the I/O mod-
ules we have been discussing. Thus, the I/O channel serves in place of the CPU
in controlling these I/O controllers. A multiplexor channel can handle I/O with
multiple devices at the same time. For low-​speed devices, a byte multiplexor
accepts or transmits characters as fast as possible to multiple devices. For example,
the resultant character stream from three devices with different rates and indi-
vidual streams A1A2A3A4 c , B1B2B3B4 c , and C1C2C3C4 c might be
A1B1C1A2C2A3B2C3A4, and so on. For high-​speed devices, a block multiplexor
interleaves blocks of data from several devices.

7.8 / External Interconnection Standards   263

	 7.8	 External Interconnection Standards

In this section, we provide a brief overview of the most widely used external inter-
face standards to support I/O. Two of these, Thunderbolt and InfiniBand, are exam-
ined in detail in Appendix J.

Universal Serial Bus (USB)

USB is widely used for peripheral connections. It is the default interface for slower-
speed devices, such as keyboard and pointing devices, but is also commonly used for
high-​speed I/O, including printers, disk drives, and network adapters.

USB has gone through multiple generations. The first version, USB 1.0,
defined a Low Speed data rate of 1.5 Mbps and a Full Speed rate of 12 Mbps. USB
2.0 provides a data rate of 480 Mbps. USB 3.0 includes a new, higher speed bus

Selector
channel

Control signal
path to CPU

Data and
address channel
to main memory

I/O
controller

I/O
controller

I/O
controller

(a) Selector

(b) Multiplexor

I/O
controller

Multiplexor
channel

Control signal
path to CPU

Data and
address channel
to main memory

I/O
controller

I/O
controller

Figure 7.18  I/O Channel Architecture

264   Chapter 7 / Input/Output

called SuperSpeed in parallel with the USB 2.0 bus. The signaling speed of Super-
Speed is 5 Gbps, but due to signaling overhead, the usable data rate is up to 4 Gbps.
The most recent specification is USB 3.1, which includes a faster transfer mode
called SuperSpeed+. This transfer mode achieves a signaling rate of 10 Gbps and a
theoretical usable data rate of 9.7 Gbps.

A USB system is controlled by a root host controller, which attaches to devices
to create a local network with a hierarchical tree topology.

FireWire Serial Bus

FireWire was developed as an alternative to the small computer system interface
(SCSI) to be used on smaller systems, such as personal computers, workstations,
and servers. The objective was to meet the increasing demands for high I/O rates
on these systems, while avoiding the bulky and expensive I/O channel technologies
developed for mainframe and supercomputer systems. The result is the IEEE stan-
dard 1394, for a High Performance Serial Bus, commonly known as FireWire.

FireWire uses a daisy-​chain configuration, with up to 63 devices connected
off a single port. Moreover, up to 1022 FireWire buses can be interconnected using
bridges, enabling a system to support as many peripherals as required.

FireWire provides for what is known as hot plugging, which makes it possible
to connect and disconnect peripherals without having to power the computer system
down or reconfigure the system. Also, FireWire provides for automatic configur-
ation; it is not necessary manually to set device IDs or to be concerned with the rela-
tive position of devices. With FireWire, there are no terminations, and the system
automatically performs a configuration function to assign addresses. A FireWire bus
need not be a strict daisy chain. Rather, a tree-​structured configuration is possible.

An important feature of the FireWire standard is that it specifies a set of three
layers of protocols to standardize the way in which the host system interacts with the
peripheral devices over the serial bus. The physical layer defines the transmission media
that are permissible under FireWire and the electrical and signaling characteristics of
each. Data rates from 25 Mbps to 3.2 Gbps are defined. The link layer describes the
transmission of data in the packets. The transaction layer defines a request–​response
protocol that hides the lower-​layer details of FireWire from applications.

Small Computer System Interface (SCSI)

SCSI is a once common standard for connecting peripheral devices (disks, modems,
printers, etc.) to small and medium-​sized computers. Although SCSI has evolved to
higher data rates, it has lost popularity to such competitors as USB and FireWire
in smaller systems. However, high-​speed versions of SCSI remain popular for mass
memory support on enterprise systems. For example, the IBM zEnterprise EC12
and other IBM mainframes offer support for SCSI, and a number of Seagate hard
drive systems use SCSI.

The physical organization of SCSI is a shared bus, which can support up to 16
or 32 devices, depending on the generation of the standard. The bus provides for
parallel transmission rather than serial, with a bus width of 16 bits on earlier gener-
ations and 32 bits on later generations. Speeds range from 5 Mbps on the original
SCSI-​1 specification to 160 Mbps on SCSI-​3 U3.

Thunderbolt

The most recent, and one of fastest, peripheral connection technology to become
available for general-​purpose use is Thunderbolt, developed by Intel with collabora-
tion from Apple. One Thunderbolt cable can manage the work previously required
of multiple cables. The technology combines data, video, audio, and power into a
single high-​speed connection for peripherals such as hard drives, RAID (Redundant
Array of Independent Disks) arrays, video-​capture boxes, and network interfaces. It
provides up to 10 Gbps throughput in each direction and up to 10 watts of power to
connected peripherals.

Thunderbolt is described in detail in Appendix J.

InfiniBand

InfiniBand is an I/O specification aimed at the high-​end server market. The first
version of the specification was released in early 2001 and has attracted numerous
vendors. For example, IBM zEnterprise series of mainframes has relied heavily on
InfiniBand for a number of years. The standard describes an architecture and speci-
fications for data flow among processors and intelligent I/O devices. InfiniBand has
become a popular interface for storage area networking and other large storage con-
figurations. In essence, InfiniBand enables servers, remote storage, and other network
devices to be attached in a central fabric of switches and links. The switch-​based archi-
tecture can connect up to 64,000 servers, storage systems, and networking devices.

Infiniband is described in detail in Appendix J.

PCI Express

PCI Express is a high-​speed bus system for connecting peripherals of a wide variety
of types and speeds. Chapter 3 discusses PCI Express in detail.

SATA

Serial ATA (Serial Advanced Technology Attachment) is an interface for disk stor-
age systems. It provides data rates of up to 6 Gbps, with a maximum per device of
300 Mbps. SATA is widely used in desktop computers, and in industrial and embed-
ded applications.

Ethernet

Ethernet is the predominant wired networking technology, used in homes, offices,
data centers, enterprises, and wide-​area networks. As Ethernet has evolved to sup-
port data rates up to 100 Gbps and distances from a few meters to tens of km, it
has become essential for supporting personal computers, workstations, servers, and
massive data storage devices in organizations large and small.

Ethernet began as an experimental bus-​based 3-Mbps system. With a bus sys-
tem, all of the attached devices, such as PCs, connect to a common coaxial cable,
much like residential cable TV systems. The first commercially-​available Ether-
net, and the first version of IEEE 802.3, were bus-​based systems operating at 10
Mbps. As technology has advanced, Ethernet has moved from bus-​based to switch-​
based, and the data rate has periodically increased by an order of magnitude. With

7.8 / External Interconnection Standards   265

266   Chapter 7 / Input/Output

switch-​based systems, there is a central switch, with all of the devices connected
directly to the switch. Currently, Ethernet systems are available at speeds up to 100
Gbps. Here is a brief chronology.

■■ 1983: 10 Mbps (megabit per second, million bits per second)
■■ 1995: 100 Mbps
■■ 1998: 1 Gbps (gigabit per second, billion bits per second)
■■ 2003: 10 Gbps
■■ 2010: 40 Gbps and 100 Gbps

Wi-​Fi

Wi-​Fi is the predominant wireless Internet access technology, used in homes, offices,
and public spaces. Wi-​Fi in the home now connects computers, tablets, smart phones,
and a host of electronic devices, such as video cameras, TVs, and thermostats. Wi-​Fi
in the enterprise has become an essential means of enhancing worker productivity
and network effectiveness. And public Wi-​Fi hotspots have expanded dramatically
to provide free Internet access in most public places.

As the technology of antennas, wireless transmission techniques, and wireless
protocol design has evolved, the IEEE 802.11 committee has been able to introduce
standards for new versions of Wi-​Fi at ever-​higher speeds. Once the standard is
issued, industry quickly develops the products. Here is a brief chronology, starting
with the original standard, which was simply called IEEE 802.11, and showing the
maximum data rate for each version:

■■ 802.11 (1997): 2 Mbps (megabit per second, million bits per second)
■■ 802.11a (1999): 54 Mbps
■■ 802.11b (1999): 11 Mbps
■■ 802.11n (1999): 600 Mbps
■■ 802.11g (2003): 54 Mbps
■■ 802.11ad (2012): 6.76 Gbps (billion bits per second)
■■ 802.11ac (2014): 3.2 Gbps

	 7.9	I BM zEnterprise EC12 I/O Structure

The zEnterprise EC12 is IBM’s latest mainframe computer offering (at the time of
this writing). The system is based on the use of the zEC12 processor chip, which is a
5.5-GHz multicore chip with six cores. The zEC12 architecture can have a maximum
of 101 processor chips for a total of 606 cores. In this section, we look at the I/O
structure of the zEnterprise EC12.

Channel Structure

The zEnterprise EC12 has a dedicated I/O subsystem that manages all I/O oper-
ations, completely off-​loading this processing and memory burden from the main

processors. Figure 7. 21 shows the logical structure of the I/O subsystem. Of the 96
core processors, up to 4 of these can be dedicated for I/O use, creating 4 channel
subsystems (CSS). Each CSS is made up of the following elements:

■■ System assist processor (SAP): The SAP is a core processor configured for I/O
operation. Its role is to offload I/O operations and manage channels and the
I/O operations queues. It relieves the other processors of all I/O tasks, allowing
them to be dedicated to application logic.

■■ Hardware system area (HSA): The HSA is a reserved part of the system mem-
ory containing the I/O configuration. It is used by SAPs. A fixed amount of
32 GB is reserved, which is not part of the customer-​purchased memory. This
provides for greater configuration flexibility and higher availability by elimi-
nating planned and preplanned outages.

■■ Logical partitions: A logical partition is a form of virtual machine, which is in
essence, a logical processor defined at the operating system level.3 Each CSS
supports up to 16 logical partitions.

Partition

≤ 15 partitions per channel subsystem

≤ 256 channels per channel subsystem

subchannels

Channel Channel

Channel
Subsystem

Channel
Subsystem

Channel
subsystem

Channel
Subsystem
Channel

subsystem
4 channel

subsystems
Channel

subsystem
Channel

subsystem

Partition

subchannels

Partition

subchannels

Partition

subchannels

≤ 60 partitions per system

≤ 1024 partitions per system

Channel Channel

Figure 7.19  IBM zEC12 I/O Channel Subsystem Structure

3A virtual machine is an instance of an operating system along with one or more applications running in
an isolated memory partition within the computer. It enables different operating systems to run in the
same computer at the same time as well as prevents applications from interfering with each other. See
[STAL12] for a discussion of virtual machines.

7.9 / IBM zEnterprise EC12 I/O Structure   267

268   Chapter 7 / Input/Output

■■ Subchannels: A subchannel appears to a program as a logical device and con-
tains the information required to perform an I/O operation. One subchannel
exists for each I/O device addressable by the CSS. A subchannel is used by the
channel subsystem code running on a partition to pass an I/O request to the
channel subsystem. A subchannel is assigned for each device defined to the
logical partition. Up to 196k subchannels are supported per CSS.

■■ Channel path: A channel path is a single interface between a channel subsys-
tem and one or more control units, via a channel. Commands and data are sent
across a channel path to perform I/O requests. Each CSS can have up to 256
channel paths.

■■ Channel: Channels are small processors that communicate with the I/O con-
trol units (CUs). They manage the data transfer between memory and the
external devices.

This elaborate structure enables the mainframe to manage a massive num-
ber of I/O devices and communication links. All I/O processing is offloaded from
the application and server processors, enhancing performance. The channel subsys-
tem processors are somewhat general in configuration, enabling them to manage
a wide variety of I/O duties and to keep up with evolving requirements. The chan-
nel processors are specifically programmed for the I/O control units to which they
interface.

I/O System Organization

To explain the I/O system organization, we need to first briefly explain the physical
layout of the zEnterprise EC12. Figure 7. 20 is a front view of the water-​cooled version
of the machine (there is also an air-​cooled version). The system has the following
characteristics:

■■ Weight: 2430 kg (5358 lbs)
■■ Width: 1.568 m (5.14 ft)
■■ Depth: 1.69 m (6.13 ft)
■■ Height: 2.015 m (6.6 ft)

Not exactly a laptop.
The system consists of two large bays, called frames, that house the various

components of the zEnterprise EC12. The right-hand A frame includes two large
cages, plus room for cabling and other components. The upper cage is a processor
cage, with four slots to house up to four processor books that are fully intercon-
nected. Each book contains a multichip module (MCM), memory cards, and I/O
cage connections. Each MCM is a board that houses six multicore chips and two
storage control chips.

The lower cage in the A frame is an I/O cage, which contains I/O hardware,
including multiplexors and channels. The I/O cage is a fixed unit installed by IBM to
the customer specifications at the factory.

The left-hand Z frame contains internal batteries and power supplies and
room for one or more support elements, which are used by a system manager for
platform management. The Z frame also contains slots for two or more I/O drawers.

An I/O drawer contains similar components to an I/O cage. The differences are that
the drawer is smaller and easily swapped in and out at the customer site to meet
changing requirements.

With this background, we now show a typical configuration of the zEnterprise
EC12 I/O system structure (Figure 7.21). Each zEC12 processor book supports two
internal (i.e., internal to the A and Z frames) I/O infrastructures: InfiniBand for
I/O cages and I/O drawers, and PCI Express (PCIe) for I/O drawers. These channel
controllers are referred to as fanouts.

The InfiniBand connections from the processor book to the I/O cages and
I/O drawers are via a Host Channel Adapter (HCA) fanout, which has InfiniBand
links to InfiniBand multiplexors in the I/O cage or drawer. The InfiniBand multi-
plexors are used to interconnect servers, communications infrastructure equipment,
storage, and embedded systems. In addition to using InfiniBand to interconnect
systems, all of which use InfiniBand, the InfiniBand multiplexor supports other I/O
technologies. ESCON (Enterprise Systems Connection) supports connectivity to
disks, tapes, and printer devices using a proprietary fiber-​based technology. Eth-
ernet connections provide 1-Gbps and 10-Gbps connections to a variety of devices
that support this popular local area network technology. One noteworthy use of
Ethernet is to construct large server farms, particularly to interconnect blade serv-
ers with each other and with other mainframes.4

Internal
batteries
(optional)

Power
supplies

Support
elements

PCIe I/O
drawer

Flexible service
processor (FSP)
controller cards

Processor books
with memory HCA-
and PCIe-fanout
cards

In�niBand and
PCIe I/O
interconnects

I/O cage
carried
forward

N+1 water
cooling units

Figure 7.20  IBM zEC12 I/O Frames–​Front View

4A blade server is a server architecture that houses multiple server modules (blades) in a single chassis. It
is widely used in data centers to save space and improve system management. Either self-​standing or rack
mounted, the chassis provides the power supply, and each blade has its own CPU, memory, and hard disk.

7.9 / IBM zEnterprise EC12 I/O Structure   269

270   Chapter 7 / Input/Output

The PCIe connections from the processor book to the I/O drawers are via a
PCIe fanout to PCIe switches. The PCIe switches can connect to a number of I/O
device controllers. Typical examples for zEnterprise EC12 are 1-Gbps and 10-Gbps
Ethernet and Fiber Channel.

Each book contains a combination of up to 8 InfiniBand HCA and PCIe
fanouts. Each fanout supports up to 32 connections, for a total maximum of 256
connections per processor book, each connection controlled by a channel processor.

	 7.10	Key Terms, Review Questions, and Problems

Key Terms

Book 1 Book 2 Book 3 Book 4

PCIe I/O Drawer I/O Cage & I/O Drawer

PCIe
switch

PCIe
switch

PCIe
switch

PCIe
switch

In�niB and
multiplexor

In�niB and
multiplexor

Channels Ports

1-Gbps
Ethernet controller

Fibre Channel
controller

ESCON10-Gbps
Ethernet controller

Memory

PU PU PU

SC1, SCO

PCIe (8×)

PU PU PU

Memory

PU PU PU

SC1, SCO

PCIe (8×)

PU PU PU

Memory

PU PU PU

SC1, SCO

HCA2 (8×)

PU PU PU

Memory

PU PU PU

SC1, SCO

HCA2 (8×)

PU PU PU

Figure 7.21  IBM zEC12 I/O System Structure

cache injection
cycle stealing
direct cache access (DCA)
Direct Data I/O
direct memory access (DMA)
InfiniBand
interrupt
interrupt-​driven I/O
I/O channel

I/O command
I/O module
I/O processor
isolated I/O
last-​level cache
memory-​mapped I/O
multiplexor channel
non-​write allocate
parallel I/O

peripheral device
programmed I/O
selector channel
serial I/O
Thunderbolt
write allocate
write back
write through
write update

