
120

Cache Memory
4.1	 Computer Memory System Overview	

Characteristics of Memory Systems
The Memory Hierarchy

4.2	 Cache Memory Principles	

4.3	 Elements of Cache Design	
Cache Addresses
Cache Size
Mapping Function
Replacement Algorithms
Write Policy
Line Size
Number of Caches

4.4	 Pentium 4 Cache Organization	

4.5	 Key Terms, Review Questions, and Problems	

Appendix 4A Performance Characteristics of Two-​Level Memories	
Locality
Operation of Two-​Level Memory
Performance

CHAPTER

4.1 / Computer Memory System Overview   121

Although seemingly simple in concept, computer memory exhibits perhaps the wid-
est range of type, technology, organization, performance, and cost of any feature
of a computer system. No single technology is optimal in satisfying the memory
requirements for a computer system. As a consequence, the typical computer system
is equipped with a hierarchy of memory subsystems, some internal to the system
(directly accessible by the processor) and some external (accessible by the processor
via an I/O module).

This chapter and the next focus on internal memory elements, while Chapter 6
is devoted to external memory. To begin, the first section examines key character-
istics of computer memories. The remainder of the chapter examines an essential
element of all modern computer systems: cache memory.

	 4.1	 COMPUTER MEMORY SYSTEM OVERVIEW

Characteristics of Memory Systems

The complex subject of computer memory is made more manageable if we classify
memory systems according to their key characteristics. The most important of these
are listed in Table 4.1.

The term location in Table 4.1 refers to whether memory is internal or exter-
nal to the computer. Internal memory is often equated with main memory, but there
are other forms of internal memory. The processor requires its own local memory,
in the form of registers (e.g., see Figure 2.3). Further, as we will see, the control unit
portion of the processor may also require its own internal memory. We will defer
discussion of these latter two types of internal memory to later chapters. Cache is
another form of internal memory. External memory consists of peripheral storage
devices, such as disk and tape, that are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its capacity. For internal memory, this
is typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word
lengths are 8, 16, and 32 bits. External memory capacity is typically expressed in
terms of bytes.

Learning Objectives

After studying this chapter, you should be able to:

rr Present an overview of the main characteristics of computer memory systems
and the use of a memory hierarchy.

rr Describe the basic concepts and intent of cache memory.
rr Discuss the key elements of cache design.
rr Distinguish among direct mapping, associative mapping, and set-​associative
mapping.

rr Explain the reasons for using multiple levels of cache.
rr Understand the performance implications of multiple levels of memory.

122   CHAPTER 4 / Cache Memory

A related concept is the unit of transfer. For internal memory, the unit
of transfer is equal to the number of electrical lines into and out of the memory
module. This may be equal to the word length, but is often larger, such as 64, 128, or
256 bits. To clarify this point, consider three related concepts for internal memory:

■■ Word: The “natural” unit of organization of memory. The size of a word is typically
equal to the number of bits used to represent an integer and to the instruction
length. Unfortunately, there are many exceptions. For example, the CRAY C90
(an older model CRAY supercomputer) has a 64-bit word length but uses a 46-bit
integer representation. The Intel x86 architecture has a wide variety of instruction
lengths, expressed as multiples of bytes, and a word size of 32 bits.

■■ Addressable units: In some systems, the addressable unit is the word. How-
ever, many systems allow addressing at the byte level. In any case, the rela-
tionship between the length in bits A of an address and the number N of
addressable units is 2A = N.

■■ Unit of transfer: For main memory, this is the number of bits read out of or
written into memory at a time. The unit of transfer need not equal a word or
an addressable unit. For external memory, data are often transferred in much
larger units than a word, and these are referred to as blocks.

Another distinction among memory types is the method of accessing units of
data. These include the following:

■■ Sequential access: Memory is organized into units of data, called records.
Access must be made in a specific linear sequence. Stored addressing infor-
mation is used to separate records and assist in the retrieval process. A shared
read–​write mechanism is used, and this must be moved from its current loca-
tion to the desired location, passing and rejecting each intermediate record.
Thus, the time to access an arbitrary record is highly variable. Tape units, dis-
cussed in Chapter 6, are sequential access.

■■ Direct access: As with sequential access, direct access involves a shared
read–​write mechanism. However, individual blocks or records have a unique

Table 4.1  Key Characteristics of Computer Memory Systems

Location
   Internal (e.g., processor registers, cache, main
    memory)
   External (e.g., optical disks, magnetic
    disks, tapes)
Capacity
   Number of words
   Number of bytes
Unit of Transfer
   Word
   Block
Access Method
   Sequential
   Direct
   Random
   Associative

Performance
   Access time
   Cycle time
   Transfer rate
Physical Type
   Semiconductor
   Magnetic
   Optical
   Magneto-​optical
Physical Characteristics
   Volatile/nonvolatile
   Erasable/nonerasable
Organization
   Memory modules

4.1 / Computer Memory System Overview   123

address based on physical location. Access is accomplished by direct access
to reach a general vicinity plus sequential searching, counting, or waiting to
reach the final location. Again, access time is variable. Disk units, discussed in
Chapter 6, are direct access.

■■ Random access: Each addressable location in memory has a unique, physically
wired-​in addressing mechanism. The time to access a given location is inde-
pendent of the sequence of prior accesses and is constant. Thus, any location
can be selected at random and directly addressed and accessed. Main memory
and some cache systems are random access.

■■ Associative: This is a random access type of memory that enables one to make
a comparison of desired bit locations within a word for a specified match, and
to do this for all words simultaneously. Thus, a word is retrieved based on a
portion of its contents rather than its address. As with ordinary random-​access
memory, each location has its own addressing mechanism, and retrieval time
is constant independent of location or prior access patterns. Cache memories
may employ associative access.

From a user’s point of view, the two most important characteristics of memory are
capacity and performance. Three performance parameters are used:

■■ Access time (latency): For random-​access memory, this is the time it takes
to perform a read or write operation, that is, the time from the instant that
an address is presented to the memory to the instant that data have been
stored or made available for use. For non-​random-​access memory, access
time is the time it takes to position the read–​write mechanism at the desired
location.

■■ Memory cycle time: This concept is primarily applied to random-​access memory
and consists of the access time plus any additional time required before a second
access can commence. This additional time may be required for transients to die
out on signal lines or to regenerate data if they are read destructively. Note that
memory cycle time is concerned with the system bus, not the processor.

■■ Transfer rate: This is the rate at which data can be transferred into or out of
a memory unit. For random-​access memory, it is equal to 1/(cycle time). For
non-​random-​access memory, the following relationship holds:

	 Tn = TA +
n
R

	 (4.1)

where

  Tn = Average time to read or write n bits

 TA = Average access time

   n = Number of bits

 R = Transfer rate, in bits per second (bps)

A variety of physical types of memory have been employed. The most com-
mon today are semiconductor memory, magnetic surface memory, used for disk and
tape, and optical and magneto-​optical.

124   CHAPTER 4 / Cache Memory

Several physical characteristics of data storage are important. In a volatile
memory, information decays naturally or is lost when electrical power is switched
off. In a nonvolatile memory, information once recorded remains without deterio-
ration until deliberately changed; no electrical power is needed to retain informa-
tion. Magnetic-​surface memories are nonvolatile. Semiconductor memory (memory
on integrated circuits) may be either volatile or nonvolatile. Nonerasable memory
cannot be altered, except by destroying the storage unit. Semiconductor memory of
this type is known as read-​only memory (ROM). Of necessity, a practical nonerasa-
ble memory must also be nonvolatile.

For random-​access memory, the organization is a key design issue. In this con-
text, organization refers to the physical arrangement of bits to form words. The
obvious arrangement is not always used, as is explained in Chapter 5.

The Memory Hierarchy

The design constraints on a computer’s memory can be summed up by three ques-
tions: How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to
keep up with the processor. That is, as the processor is executing instructions, we
would not want it to have to pause waiting for instructions or operands. The final
question must also be considered. For a practical system, the cost of memory must
be reasonable in relationship to other components.

As might be expected, there is a trade-​off among the three key characteristics
of memory: capacity, access time, and cost. A variety of technologies are used to
implement memory systems, and across this spectrum of technologies, the following
relationships hold:

■■ Faster access time, greater cost per bit;
■■ Greater capacity, smaller cost per bit;
■■ Greater capacity, slower access time.

The dilemma facing the designer is clear. The designer would like to use mem-
ory technologies that provide for large-​capacity memory, both because the cap-
acity is needed and because the cost per bit is low. However, to meet performance
requirements, the designer needs to use expensive, relatively lower-​capacity mem-
ories with short access times.

The way out of this dilemma is not to rely on a single memory component or
technology, but to employ a memory hierarchy. A typical hierarchy is illustrated in
Figure 4.1. As one goes down the hierarchy, the following occur:

a.	 Decreasing cost per bit;

b.	 Increasing capacity;

c.	 Increasing access time;

d.	 Decreasing frequency of access of the memory by the processor.

Thus, smaller, more expensive, faster memories are supplemented by
larger, cheaper, slower memories. The key to the success of this organization

4.1 / Computer Memory System Overview   125

is item (d): decreasing frequency of access. We examine this concept in greater
detail when we discuss the cache, later in this chapter, and virtual memory in
Chapter 8. A brief explanation is provided at this point.

The use of two levels of memory to reduce average access time works in prin-
ciple, but only if conditions (a) through (d) apply. By employing a variety of tech-
nologies, a spectrum of memory systems exists that satisfies conditions (a) through
(c). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference [DENN68]. During the course of execution of a program, memory ref-
erences by the processor, for both instructions and data, tend to cluster. Programs
typically contain a number of iterative loops and subroutines. Once a loop or sub-
routine is entered, there are repeated references to a small set of instructions. Simi-
larly, operations on tables and arrays involve access to a clustered set of data words.
Over a long period of time, the clusters in use change, but over a short period of
time, the processor is primarily working with fixed clusters of memory references.

Inboardmemory

Outboardstorage

Off-linestorage

Main

memory

Magnetic disk

CD-ROM

CD-RW

DVD-RW

DVD-RAM

Blu-Ray

Magnetic tape

Cache

Reg-

iste
rs

Figure 4.1  The Memory Hierarchy

126   CHAPTER 4 / Cache Memory

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that
of the level above. Consider the two-​level example already presented. Let level 2

 EXAMPLE 4.1   Suppose that the processor has access to two levels of memory. Level 1
contains 1000 words and has an access time of 0.01 ms; level 2 contains 100,000 words and
has an access time of 0.1 ms. Assume that if a word to be accessed is in level 1, then the
processor accesses it directly. If it is in level 2, then the word is first transferred to level 1
and then accessed by the processor. For simplicity, we ignore the time required for the pro-
cessor to determine whether the word is in level 1 or level 2. Figure 4.2 shows the general
shape of the curve that covers this situation. The figure shows the average access time to
a two-​level memory as a function of the hit ratio H, where H is defined as the fraction of
all memory accesses that are found in the faster memory (e.g., the cache), T1 is the access
time to level 1, and T2 is the access time to level 2.1 As can be seen, for high percentages
of level 1 access, the average total access time is much closer to that of level 1 than that
of level 2.

In our example, suppose 95% of the memory accesses are found in level 1. Then the
average time to access a word can be expressed as

(0.95)(0.01 ms) + (0.05)(0.01 ms + 0.1 ms) = 0.0095 + 0.0055 = 0.015 ms

The average access time is much closer to 0.01 ms than to 0.1 ms, as desired.

1If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed
word is not found in the faster memory.

0

T1

T1 + T2

T2

1

Fraction of accesses involving only level 1 (hit ratio)

A
ve

ra
ge

 a
cc

es
s

ti
m

e

Figure 4.2  Performance of Accesses Involving only
Level 1 (hit ratio)

4.1 / Computer Memory System Overview   127

memory contain all program instructions and data. The current clusters can be tem-
porarily placed in level 1. From time to time, one of the clusters in level 1 will have
to be swapped back to level 2 to make room for a new cluster coming in to level 1.
On average, however, most references will be to instructions and data contained in
level 1.

This principle can be applied across more than two levels of memory, as sug-
gested by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expen-
sive type of memory consists of the registers internal to the processor. Typically, a
processor will contain a few dozen such registers, although some machines contain
hundreds of registers. Main memory is the principal internal memory system of the
computer. Each location in main memory has a unique address. Main memory is usu-
ally extended with a higher-​speed, smaller cache. The cache is not usually visible to
the programmer or, indeed, to the processor. It is a device for staging the movement
of data between main memory and processor registers to improve performance.

The three forms of memory just described are, typically, volatile and employ
semiconductor technology. The use of three levels exploits the fact that semicon-
ductor memory comes in a variety of types, which differ in speed and cost. Data are
stored more permanently on external mass storage devices, of which the most com-
mon are hard disk and removable media, such as removable magnetic disk, tape,
and optical storage. External, nonvolatile memory is also referred to as secondary
memory or auxiliary memory. These are used to store program and data files and
are usually visible to the programmer only in terms of files and records, as opposed
to individual bytes or words. Disk is also used to provide an extension to main mem-
ory known as virtual memory, which is discussed in Chapter 8.

Other forms of memory may be included in the hierarchy. For example, large
IBM mainframes include a form of internal memory known as expanded storage.
This uses a semiconductor technology that is slower and less expensive than that
of main memory. Strictly speaking, this memory does not fit into the hierarchy but
is a side branch: Data can be moved between main memory and expanded storage
but not between expanded storage and external memory. Other forms of secondary
memory include optical and magneto-​optical disks. Finally, additional levels can be
effectively added to the hierarchy in software. A portion of main memory can be
used as a buffer to hold data temporarily that is to be read out to disk. Such a tech-
nique, sometimes referred to as a disk cache,2 improves performance in two ways:

■■ Disk writes are clustered. Instead of many small transfers of data, we have
a few large transfers of data. This improves disk performance and minimizes
processor involvement.

■■ Some data destined for write-​out may be referenced by a program before the
next dump to disk. In that case, the data are retrieved rapidly from the soft-
ware cache rather than slowly from the disk.

Appendix 4A examines the performance implications of multilevel memory
structures.

2 Disk cache is generally a purely software technique and is not examined in this book. See [STAL15] for
a discussion.

128   CHAPTER 4 / Cache Memory

	 4.2	 CACHE MEMORY PRINCIPLES

Cache memory is designed to combine the memory access time of expensive, high-​
speed memory combined with the large memory size of less expensive, lower-​speed
memory. The concept is illustrated in Figure 4.3a. There is a relatively large and slow
main memory together with a smaller, faster cache memory. The cache contains a
copy of portions of main memory. When the processor attempts to read a word of
memory, a check is made to determine if the word is in the cache. If so, the word is
delivered to the processor. If not, a block of main memory, consisting of some fixed
number of words, is read into the cache and then the word is delivered to the pro-
cessor. Because of the phenomenon of locality of reference, when a block of data is
fetched into the cache to satisfy a single memory reference, it is likely that there will
be future references to that same memory location or to other words in the block.

Figure 4.3b depicts the use of multiple levels of cache. The L2 cache is slower
and typically larger than the L1 cache, and the L3 cache is slower and typically
larger than the L2 cache.

Figure 4.4 depicts the structure of a cache/main-​memory system. Main mem-
ory consists of up to 2n addressable words, with each word having a unique n-​bit
address. For mapping purposes, this memory is considered to consist of a number
of fixed-​length blocks of K words each. That is, there are M = 2n/K blocks in main
memory. The cache consists of m blocks, called lines.3 Each line contains K words,

CPU

Word transfer

Fast

Fastest Fast
Less
fast

Slow

Block transfer

Cache Main memory

(a) Single cache

(b) Three-level cache organization

CPU Level 1
(L1) cache

Level 2
(L2) cache

Level 3
(L3) cache

Main
memory

Slow

Figure 4.3  Cache and Main Memory

3In referring to the basic unit of the cache, the term line is used, rather than the term block, for two rea-
sons: (1) to avoid confusion with a main memory block, which contains the same number of data words as
a cache line; and (2) because a cache line includes not only K words of data, just as a main memory block,
but also includes tag and control bits.

4.2 / Cache Memory Principles   129

plus a tag of a few bits. Each line also includes control bits (not shown), such as a
bit to indicate whether the line has been modified since being loaded into the cache.
The length of a line, not including tag and control bits, is the line size. The line size
may be as small as 32 bits, with each “word” being a single byte; in this case the
line size is 4 bytes. The number of lines is considerably less than the number of
main memory blocks (m V M). At any time, some subset of the blocks of mem-
ory resides in lines in the cache. If a word in a block of memory is read, that block
is transferred to one of the lines of the cache. Because there are more blocks than
lines, an individual line cannot be uniquely and permanently dedicated to a par-
ticular block. Thus, each line includes a tag that identifies which particular block is
currently being stored. The tag is usually a portion of the main memory address, as
described later in this section.

Figure 4.5 illustrates the read operation. The processor generates the read
address (RA) of a word to be read. If the word is contained in the cache, it is deliv-
ered to the processor. Otherwise, the block containing that word is loaded into the
cache, and the word is delivered to the processor. Figure 4.5 shows these last two
operations occurring in parallel and reflects the organization shown in Figure 4.6,
which is typical of contemporary cache organizations. In this organization, the cache
connects to the processor via data, control, and address lines. The data and address
lines also attach to data and address buffers, which attach to a system bus from

Memory
address

0
1
2

0
1
2

C – 1

3

2n – 1

Word
length

Block length
(K words)

Block 0
(K words)

Block M–1

Line
number Tag Block

(b) Main memory

(a) Cache

•
•
•

•
•
•

Figure 4.4  Cache/Main Memory Structure

130   CHAPTER 4 / Cache Memory

which main memory is reached. When a cache hit occurs, the data and address buff-
ers are disabled and communication is only between processor and cache, with no
system bus traffic. When a cache miss occurs, the desired address is loaded onto the
system bus and the data are returned through the data buffer to both the cache and
the processor. In other organizations, the cache is physically interposed between
the processor and the main memory for all data, address, and control lines. In this
latter case, for a cache miss, the desired word is first read into the cache and then
transferred from cache to processor.

A discussion of the performance parameters related to cache use is contained
in Appendix 4A.

Receive address
RA from CPU

Is block
containing RA
in cache?

Fetch RA word
and deliver
to CPU

DONE

Access main
memory for block
containing RA

Allocate cache
line for main
memory block

Deliver RA word
to CPU

Load main
memory block
into cache line

START

No

Yes

Figure 4.5  Cache Read Operation

4.3 / Elements of Cache Design   131

	 4.3	 ELEMENTS OF CACHE DESIGN

This section provides an overview of cache design parameters and reports some typi-
cal results. We occasionally refer to the use of caches in high-​performance computing
(HPC). HPC deals with supercomputers and their software, especially for scientific
applications that involve large amounts of data, vector and matrix computation, and the
use of parallel algorithms. Cache design for HPC is quite different than for other hard-
ware platforms and applications. Indeed, many researchers have found that HPC appli-
cations perform poorly on computer architectures that employ caches [BAIL93]. Other
researchers have since shown that a cache hierarchy can be useful in improving perfor-
mance if the application software is tuned to exploit the cache [WANG99, PRES01].4

Although there are a large number of cache implementations, there are a few
basic design elements that serve to classify and differentiate cache architectures.
Table 4.2 lists key elements.

Cache Addresses

Almost all nonembedded processors, and many embedded processors, support vir-
tual memory, a concept discussed in Chapter 8. In essence, virtual memory is a facil-
ity that allows programs to address memory from a logical point of view, without
regard to the amount of main memory physically available. When virtual memory is
used, the address fields of machine instructions contain virtual addresses. For reads

Processor Cache

Address

Address
buffer

Data
buffer

Control

Data

Control

Sy
st

em
 b

us

Figure 4.6  Typical Cache Organization

4For a general discussion of HPC, see [DOWD98].

132   CHAPTER 4 / Cache Memory

to and writes from main memory, a hardware memory management unit (MMU)
translates each virtual address into a physical address in main memory.

When virtual addresses are used, the system designer may choose to place the
cache between the processor and the MMU or between the MMU and main mem-
ory (Figure 4.7). A logical cache, also known as a virtual cache, stores data using

Table 4.2  Elements of Cache Design

Cache Addresses
   Logical
   Physical
Cache Size
Mapping Function
   Direct
   Associative
   Set associative
Replacement Algorithm
   Least recently used (LRU)
   First in first out (FIFO)
   Least frequently used (LFU)
   Random

Write Policy
   Write through
   Write back
Line Size
Number of Caches
   Single or two level
   Unified or split

Processor
Main

memoryCache

Logical address Physical address

Data

MMU

(a) Logical cache

Processor
Main

memoryCache

Logical address Physical address

Data

MMU

(b) Physical cache

Figure 4.7  Logical and Physical Caches

4.3 / Elements of Cache Design   133

virtual addresses. The processor accesses the cache directly, without going through
the MMU. A physical cache stores data using main memory physical addresses.

One obvious advantage of the logical cache is that cache access speed is faster
than for a physical cache, because the cache can respond before the MMU performs
an address translation. The disadvantage has to do with the fact that most virtual
memory systems supply each application with the same virtual memory address
space. That is, each application sees a virtual memory that starts at address 0. Thus,
the same virtual address in two different applications refers to two different phys-
ical addresses. The cache memory must therefore be completely flushed with each
application context switch, or extra bits must be added to each line of the cache to
identify which virtual address space this address refers to.

The subject of logical versus physical cache is a complex one, and beyond the
scope of this book. For a more in-​depth discussion, see [CEKL97] and [JACO08].

Cache Size

The second item in Table 4.2, cache size, has already been discussed. We would
like the size of the cache to be small enough so that the overall average cost per
bit is close to that of main memory alone and large enough so that the overall
average access time is close to that of the cache alone. There are several other
motivations for minimizing cache size. The larger the cache, the larger the num-
ber of gates involved in addressing the cache. The result is that large caches tend
to be slightly slower than small ones—​even when built with the same integrated
circuit technology and put in the same place on chip and circuit board. The avail-
able chip and board area also limits cache size. Because the performance of the
cache is very sensitive to the nature of the workload, it is impossible to arrive at
a single “optimum” cache size. Table 4.3 lists the cache sizes of some current and
past processors.

Mapping Function

Because there are fewer cache lines than main memory blocks, an algorithm is
needed for mapping main memory blocks into cache lines. Further, a means is
needed for determining which main memory block currently occupies a cache
line. The choice of the mapping function dictates how the cache is organized.
Three techniques can be used: direct, associative, and set-associative. We examine
each of these in turn. In each case, we look at the general structure and then a
specific example.

 EXAMPLE 4.2   For all three cases, the example includes the following elements:

■■ The cache can hold 64 kB.
■■ Data are transferred between main memory and the cache in blocks of 4 bytes

each. This means that the cache is organized as 16K = 214 lines of 4 bytes each.
■■ The main memory consists of 16 MB, with each byte directly addressable by a

24-bit address (224 = 16M). Thus, for mapping purposes, we can consider main
memory to consist of 4M blocks of 4 bytes each.

134   CHAPTER 4 / Cache Memory

direct mapping The simplest technique, known as direct mapping, maps each block
of main memory into only one possible cache line. The mapping is expressed as

i = j modulo m

where

  i = cache line number

  j = main memory block number

 m = number of lines in the cache

Figure 4.8a shows the mapping for the first m blocks of main memory. Each
block of main memory maps into one unique line of the cache. The next m blocks

Table 4.3  Cache Sizes of Some Processors

Processor

Type

Year of
Introduction

L1 Cachea

L2 Cache

L3 Cache

IBM 360/85 Mainframe 1968 16–32 kB — —

PDP-​11/70 Minicomputer 1975 1 kB — —

VAX 11/780 Minicomputer 1978 16 kB — —

IBM 3033 Mainframe 1978 64 kB — —

IBM 3090 Mainframe 1985 128–256 kB — —

Intel 80486 PC 1989 8 kB — —

Pentium PC 1993 8 kB/8 kB 256–512 kB —

PowerPC 601 PC 1993 32 kB — —

PowerPC 620 PC 1996 32 kB/32 kB — —

PowerPC G4 PC/server 1999 32 kB/32 kB 256 kB to 1 MB 2 MB

IBM S/390 G6 Mainframe 1999 256 kB 8 MB —

Pentium 4 PC/server 2000 8 kB/8 kB 256 kB —

IBM SP
High-​end server/
supercomputer

2000 64 kB/32 kB 8 MB —

CRAY MTAb Supercomputer 2000 8 kB 2 MB —

Itanium PC/server 2001 16 kB/16 kB 96 kB 4 MB

Itanium 2 PC/server 2002 32 kB 256 kB 6 MB

IBM POWER5 High-​end server 2003 64 kB 1.9 MB 36 MB

CRAY XD-​1 Supercomputer 2004 64 kB/64 kB 1 MB —

IBM POWER6 PC/server 2007 64 kB/64 kB 4 MB 32 MB

IBM z10 Mainframe 2008 64 kB/128 kB 3 MB 24–48 MB

Intel Core i7 EE 990
Workstation/

server
2011

6 * 32 kB/
32 kB

1.5 MB 12 MB

IBM zEnterprise 196
Mainframe/

server
2011

24 * 64 kB/
128 kB

24 * 1.5 MB
24 MB L3
192 MB L4

Notes: a Two values separated by a slash refer to instruction and data caches. b Both caches are instruction only;
no data caches.

4.3 / Elements of Cache Design   135

of main memory map into the cache in the same fashion; that is, block Bm of main
memory maps into line L0 of cache, block Bm+1 maps into line L1, and so on.

The mapping function is easily implemented using the main memory address.
Figure 4.9 illustrates the general mechanism. For purposes of cache access, each
main memory address can be viewed as consisting of three fields. The least signifi-
cant w bits identify a unique word or byte within a block of main memory; in most
contemporary machines, the address is at the byte level. The remaining s bits specify
one of the 2s blocks of main memory. The cache logic interprets these s bits as a tag
of s - r bits (most significant portion) and a line field of r bits. This latter field iden-
tifies one of the m = 2r lines of the cache. To summarize,

■■ Address length = (s + w) bits
■■ Number of addressable units = 2s+w words or bytes
■■ Block size = line size = 2w words or bytes

■■ Number of blocks in main memory =
2s + w

2w = 2s

■■ Number of lines in cache = m = 2r

■■ Size of cache = 2r+w words or bytes
■■ Size of tag = (s - r) bits

(a) Direct mapping

First m blocks of
main memory

(equal to size of cache)

b

L0

Lm–1

L0

Lm–1

Bm–1

B0

b = length of block in bits
t = length of tag in bits

Cache memory

m
 li

ne
s

b

bt

bt

(b) Associative mapping

One block of
main memory

Cache memory

Figure 4.8  Mapping from Main Memory to Cache: Direct and Associative

136   CHAPTER 4 / Cache Memory

 EXAMPLE 4.2a   Figure 4.10 shows our example system using direct mapping.5 In the example,
m = 16K = 214 and i = j modulo 214. The mapping becomes

Cache Line Starting Memory Address of Block

0 000000, 010000, …, FF0000

1 000004, 010004, …, FF0004

f f

214 - 1 00FFFC, 01FFFC, …, FFFFFC

Note that no two blocks that map into the same line number have the same tag number. Thus,
blocks with starting addresses 000000, 010000, …, FF0000 have tag numbers 00, 01, …, FF, respectively.

Referring back to Figure 4.5, a read operation works as follows. The cache system is presented
with a 24-bit address. The 14-bit line number is used as an index into the cache to access a particular
line. If the 8-bit tag number matches the tag number currently stored in that line, then the 2-bit word
number is used to select one of the 4 bytes in that line. Otherwise, the 22-bit tag-​plus-​line field is
used to fetch a block from main memory. The actual address that is used for the fetch is the 22-bit
tag-​plus-​line concatenated with two 0 bits, so that 4 bytes are fetched starting on a block boundary.

WordLineTag
W0
W1
W2
W3

Compare

1 if match
0 if no match

0 if match
1 if no match

W4j
W(4j+1)
W(4j+2)
W(4j+3)

Tag Data
Cache

L0

Li

Memory address

(Miss in cache)

(Hit in cache)

w

s – r

wr

s + w

Main memory

Bj

B0

s

w

Lm–1

s – r

Figure 4.9  Direct-​Mapping Cache Organization

5In this and subsequent figures, memory values are represented in hexadecimal notation. See Chapter 9
for a basic refresher on number systems (decimal, binary, hexadecimal).

4.3 / Elements of Cache Design   137

The effect of this mapping is that blocks of main memory are assigned to lines
of the cache as follows:

Cache line Main memory blocks assigned

0 0, m, 2m, c , 2s - m

1 1, m + 1, 2m + 1, c , 2s - m + 1

f f

m - 1 m - 1, 2m - 1, 3m - 1, c , 2s - 1

Thus, the use of a portion of the address as a line number provides a unique
mapping of each block of main memory into the cache. When a block is actually

111111111111111111111100
111111111111111111111000

111111110000000000000000

000101101111111111111100

000101100011001110011100

111111110000000000000100

000101100000000000000100
000101100000000000000000

000000001111111111111100

000000000000000000000000
000000000000000000000100

000000001111111111111000

00
00

FF
FF

FF
FF

16

16

16
16

00
00

13579246

TagTag
(hex)

Main memory address (binary)

Tag Data

32 bits

16K line cache

8 bits

8 bits 2 bits

Tag

Main memory address =

Line Word

Line
number

Line + Word
Data

77777777
11235813

12345678

FEDCBA98 FEDCBA98

24682468
11223344

1357924600
16

FF
16

16

0000
0001

0CE7

3FFE
3FFF

11235813

FEDCBA98

11223344
12345678

14 bits

32 bits

16-Mb main memory

Note: Memory address values are
in binary representation;
other values are in hexadecimal.

Figure 4.10  Direct Mapping Example

138   CHAPTER 4 / Cache Memory

read into its assigned line, it is necessary to tag the data to distinguish it from other
blocks that can fit into that line. The most significant s - r bits serve this purpose.

The direct mapping technique is simple and inexpensive to implement. Its
main disadvantage is that there is a fixed cache location for any given block. Thus,
if a program happens to reference words repeatedly from two different blocks that
map into the same line, then the blocks will be continually swapped in the cache,
and the hit ratio will be low (a phenomenon known as thrashing).

Selective Victim Cache Simulator

One approach to lower the miss penalty is to remember what was discarded in
case it is needed again. Since the discarded data has already been fetched, it can be
used again at a small cost. Such recycling is possible using a victim cache. Victim cache
was originally proposed as an approach to reduce the conflict misses of direct mapped
caches without affecting its fast access time. Victim cache is a fully associative cache,
whose size is typically 4 to 16 cache lines, residing between a direct mapped L1 cache
and the next level of memory. This concept is explored in Appendix F.

associative mapping Associative mapping overcomes the disadvantage of direct
mapping by permitting each main memory block to be loaded into any line of the
cache (Figure 4.8b). In this case, the cache control logic interprets a memory address
simply as a Tag and a Word field. The Tag field uniquely identifies a block of main
memory. To determine whether a block is in the cache, the cache control logic must
simultaneously examine every line’s tag for a match. Figure 4.11 illustrates the logic.

Tag Word
W0
W1
W2
W3

Compare

W4j
W(4j+1)
W(4j+2)
W(4j+3)

Tag Data
Cache

Memory address

(Miss in cache)

(Hit in cache)

w

w

s

s+w

Main memory

s

w

s
1 if match
0 if no match

0 if match
1 if no match

L0

Lj

B0

Bj

Lm–1

Figure 4.11  Fully Associative Cache Organization

4.3 / Elements of Cache Design   139

111111111111111111111100
111111111111111111111000
111111111111111111110100

000101100011001110011000
000101100011001110011100
000101100011001110100000

000000000000000000000100
000000000000000000000000 13579246

FEDCBA98

Tag Data

32 bits

16K line cache

22 bits

Tag

Main memory address =

Word

Line
number

Data

24682468
11223344
33333333

112233443FFFFE
058CE7

000000
3FFFFF

0000
0001

3FFE
3FFF

FEDCBA98

13579246
3FFFFD 3FFD33333333

24682468

32 bits

16-Mb main memory

2 bits22 bits

000000
000001

Tag (hex)

058CE7
058CE8

058CE6

3FFFFE
3FFFFD

3FFFFF

Tag

Main memory address (binary)

Word

Note: Memory address values are
in binary representation;
other values are in hexadecimal.

Figure 4.12  Associative Mapping Example

 EXAMPLE 4.2b   Figure 4.12 shows our example using associative mapping. A main
memory address consists of a 22-bit tag and a 2-bit byte number. The 22-bit tag must be
stored with the 32-bit block of data for each line in the cache. Note that it is the leftmost
(most significant) 22 bits of the address that form the tag. Thus, the 24-bit hexadecimal
address 16339C has the 22-bit tag 058CE7. This is easily seen in binary notation:

Memory address	 0001 0110 0011 0011 1001 1100 (binary)

	 1 6 3 3 9 C (hex)

Tag (leftmost 22 bits) 00 0101 1000 1100 1110 0111 (binary)	

	 0 5 8 C E 7 (hex)

140   CHAPTER 4 / Cache Memory

Note that no field in the address corresponds to the line number, so that the number
of lines in the cache is not determined by the address format. To summarize,

■■ Address length = (s + w) bits
■■ Number of addressable units = 2s+w words or bytes
■■ Block size = line size = 2w words or bytes

■■ Number of blocks in main memory =
2s + w

2w = 2s

■■ Number of lines in cache = undetermined
■■ Size of tag = s bits

With associative mapping, there is flexibility as to which block to replace when
a new block is read into the cache. Replacement algorithms, discussed later in this
section, are designed to maximize the hit ratio. The principal disadvantage of asso-
ciative mapping is the complex circuitry required to examine the tags of all cache
lines in parallel.

Cache Time Analysis Simulator

set-​associative mapping Set-​associative mapping is a compromise that
exhibits the strengths of both the direct and associative approaches while reducing
their disadvantages.

In this case, the cache consists of number sets, each of which consists of a num-
ber of lines. The relationships are

m = v * k

i = j modulo v

where

   i = cache set number

   j = main memory block number

 m = number of lines in the cache

     v = number of sets

   k = number of lines in each set

This is referred to as k-​way set-​associative mapping. With set-​associative map-
ping, block Bj can be mapped into any of the lines of set j. Figure 4.13a illustrates
this mapping for the first v blocks of main memory. As with associative mapping,
each word maps into multiple cache lines. For set-​associative mapping, each word
maps into all the cache lines in a specific set, so that main memory block B0 maps
into set 0, and so on. Thus, the set-​associative cache can be physically implemented
as v associative caches. It is also possible to implement the set-​associative cache as
k direct mapping caches, as shown in Figure 4.13b. Each direct-​mapped cache is
referred to as a way, consisting of v lines. The first v lines of main memory are direct
mapped into the v lines of each way; the next group of v lines of main memory are
similarly mapped, and so on. The direct-​mapped implementation is typically used

4.3 / Elements of Cache Design   141

for small degrees of associativity (small values of k) while the associative-​mapped
implementation is typically used for higher degrees of associativity [JACO08].

For set-​associative mapping, the cache control logic interprets a memory
address as three fields: Tag, Set, and Word. The d set bits specify one of v = 2d sets.
The s bits of the Tag and Set fields specify one of the 2s blocks of main memory.
Figure 4.14 illustrates the cache control logic. With fully associative mapping, the
tag in a memory address is quite large and must be compared to the tag of every line
in the cache. With k-​way set-​associative mapping, the tag in a memory address is
much smaller and is only compared to the k tags within a single set. To summarize,

■■ Address length = (s + w) bits
■■ Number of addressable units = 2s+w words or bytes

First v blocks of
main memory

(equal to number of sets)

Cache memory—way 1 Cache memory—way k

One
set

(b) k direct–mapped caches

v
lin

es

Bv–1

B0 L0

L v–1

(a) v associative–mapped caches

First v blocks of
main memory

(equal to number of sets)

Cache memory–set 0

Cache memory–set v–1

k
lin

es

Bv–1

B0 L0

Lk–1

Figure 4.13  Mapping from Main Memory to Cache: k-​Way Set Associative

142   CHAPTER 4 / Cache Memory

■■ Block size = line size = 2w words or bytes

■■ Number of blocks in main memory =
2s + w

2w = 2s

■■ Number of lines in set = k
■■ Number of sets = v = 2d

■■ Number of lines in cache = m = kv = k * 2d

■■ Size of cache = k * 2d + w words or bytes
■■ Size of tag = (s - d) bits

WordSetTag

Compare

Tag Data
Cache

F0

Memory address

(Hit in cache)

s – d

wds – d

s + w

Main memory

s + w

F1

Fk–1

Fk

Fk+i

F2k–1

Set 0

Set 1

B1

B0

Bj

1 if match
0 if no match

0 if match
1 if no match

(Miss in cache)

Figure 4.14  k-​Way Set-Associative Cache Organization

 EXAMPLE 4.2c   Figure 4.15 shows our example using set-​associative mapping with
two lines in each set, referred to as two-​way set-​associative. The 13-bit set number iden-
tifies a unique set of two lines within the cache. It also gives the number of the block in
main memory, modulo 213. This determines the mapping of blocks into lines. Thus, blocks
000000, 008000, …, FF8000 of main memory map into cache set 0. Any of those blocks can
be loaded into either of the two lines in the set. Note that no two blocks that map into the
same cache set have the same tag number. For a read operation, the 13-bit set number is
used to determine which set of two lines is to be examined. Both lines in the set are exam-
ined for a match with the tag number of the address to be accessed.

000101100111111111111100

111111111111111111111000

111111111000000000000000

000101100011001110011100

000101100000000000000000

000000001111111111111000

000000000000000000000000 13579246000
000

000
000

Tag
(hex)

Tag Data

32 bits
16K line cache

9 bits

Tag

Main memory address =

Set Word

Tag Data
Set

number

Data

77777777
11235813

12345678

FEDCBA98 FEDCBA98

24682468
11223344

02C
02C

02C

02C

1FF
1FF

1FF
1FF

7777777713579246000
02C

1FF
02C

02C

0000
0001

0CE7

1FFE
1FFF

02C

246824681FF

11235813

11223344
12345678

32 bits

16–Mb main memory

32 bits9 bits

FEDCBA98

2 bits13 bits9 bits

111111111111111111111100

111111111000000000000100

000101100000000000000100

000000001111111111111100

000000000000000000000100

Tag

Main memory address (binary)

Set + Word

Note: Memory address values are
in binary representation;
other values are in hexadecimal.

Figure 4.15  Two-​Way Set-​Associative Mapping Example143

144   CHAPTER 4 / Cache Memory

In the extreme case of v = m, k = 1, the set-​associative technique reduces to
direct mapping, and for v = 1, k = m, it reduces to associative mapping. The use of
two lines per set (v = m/2, k = 2) is the most common set-​associative organization.
It significantly improves the hit ratio over direct mapping. Four-​way set associative
(v = m/4, k = 4) makes a modest additional improvement for a relatively small
additional cost [MAYB84, HILL89]. Further increases in the number of lines per
set have little effect.

Figure 4.16 shows the results of one simulation study of set-​associative cache
performance as a function of cache size [GENU04]. The difference in performance
between direct and two-​way set associative is significant up to at least a cache size of
64 kB. Note also that the difference between two-​way and four-​way at 4 kB is much
less than the difference in going from for 4 kB to 8 kB in cache size. The complexity
of the cache increases in proportion to the associativity, and in this case would not
be justifiable against increasing cache size to 8 or even 16 kB. A final point to note
is that beyond about 32 kB, increase in cache size brings no significant increase in
performance.

The results of Figure 4.16 are based on simulating the execution of a GCC
compiler. Different applications may yield different results. For example, [CANT01]
reports on the results for cache performance using many of the CPU2000 SPEC
benchmarks. The results of [CANT01] in comparing hit ratio to cache size follow
the same pattern as Figure 4.16, but the specific values are somewhat different.

Cache Simulator
Multitask Cache Simulator

0.0
1k

H
it

 r
at

io

2k 4k 8k 16k

Cache size (bytes)

Direct
Two-way
Four-way
Eight-way
Sixteen-way

32k 64k 128k 256k 512k 1M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.16  Varying Associativity over Cache Size

4.3 / Elements of Cache Design   145

Replacement Algorithms

Once the cache has been filled, when a new block is brought into the cache, one of
the existing blocks must be replaced. For direct mapping, there is only one possible
line for any particular block, and no choice is possible. For the associative and set-​
associative techniques, a replacement algorithm is needed. To achieve high speed,
such an algorithm must be implemented in hardware. A number of algorithms have
been tried. We mention four of the most common. Probably the most effective is least
recently used (LRU): Replace that block in the set that has been in the cache longest
with no reference to it. For two-​way set associative, this is easily implemented. Each
line includes a USE bit. When a line is referenced, its USE bit is set to 1 and the
USE bit of the other line in that set is set to 0. When a block is to be read into the
set, the line whose USE bit is 0 is used. Because we are assuming that more recently
used memory locations are more likely to be referenced, LRU should give the best
hit ratio. LRU is also relatively easy to implement for a fully associative cache. The
cache mechanism maintains a separate list of indexes to all the lines in the cache.
When a line is referenced, it moves to the front of the list. For replacement, the line
at the back of the list is used. Because of its simplicity of implementation, LRU is the
most popular replacement algorithm.

Another possibility is first-​in-​first-​out (FIFO): Replace that block in the set that
has been in the cache longest. FIFO is easily implemented as a round-​robin or circu-
lar buffer technique. Still another possibility is least frequently used (LFU): Replace
that block in the set that has experienced the fewest references. LFU could be imple-
mented by associating a counter with each line. A technique not based on usage (i.e.,
not LRU, LFU, FIFO, or some variant) is to pick a line at random from among the
candidate lines. Simulation studies have shown that random replacement provides
only slightly inferior performance to an algorithm based on usage [SMIT82].

Write Policy

When a block that is resident in the cache is to be replaced, there are two cases to
consider. If the old block in the cache has not been altered, then it may be over-
written with a new block without first writing out the old block. If at least one write
operation has been performed on a word in that line of the cache, then main mem-
ory must be updated by writing the line of cache out to the block of memory before
bringing in the new block. A variety of write policies, with performance and eco-
nomic trade-​offs, is possible. There are two problems to contend with. First, more
than one device may have access to main memory. For example, an I/O module
may be able to read-​write directly to memory. If a word has been altered only in
the cache, then the corresponding memory word is invalid. Further, if the I/O device
has altered main memory, then the cache word is invalid. A more complex problem
occurs when multiple processors are attached to the same bus and each processor
has its own local cache. Then, if a word is altered in one cache, it could conceivably
invalidate a word in other caches.

The simplest technique is called write through. Using this technique, all write
operations are made to main memory as well as to the cache, ensuring that main
memory is always valid. Any other processor–​cache module can monitor traffic to
main memory to maintain consistency within its own cache. The main disadvantage

146   CHAPTER 4 / Cache Memory

of this technique is that it generates substantial memory traffic and may create a bot-
tleneck. An alternative technique, known as write back, minimizes memory writes.
With write back, updates are made only in the cache. When an update occurs, a
dirty bit, or use bit, associated with the line is set. Then, when a block is replaced, it
is written back to main memory if and only if the dirty bit is set. The problem with
write back is that portions of main memory are invalid, and hence accesses by I/O
modules can be allowed only through the cache. This makes for complex circuitry
and a potential bottleneck. Experience has shown that the percentage of memory
references that are writes is on the order of 15% [SMIT82]. However, for HPC
applications, this number may approach 33% (vector-​vector multiplication) and can
go as high as 50% (matrix transposition).

 EXAMPLE 4.3   Consider a cache with a line size of 32 bytes and a main memory that
requires 30 ns to transfer a 4-byte word. For any line that is written at least once before
being swapped out of the cache, what is the average number of times that the line must be
written before being swapped out for a write-​back cache to be more efficient that a write-​
through cache?

For the write-​back case, each dirty line is written back once, at swap-​out time, taking
8 * 30 = 240 ns. For the write-​through case, each update of the line requires that one
word be written out to main memory, taking 30 ns. Therefore, if the average line that gets
written at least once gets written more than 8 times before swap out, then write back is
more efficient.

In a bus organization in which more than one device (typically a processor)
has a cache and main memory is shared, a new problem is introduced. If data in one
cache are altered, this invalidates not only the corresponding word in main memory,
but also that same word in other caches (if any other cache happens to have that
same word). Even if a write-​through policy is used, the other caches may contain
invalid data. A system that prevents this problem is said to maintain cache coher-
ency. Possible approaches to cache coherency include the following:

■■ Bus watching with write through: Each cache controller monitors the address
lines to detect write operations to memory by other bus masters. If another
master writes to a location in shared memory that also resides in the cache
memory, the cache controller invalidates that cache entry. This strategy
depends on the use of a write-​through policy by all cache controllers.

■■ Hardware transparency: Additional hardware is used to ensure that all
updates to main memory via cache are reflected in all caches. Thus, if one pro-
cessor modifies a word in its cache, this update is written to main memory. In
addition, any matching words in other caches are similarly updated.

■■ Noncacheable memory: Only a portion of main memory is shared by more
than one processor, and this is designated as noncacheable. In such a system,
all accesses to shared memory are cache misses, because the shared memory
is never copied into the cache. The noncacheable memory can be identified
using chip-​select logic or high-​address bits.

4.3 / Elements of Cache Design   147

Cache coherency is an active field of research. This topic is explored further
in Part Five.

Line Size

Another design element is the line size. When a block of data is retrieved and placed
in the cache, not only the desired word but also some number of adjacent words are
retrieved. As the block size increases from very small to larger sizes, the hit ratio
will at first increase because of the principle of locality, which states that data in the
vicinity of a referenced word are likely to be referenced in the near future. As the
block size increases, more useful data are brought into the cache. The hit ratio will
begin to decrease, however, as the block becomes even bigger and the probability of
using the newly fetched information becomes less than the probability of reusing the
information that has to be replaced. Two specific effects come into play:

■■ Larger blocks reduce the number of blocks that fit into a cache. Because each
block fetch overwrites older cache contents, a small number of blocks results
in data being overwritten shortly after they are fetched.

■■ As a block becomes larger, each additional word is farther from the requested
word and therefore less likely to be needed in the near future.

The relationship between block size and hit ratio is complex, depending on
the locality characteristics of a particular program, and no definitive optimum value
has been found. A size of from 8 to 64 bytes seems reasonably close to optimum
[SMIT87, PRZY88, PRZY90, HAND98]. For HPC systems, 64- and 128-byte cache
line sizes are most frequently used.

Number of Caches

When caches were originally introduced, the typical system had a single cache. More
recently, the use of multiple caches has become the norm. Two aspects of this design
issue concern the number of levels of caches and the use of unified versus split caches.

multilevel caches As logic density has increased, it has become possible to
have a cache on the same chip as the processor: the on-​chip cache. Compared with
a cache reachable via an external bus, the on-​chip cache reduces the processor’s
external bus activity and therefore speeds up execution times and increases overall
system performance. When the requested instruction or data is found in the on-​
chip cache, the bus access is eliminated. Because of the short data paths internal
to the processor, compared with bus lengths, on-​chip cache accesses will complete
appreciably faster than would even zero-​wait state bus cycles. Furthermore, during
this period the bus is free to support other transfers.

The inclusion of an on-​chip cache leaves open the question of whether an
off-​chip, or external, cache is still desirable. Typically, the answer is yes, and most
contemporary designs include both on-​chip and external caches. The simplest such
organization is known as a two-​level cache, with the internal level 1 (L1) and the
external cache designated as level 2 (L2). The reason for including an L2 cache is
the following: If there is no L2 cache and the processor makes an access request for
a memory location not in the L1 cache, then the processor must access DRAM or

148   CHAPTER 4 / Cache Memory

ROM memory across the bus. Due to the typically slow bus speed and slow memory
access time, this results in poor performance. On the other hand, if an L2 SRAM
(static RAM) cache is used, then frequently the missing information can be quickly
retrieved. If the SRAM is fast enough to match the bus speed, then the data can be
accessed using a zero-​wait state transaction, the fastest type of bus transfer.

Two features of contemporary cache design for multilevel caches are note-
worthy. First, for an off-​chip L2 cache, many designs do not use the system bus as
the path for transfer between the L2 cache and the processor, but use a separate
data path, so as to reduce the burden on the system bus. Second, with the continued
shrinkage of processor components, a number of processors now incorporate the L2
cache on the processor chip, improving performance.

The potential savings due to the use of an L2 cache depends on the hit rates
in both the L1 and L2 caches. Several studies have shown that, in general, the use
of a second-​level cache does improve performance (e.g., see [AZIM92], [NOVI93],
[HAND98]). However, the use of multilevel caches does complicate all of the design
issues related to caches, including size, replacement algorithm, and write policy; see
[HAND98] and [PEIR99] for discussions.

Figure 4.17 shows the results of one simulation study of two-​level cache perfor-
mance as a function of cache size [GENU04]. The figure assumes that both caches have
the same line size and shows the total hit ratio. That is, a hit is counted if the desired data
appears in either the L1 or the L2 cache. The figure shows the impact of L2 on total hits
with respect to L1 size. L2 has little effect on the total number of cache hits until it is at
least double the L1 cache size. Note that the steepest part of the slope for an L1 cache
of 8 kB is for an L2 cache of 16 kB. Again for an L1 cache of 16 kB, the steepest part
of the curve is for an L2 cache size of 32 kB. Prior to that point, the L2 cache has little,
if any, impact on total cache performance. The need for the L2 cache to be larger than

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1k 2k 4k 8k 16k 32k

L1 = 16k

64k 128k 256k 512k 1M 2M

H
it

 r
at

io

L2 cache size (bytes)

L1 = 8k

Figure 4.17  Total Hit Ratio (L1 and L2) for 8-kB and 16-kB L1

4.4 / Pentium 4 Cache Organization   149

the L1 cache to affect performance makes sense. If the L2 cache has the same line size
and capacity as the L1 cache, its contents will more or less mirror those of the L1 cache.

With the increasing availability of on-​chip area available for cache, most con-
temporary microprocessors have moved the L2 cache onto the processor chip and
added an L3 cache. Originally, the L3 cache was accessible over the external bus.
More recently, most microprocessors have incorporated an on-​chip L3 cache. In
either case, there appears to be a performance advantage to adding the third level
(e.g., see [GHAI98]). Further, large systems, such as the IBM mainframe zEnter-
prise systems, now incorporate 3 on-​chip cache levels and a fourth level of cache
shared across multiple chips [CURR11].

unified versus split caches When the on-​chip cache first made an appearance,
many of the designs consisted of a single cache used to store references to both data
and instructions. More recently, it has become common to split the cache into two:
one dedicated to instructions and one dedicated to data. These two caches both exist
at the same level, typically as two L1 caches. When the processor attempts to fetch an
instruction from main memory, it first consults the instruction L1 cache, and when the
processor attempts to fetch data from main memory, it first consults the data L1 cache.

There are two potential advantages of a unified cache:

■■ For a given cache size, a unified cache has a higher hit rate than split caches
because it balances the load between instruction and data fetches automatically.
That is, if an execution pattern involves many more instruction fetches than data
fetches, then the cache will tend to fill up with instructions, and if an execution
pattern involves relatively more data fetches, the opposite will occur.

■■ Only one cache needs to be designed and implemented.

The trend is toward split caches at the L1 and unified caches for higher levels,
particularly for superscalar machines, which emphasize parallel instruction execu-
tion and the prefetching of predicted future instructions. The key advantage of the
split cache design is that it eliminates contention for the cache between the instruction
fetch/decode unit and the execution unit. This is important in any design that relies on
the pipelining of instructions. Typically, the processor will fetch instructions ahead of
time and fill a buffer, or pipeline, with instructions to be executed. Suppose now that
we have a unified instruction/data cache. When the execution unit performs a memory
access to load and store data, the request is submitted to the unified cache. If, at the
same time, the instruction prefetcher issues a read request to the cache for an instruc-
tion, that request will be temporarily blocked so that the cache can service the execu-
tion unit first, enabling it to complete the currently executing instruction. This cache
contention can degrade performance by interfering with efficient use of the instruction
pipeline. The split cache structure overcomes this difficulty.

	 4.4	 PENTIUM 4 CACHE ORGANIZATION

The evolution of cache organization is seen clearly in the evolution of Intel micro-
processors (Table 4.4). The 80386 does not include an on-​chip cache. The 80486
includes a single on-​chip cache of 8 kB, using a line size of 16 bytes and a four-​way

150   CHAPTER 4 / Cache Memory

set-​associative organization. All of the Pentium processors include two on-​chip
L1 caches, one for data and one for instructions. For the Pentium 4, the L1 data
cache is 16 kB, using a line size of 64 bytes and a four-​way set-​associative organi-
zation. The Pentium 4 instruction cache is described subsequently. The Pentium II
also includes an L2 cache that feeds both of the L1 caches. The L2 cache is eight-​
way set associative with a size of 512 kB and a line size of 128 bytes. An L3 cache
was added for the Pentium III and became on-​chip with high-​end versions of the
Pentium 4.

Figure 4.18 provides a simplified view of the Pentium 4 organization, high-
lighting the placement of the three caches. The processor core consists of four major
components:

■■ Fetch/decode unit: Fetches program instructions in order from the L2 cache,
decodes these into a series of micro-​operations, and stores the results in the L1
instruction cache.

■■ Out-​of-​order execution logic: Schedules execution of the micro-​operations
subject to data dependencies and resource availability; thus, micro-​operations
may be scheduled for execution in a different order than they were fetched
from the instruction stream. As time permits, this unit schedules speculative
execution of micro-​operations that may be required in the future.

Table 4.4  Intel Cache Evolution

Problem Solution
Processor on Which

Feature First Appears

External memory slower than the system
bus.

Add external cache using faster
memory technology.

386

Increased processor speed results in
external bus becoming a bottleneck for
cache access.

Move external cache on-​chip,
operating at the same speed as the
processor.

486

Internal cache is rather small, due to
limited space on chip.

Add external L2 cache using faster
technology than main memory.

486

Contention occurs when both the
Instruction Prefetcher and the Execution
Unit simultaneously require access to
the cache. In that case, the Prefetcher is
stalled while the Execution Unit’s data
access takes place.

Create separate data and instruc-
tion caches.

Pentium

Increased processor speed results in
external bus becoming a bottleneck for
L2 cache access.

Create separate back-​side bus that
runs at higher speed than the main
(front-​side) external bus. The BSB
is dedicated to the L2 cache.

Pentium Pro

Move L2 cache on to the
processor chip.

Pentium II

Some applications deal with massive
databases and must have rapid access
to large amounts of data. The on-​chip
caches are too small.

Add external L3 cache. Pentium III

Move L3 cache on-​chip. Pentium 4

Load
address

unit

Integer register �le

L1 data cache (16 kB)

FP register �le

Store
address

unit

Simple
integer
ALU

Instruction
fetch/decode

unit

Out-of-order
execution

logic

L2 cache
(512 kB)

L3 cache
(1 MB)

L1 instruction
cache (12K mops)

Simple
integer
ALU

Complex
integer
ALU

FP/
MMX
unit

FP
move
unit

System bus

64
bits

256
bits

Figure 4.18  Pentium 4 Block Diagram

151

152   CHAPTER 4 / Cache Memory

■■ Execution units: These units execute micro-​operations, fetching the required
data from the L1 data cache and temporarily storing results in registers.

■■ Memory subsystem: This unit includes the L2 and L3 caches and the system
bus, which is used to access main memory when the L1 and L2 caches have a
cache miss and to access the system I/O resources.

Unlike the organization used in all previous Pentium models, and in most
other processors, the Pentium 4 instruction cache sits between the instruction
decode logic and the execution core. The reasoning behind this design decision is
as follows: As discussed more fully in Chapter 16, the Pentium process decodes, or
translates, Pentium machine instructions into simple RISC-​like instructions called
micro-​operations. The use of simple, fixed-​length micro-​operations enables the use
of superscalar pipelining and scheduling techniques that enhance performance.
However, the Pentium machine instructions are cumbersome to decode; they have
a variable number of bytes and many different options. It turns out that perform-
ance is enhanced if this decoding is done independently of the scheduling and pipe-
lining logic. We return to this topic in Chapter 16.

The data cache employs a write-​back policy: Data are written to main memory
only when they are removed from the cache and there has been an update. The Pen-
tium 4 processor can be dynamically configured to support write-​through caching.

The L1 data cache is controlled by two bits in one of the control registers, labe-
led the CD (cache disable) and NW (not write-​through) bits (Table 4.5). There are
also two Pentium 4 instructions that can be used to control the data cache: INVD
invalidates (flushes) the internal cache memory and signals the external cache (if
any) to invalidate. WBINVD writes back and invalidates internal cache and then
writes back and invalidates external cache.

Both the L2 and L3 caches are eight-​way set-​associative with a line size of 128
bytes.

	 4.5	 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

Table 4.5  Pentium 4 Cache Operating Modes

Control Bits Operating Mode

CD NW Cache Fills Write Throughs Invalidates

0 0 Enabled Enabled Enabled

1 0 Disabled Enabled Enabled

1 1 Disabled Disabled Disabled

Note: CD = 0; NW = 1 is an invalid combination.

access time
associative mapping
cache hit

cache line
cache memory
cache miss

cache set
data cache
direct access

4.5 / Key Terms, Review Questions, and Problems   153

direct mapping
high-​performance computing

(HPC)
hit
hit ratio
instruction cache
L1 cache
L2 cache
L3 cache
line
locality

logical cache
memory hierarchy
miss
multilevel cache
physical address
physical cache
random access
replacement algorithm
secondary memory
sequential access
set-​associative mapping

spatial locality
split cache
tag
temporal locality
unified cache
virtual address
virtual cache
write back
write through

