
45

Chapter

Performance Issues
2.1	 Designing for Performance	

Microprocessor Speed
Performance Balance
Improvements in Chip Organization and Architecture

2.2	 Multicore, MICs, and GPGPUs	

2.3	 Two Laws that Provide Insight: Amdahl’s Law and Little’s Law	
Amdahl’s Law
Little’s Law

2.4	 Basic Measures of Computer Performance	
Clock Speed
Instruction Execution Rate

2.5	 Calculating the Mean	
Arithmetic Mean
Harmonic Mean
Geometric Mean

2.6	 Benchmarks and SPEC	
Benchmark Principles
SPEC Benchmarks

2.7	 Key Terms, Review Questions, and Problems	

46   Chapter 2 / Performance Issues

This chapter addresses the issue of computer system performance. We begin with a
consideration of the need for balanced utilization of computer resources, which pro-
vides a perspective that is useful throughout the book. Next we look at contemporary
computer organization designs intended to provide performance to meet current
and projected demand. Finally, we look at tools and models that have been devel-
oped to provide a means of assessing comparative computer system performance.

	 2.1	 Designing for Performance

Year by year, the cost of computer systems continues to drop dramatically, while the
performance and capacity of those systems continue to rise equally dramatically.
Today’s laptops have the computing power of an IBM mainframe from 10 or 15
years ago. Thus, we have virtually “free” computer power. Processors are so inexpen-
sive that we now have microprocessors we throw away. The digital pregnancy test is
an example (used once and then thrown away). And this continuing technological
revolution has enabled the development of applications of astounding complex-
ity and power. For example, desktop applications that require the great power of
today’s microprocessor-based systems include

■■ Image processing
■■ Three-dimensional rendering
■■ Speech recognition
■■ Videoconferencing
■■ Multimedia authoring
■■ Voice and video annotation of files
■■ Simulation modeling

Workstation systems now support highly sophisticated engineering and scientific
applications and have the capacity to support image and video applications. In addi-
tion, businesses are relying on increasingly powerful servers to handle transaction
and database processing and to support massive client/server networks that have
replaced the huge mainframe computer centers of yesteryear. As well, cloud service

Learning Objectives

After studying this chapter, you should be able to:

rr Understand the key performance issues that relate to computer design.
rr Explain the reasons for the move to multicore organization, and understand
the trade-off between cache and processor resources on a single chip.

rr Distinguish among multicore, MIC, and GPGPU organizations.
rr Summarize some of the issues in computer performance assessment.
rr Discuss the SPEC benchmarks.
rr Explain the differences among arithmetic, harmonic, and geometric means.

2.1 / Designing for Performance   47

providers use massive high-performance banks of servers to satisfy high-volume,
high-transaction-rate applications for a broad spectrum of clients.

What is fascinating about all this from the perspective of computer organiza-
tion and architecture is that, on the one hand, the basic building blocks for today’s
computer miracles are virtually the same as those of the IAS computer from over
50 years ago, while on the other hand, the techniques for squeezing the maximum
performance out of the materials at hand have become increasingly sophisticated.

This observation serves as a guiding principle for the presentation in this
book. As we progress through the various elements and components of a computer,
two objectives are pursued. First, the book explains the fundamental functionality
in each area under consideration, and second, the book explores those techniques
required to achieve maximum performance. In the remainder of this section, we
highlight some of the driving factors behind the need to design for performance.

Microprocessor Speed

What gives Intel x86 processors or IBM mainframe computers such mind-boggling
power is the relentless pursuit of speed by processor chip manufacturers. The evolu-
tion of these machines continues to bear out Moore’s law, described in Chapter 1. So
long as this law holds, chipmakers can unleash a new generation of chips every three
years—with four times as many transistors. In memory chips, this has quadrupled
the capacity of dynamic random-access memory (DRAM), still the basic technology
for computer main memory, every three years. In microprocessors, the addition of
new circuits, and the speed boost that comes from reducing the distances between
them, has improved performance four- or fivefold every three years or so since Intel
launched its x86 family in 1978.

But the raw speed of the microprocessor will not achieve its potential unless
it is fed a constant stream of work to do in the form of computer instructions. Any-
thing that gets in the way of that smooth flow undermines the power of the proces-
sor. Accordingly, while the chipmakers have been busy learning how to fabricate
chips of greater and greater density, the processor designers must come up with
ever more elaborate techniques for feeding the monster. Among the techniques
built into contemporary processors are the following:

■■ Pipelining: The execution of an instruction involves multiple stages of oper-
ation, including fetching the instruction, decoding the opcode, fetching oper-
ands, performing a calculation, and so on. Pipelining enables a processor to
work simultaneously on multiple instructions by performing a different phase
for each of the multiple instructions at the same time. The processor over-
laps operations by moving data or instructions into a conceptual pipe with all
stages of the pipe processing simultaneously. For example, while one instruc-
tion is being executed, the computer is decoding the next instruction. This is
the same principle as seen in an assembly line.

■■ Branch prediction: The processor looks ahead in the instruction code fetched
from memory and predicts which branches, or groups of instructions, are
likely to be processed next. If the processor guesses right most of the time, it
can prefetch the correct instructions and buffer them so that the processor is
kept busy. The more sophisticated examples of this strategy predict not just

48   Chapter 2 / Performance Issues

the next branch but multiple branches ahead. Thus, branch prediction poten-
tially increases the amount of work available for the processor to execute.

■■ Superscalar execution: This is the ability to issue more than one instruction
in every processor clock cycle. In effect, multiple parallel pipelines are used.

■■ Data flow analysis: The processor analyzes which instructions are dependent
on each other’s results, or data, to create an optimized schedule of instruc-
tions. In fact, instructions are scheduled to be executed when ready, independ-
ent of the original program order. This prevents unnecessary delay.

■■ Speculative execution: Using branch prediction and data flow analysis, some
processors speculatively execute instructions ahead of their actual appearance
in the program execution, holding the results in temporary locations. This ena-
bles the processor to keep its execution engines as busy as possible by execut-
ing instructions that are likely to be needed.

These and other sophisticated techniques are made necessary by the sheer
power of the processor. Collectively they make it possible to execute many instruc-
tions per processor cycle, rather than to take many cycles per instruction.

Performance Balance

While processor power has raced ahead at breakneck speed, other critical compo-
nents of the computer have not kept up. The result is a need to look for performance
balance: an adjustment/tuning of the organization and architecture to compensate
for the mismatch among the capabilities of the various components.

The problem created by such mismatches is particularly critical at the inter-
face between processor and main memory. While processor speed has grown rap-
idly, the speed with which data can be transferred between main memory and the
processor has lagged badly. The interface between processor and main memory is
the most crucial pathway in the entire computer because it is responsible for carry-
ing a constant flow of program instructions and data between memory chips and the
processor. If memory or the pathway fails to keep pace with the processor’s insist-
ent demands, the processor stalls in a wait state, and valuable processing time is lost.

A system architect can attack this problem in a number of ways, all of which
are reflected in contemporary computer designs. Consider the following examples:

■■ Increase the number of bits that are retrieved at one time by making DRAMs
“wider” rather than “deeper” and by using wide bus data paths.

■■ Change the DRAM interface to make it more efficient by including a cache1
or other buffering scheme on the DRAM chip.

■■ Reduce the frequency of memory access by incorporating increasingly com-
plex and efficient cache structures between the processor and main memory.
This includes the incorporation of one or more caches on the processor chip as
well as on an off-chip cache close to the processor chip.

1A cache is a relatively small fast memory interposed between a larger, slower memory and the logic that
accesses the larger memory. The cache holds recently accessed data and is designed to speed up subse-
quent access to the same data. Caches are discussed in Chapter 4.

2.1 / Designing for Performance   49

■■ Increase the interconnect bandwidth between processors and memory by using
higher-speed buses and a hierarchy of buses to buffer and structure data flow.

Another area of design focus is the handling of I/O devices. As computers
become faster and more capable, more sophisticated applications are developed
that support the use of peripherals with intensive I/O demands. Figure 2.1 gives
some examples of typical peripheral devices in use on personal computers and
workstations. These devices create tremendous data throughput demands. While
the current generation of processors can handle the data pumped out by these
devices, there remains the problem of getting that data moved between processor
and peripheral. Strategies here include caching and buffering schemes plus the use
of higher-speed interconnection buses and more elaborate interconnection struc-
tures. In addition, the use of multiple-processor configurations can aid in satisfying
I/O demands.

The key in all this is balance. Designers constantly strive to balance the
throughput and processing demands of the processor components, main memory,
I/O devices, and the interconnection structures. This design must constantly be
rethought to cope with two constantly evolving factors:

■■ The rate at which performance is changing in the various technology areas
(processor, buses, memory, peripherals) differs greatly from one type of ele-
ment to another.

■■ New applications and new peripheral devices constantly change the nature of
the demand on the system in terms of typical instruction profile and the data
access patterns.

101 102 103 104 105 106 107 108 109 1010 1011

Data Rate (bps)

Graphics display

Ethernet modem
(max speed)

Wi-Fi modem
(max speed)

Hard disk

Optical disc

Laser printer

Scanner

Mouse

Keyboard

Figure 2.1  Typical I/O Device Data Rates

50   Chapter 2 / Performance Issues

Thus, computer design is a constantly evolving art form. This book attempts to
present the fundamentals on which this art form is based and to present a survey of
the current state of that art.

Improvements in Chip Organization and Architecture

As designers wrestle with the challenge of balancing processor performance with
that of main memory and other computer components, the need to increase pro-
cessor speed remains. There are three approaches to achieving increased processor
speed:

■■ Increase the hardware speed of the processor. This increase is fundamentally
due to shrinking the size of the logic gates on the processor chip, so that more
gates can be packed together more tightly and to increasing the clock rate.
With gates closer together, the propagation time for signals is significantly
reduced, enabling a speeding up of the processor. An increase in clock rate
means that individual operations are executed more rapidly.

■■ Increase the size and speed of caches that are interposed between the proces-
sor and main memory. In particular, by dedicating a portion of the processor
chip itself to the cache, cache access times drop significantly.

■■ Make changes to the processor organization and architecture that increase the
effective speed of instruction execution. Typically, this involves using parallel-
ism in one form or another.

Traditionally, the dominant factor in performance gains has been in increases
in clock speed due and logic density. However, as clock speed and logic density
increase, a number of obstacles become more significant [INTE04]:

■■ Power: As the density of logic and the clock speed on a chip increase, so does
the power density (Watts/cm2). The difficulty of dissipating the heat generated
on high-density, high-speed chips is becoming a serious design issue [GIBB04,
BORK03].

■■ RC delay: The speed at which electrons can flow on a chip between transis-
tors is limited by the resistance and capacitance of the metal wires connecting
them; specifically, delay increases as the RC product increases. As components
on the chip decrease in size, the wire interconnects become thinner, increasing
resistance. Also, the wires are closer together, increasing capacitance.

■■ Memory latency and throughput: Memory access speed (latency) and transfer
speed (throughput) lag processor speeds, as previously discussed.

Thus, there will be more emphasis on organization and architectural
approaches to improving performance. These techniques are discussed in later
chapters of the text.

Beginning in the late 1980s, and continuing for about 15 years, two main strat-
egies have been used to increase performance beyond what can be achieved simply
by increasing clock speed. First, there has been an increase in cache capacity. There
are now typically two or three levels of cache between the processor and main mem-
ory. As chip density has increased, more of the cache memory has been incorpor-
ated on the chip, enabling faster cache access. For example, the original Pentium

2.1 / Designing for Performance   51

chip devoted about 10% of on-chip area to a cache. Contemporary chips devote
over half of the chip area to caches. And, typically, about three-quarters of the
other half is for pipeline-related control and buffering.

Second, the instruction execution logic within a processor has become increas-
ingly complex to enable parallel execution of instructions within the processor. Two
noteworthy design approaches have been pipelining and superscalar. A pipeline
works much as an assembly line in a manufacturing plant enabling different stages
of execution of different instructions to occur at the same time along the pipeline. A
superscalar approach in essence allows multiple pipelines within a single processor,
so that instructions that do not depend on one another can be executed in parallel.

By the mid to late 90s, both of these approaches were reaching a point of
diminishing returns. The internal organization of contemporary processors is
exceedingly complex and is able to squeeze a great deal of parallelism out of the
instruction stream. It seems likely that further significant increases in this direction
will be relatively modest [GIBB04]. With three levels of cache on the processor
chip, each level providing substantial capacity, it also seems that the benefits from
the cache are reaching a limit.

However, simply relying on increasing clock rate for increased performance
runs into the power dissipation problem already referred to. The faster the clock
rate, the greater the amount of power to be dissipated, and some fundamental phys-
ical limits are being reached.

Figure 2.2 illustrates the concepts we have been discussing.2 The top line shows
that, as per Moore’s Law, the number of transistors on a single chip continues to

2I am grateful to Professor Kathy Yelick of UC Berkeley, who provided this graph.

0.1

1

10

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

Power (W)

Cores

102

103

104

105

106

107

Figure 2.2  Processor Trends

52   Chapter 2 / Performance Issues

grow exponentially.3 Meanwhile, the clock speed has leveled off, in order to prevent
a further rise in power. To continue increasing performance, designers have had to
find ways of exploiting the growing number of transistors other than simply building
a more complex processor. The response in recent years has been the development
of the multicore computer chip.

	 2.2	M ulticore, Mics, and GPGPUs

With all of the difficulties cited in the preceding section in mind, designers have
turned to a fundamentally new approach to improving performance: placing multiple
processors on the same chip, with a large shared cache. The use of multiple proces-
sors on the same chip, also referred to as multiple cores, or multicore, provides the
potential to increase performance without increasing the clock rate. Studies indicate
that, within a processor, the increase in performance is roughly proportional to the
square root of the increase in complexity [BORK03]. But if the software can support
the effective use of multiple processors, then doubling the number of processors
almost doubles performance. Thus, the strategy is to use two simpler processors on
the chip rather than one more complex processor.

In addition, with two processors, larger caches are justified. This is important
because the power consumption of memory logic on a chip is much less than that of
processing logic.

As the logic density on chips continues to rise, the trend for both more cores
and more cache on a single chip continues. Two-core chips were quickly followed
by four-core chips, then 8, then 16, and so on. As the caches became larger, it made
performance sense to create two and then three levels of cache on a chip, with ini-
tially, the first-level cache dedicated to an individual processor and levels two and
three being shared by all the processors. It is now common for the second-level
cache to also be private to each core.

Chip manufacturers are now in the process of making a huge leap forward in
the number of cores per chip, with more than 50 cores per chip. The leap in perform-
ance as well as the challenges in developing software to exploit such a large number
of cores has led to the introduction of a new term: many integrated core (MIC).

The multicore and MIC strategy involves a homogeneous collection of general-
purpose processors on a single chip. At the same time, chip manufacturers are
pursuing another design option: a chip with multiple general-purpose processors
plus graphics processing units (GPUs) and specialized cores for video processing
and other tasks. In broad terms, a GPU is a core designed to perform parallel oper-
ations on graphics data. Traditionally found on a plug-in graphics card (display
adapter), it is used to encode and render 2D and 3D graphics as well as process
video.

Since GPUs perform parallel operations on multiple sets of data, they are
increasingly being used as vector processors for a variety of applications that
require repetitive computations. This blurs the line between the GPU and the CPU

3The observant reader will note that the transistor count values in this figure are significantly less than
those of Figure 1.12. That latter figure shows the transistor count for a form of main memory known as
DRAM (discussed in Chapter 5), which supports higher transistor density than processor chips.

2.3 / Two Laws that Provide Insight: Ahmdahl’s Law and Little’s Law   53

[AROR12, FATA08, PROP11]. When a broad range of applications are supported by
such a processor, the term general-purpose computing on GPUs (GPGPU) is used.

We explore design characteristics of multicore computers in Chapter 18 and
GPGPUs in Chapter 19.

	 2.3	T wo Laws that Provide Insight: Ahmdahl’s Law
and Little’s Law

In this section, we look at two equations, called “laws.” The two laws are unrelated
but both provide insight into the performance of parallel systems and multicore systems.

Amdahl’s Law

Computer system designers look for ways to improve system performance by
advances in technology or change in design. Examples include the use of parallel
processors, the use of a memory cache hierarchy, and speedup in memory access
time and I/O transfer rate due to technology improvements. In all of these cases, it is
important to note that a speedup in one aspect of the technology or design does not
result in a corresponding improvement in performance. This limitation is succinctly
expressed by Amdahl’s law.

Amdahl’s law was first proposed by Gene Amdahl in 1967 ([AMDA67],
[AMDA13]) and deals with the potential speedup of a program using multiple pro-
cessors compared to a single processor. Consider a program running on a single
processor such that a fraction (1 - f) of the execution time involves code that is
inherently sequential, and a fraction f that involves code that is infinitely paralleliz-
able with no scheduling overhead. Let T be the total execution time of the program
using a single processor. Then the speedup using a parallel processor with N pro-
cessors that fully exploits the parallel portion of the program is as follows:

 Speedup =
Time to execute program on a single processor

Time to execute program on N parallel processors

	 =
T(1 - f) + Tf

T(1 - f) +
Tf

N

=
1

(1 - f) +
f

N

This equation is illustrated in Figures 2.3 and 2.4. Two important conclusions
can be drawn:

1.	 When f is small, the use of parallel processors has little effect.

2.	 As N approaches infinity, speedup is bound by 1/(1 - f), so that there are
diminishing returns for using more processors.

These conclusions are too pessimistic, an assertion first put forward in
[GUST88]. For example, a server can maintain multiple threads or multiple tasks
to handle multiple clients and execute the threads or tasks in parallel up to the
limit of the number of processors. Many database applications involve computa-
tions on massive amounts of data that can be split up into multiple parallel tasks.

54   Chapter 2 / Performance Issues

Nevertheless, Amdahl’s law illustrates the problems facing industry in the develop-
ment of multicore machines with an ever-growing number of cores: The software
that runs on such machines must be adapted to a highly parallel execution environ-
ment to exploit the power of parallel processing.

Amdahl’s law can be generalized to evaluate any design or technical improve-
ment in a computer system. Consider any enhancement to a feature of a system that
results in a speedup. The speedup can be expressed as

Speedup =
Performance after enhancement

Performance before enhancement
=

Execution time before enhancement
Execution time after enhancement

 

� (2.1)

T

(1 – f)T

(1 – f)T

fT

fT
N

1 f 1
1

N
T

Figure 2.3  Illustration of Amdahl’s Law

Number of Processors

Sp
ee

du
p

f = 0.95

f = 0.90

f = 0.75

f = 0.5

101 100 1000

5

10

15

20

Figure 2.4  Amdahl’s Law for Multiprocessors

2.3 / Two Laws that Provide Insight: Ahmdahl’s Law and Little’s Law   55

Suppose that a feature of the system is used during execution a fraction of the
time f, before enhancement, and that the speedup of that feature after enhancement
is SUf. Then the overall speedup of the system is

Speedup =
1

(1 - f) +
f

SUf

 Example 2.1   Suppose that a task makes extensive use of floating-point operations,
with 40% of the time consumed by floating-point operations. With a new hardware de-
sign, the floating-point module is sped up by a factor of K. Then the overall speedup is as
follows:

Speedup =
1

0.6 +
0.4
K

Thus, independent of K, the maximum speedup is 1.67.

Little’s Law

A fundamental and simple relation with broad applications is Little’s Law [LITT61,
LITT11].4 We can apply it to almost any system that is statistically in steady state,
and in which there is no leakage. Specifically, we have a steady state system to which
items arrive at an average rate of l items per unit time. The items stay in the system
an average of W units of time. Finally, there is an average of L units in the system at
any one time. Little’s Law relates these three variables as L = lW.

Using queuing theory terminology, Little’s Law applies to a queuing system.
The central element of the system is a server, which provides some service to items.
Items from some population of items arrive at the system to be served. If the server
is idle, an item is served immediately. Otherwise, an arriving item joins a waiting
line, or queue. There can be a single queue for a single server, a single queue for
multiple servers, or multiples queues, one for each of multiple servers. When a ser-
ver has completed serving an item, the item departs. If there are items waiting in
the queue, one is immediately dispatched to the server. The server in this model can
represent anything that performs some function or service for a collection of items.
Examples: A processor provides service to processes; a transmission line provides a
transmission service to packets or frames of data; and an I/O device provides a read
or write service for I/O requests.

To understand Little’s formula, consider the following argument, which
focuses on the experience of a single item. When the item arrives, it will find on

4The second reference is a retrospective article on his law that Little wrote 50 years after his original
paper. That must be unique in the history of the technical literature, although Amdahl comes close, with
a 46-year gap between [AMDA67] and [AMDA13].

56   Chapter 2 / Performance Issues

average L items ahead of it, one being serviced and the rest in the queue. When
the item leaves the system after being serviced, it will leave behind on average the
same number of items in the system, namely L, because L is defined as the average
number of items waiting. Further, the average time that the item was in the system
was W. Since items arrive at a rate of l, we can reason that in the time W, a total of
lW items must have arrived. Thus w = lW.

To summarize, under steady state conditions, the average number of items in
a queuing system equals the average rate at which items arrive multiplied by the
average time that an item spends in the system. This relationship requires very few
assumptions. We do not need to know what the service time distribution is, what
the distribution of arrival times is, or the order or priority in which items are served.
Because of its simplicity and generality, Little’s Law is extremely useful and has
experienced somewhat of a revival due to the interest in performance problems
related to multicore computers.

A very simple example, from [LITT11], illustrates how Little’s Law might be
applied. Consider a multicore system, with each core supporting multiple threads
of execution. At some level, the cores share a common memory. The cores share a
common main memory and typically share a common cache memory as well. In any
case, when a thread is executing, it may arrive at a point at which it must retrieve a
piece of data from the common memory. The thread stops and sends out a request
for that data. All such stopped threads are in a queue. If the system is being used
as a server, an analyst can determine the demand on the system in terms of the rate
of user requests, and then translate that into the rate of requests for data from the
threads generated to respond to an individual user request. For this purpose, each
user request is broken down into subtasks that are implemented as threads. We
then have l = the average rate of total thread processing required after all mem-
bers’ requests have been broken down into whatever detailed subtasks are required.
Define L as the average number of stopped threads waiting during some relevant
time. Then W = average response time. This simple model can serve as a guide to
designers as to whether user requirements are being met and, if not, provide a quan-
titative measure of the amount of improvement needed.

	 2.4	 Basic Measures of Computer Performance

In evaluating processor hardware and setting requirements for new systems, per-
formance is one of the key parameters to consider, along with cost, size, security,
reliability, and, in some cases, power consumption.

It is difficult to make meaningful performance comparisons among different
processors, even among processors in the same family. Raw speed is far less import-
ant than how a processor performs when executing a given application. Unfortu-
nately, application performance depends not just on the raw speed of the processor
but also on the instruction set, choice of implementation language, efficiency of the
compiler, and skill of the programming done to implement the application.

In this section, we look at some traditional measures of processor speed. In
the next section, we examine benchmarking, which is the most common approach
to assessing processor and computer system performance. The following section
discusses how to average results from multiple tests.

2.4 / Basic Measures of Computer Performance   57

Clock Speed

Operations performed by a processor, such as fetching an instruction, decoding the
instruction, performing an arithmetic operation, and so on, are governed by a system
clock. Typically, all operations begin with the pulse of the clock. Thus, at the most
fundamental level, the speed of a processor is dictated by the pulse frequency pro-
duced by the clock, measured in cycles per second, or Hertz (Hz).

Typically, clock signals are generated by a quartz crystal, which generates a
constant sine wave while power is applied. This wave is converted into a digital
voltage pulse stream that is provided in a constant flow to the processor circuitry
(Figure 2.5). For example, a 1-GHz processor receives 1 billion pulses per second.
The rate of pulses is known as the clock rate, or clock speed. One increment, or
pulse, of the clock is referred to as a clock cycle, or a clock tick. The time between
pulses is the cycle time.

The clock rate is not arbitrary, but must be appropriate for the physical layout
of the processor. Actions in the processor require signals to be sent from one pro-
cessor element to another. When a signal is placed on a line inside the processor,
it takes some finite amount of time for the voltage levels to settle down so that an
accurate value (logical 1 or 0) is available. Furthermore, depending on the physical
layout of the processor circuits, some signals may change more rapidly than others.
Thus, operations must be synchronized and paced so that the proper electrical sig-
nal (voltage) values are available for each operation.

The execution of an instruction involves a number of discrete steps, such as
fetching the instruction from memory, decoding the various portions of the instruc-
tion, loading and storing data, and performing arithmetic and logical operations.
Thus, most instructions on most processors require multiple clock cycles to com-
plete. Some instructions may take only a few cycles, while others require dozens. In
addition, when pipelining is used, multiple instructions are being executed simulta-
neously. Thus, a straight comparison of clock speeds on different processors does
not tell the whole story about performance.

quartz
crystal

From Computer Desktop Encyclopedia
1998, The Computer Language Co.

analog to
digital

conversion

Figure 2.5  System Clock

58   Chapter 2 / Performance Issues

Instruction Execution Rate

A processor is driven by a clock with a constant frequency f or, equivalently, a con-
stant cycle time t, where t = 1/f. Define the instruction count, Ic, for a program as
the number of machine instructions executed for that program until it runs to com-
pletion or for some defined time interval. Note that this is the number of instruction
executions, not the number of instructions in the object code of the program. An
important parameter is the average cycles per instruction (CPI) for a program. If all
instructions required the same number of clock cycles, then CPI would be a constant
value for a processor. However, on any given processor, the number of clock cycles
required varies for different types of instructions, such as load, store, branch, and so
on. Let CPIi be the number of cycles required for instruction type i, and Ii be the
number of executed instructions of type i for a given program. Then we can calculate
an overall CPI as follows:

	 CPI = a n
i = 1(CPIi * Ii)

Ic
	 (2.2)

The processor time T needed to execute a given program can be expressed as

T = Ic * CPI * t

We can refine this formulation by recognizing that during the execution of
an instruction, part of the work is done by the processor, and part of the time a
word is being transferred to or from memory. In this latter case, the time to transfer
depends on the memory cycle time, which may be greater than the processor cycle
time. We can rewrite the preceding equation as

T = Ic * [p + (m * k)] * t

where p is the number of processor cycles needed to decode and execute the instruc-
tion, m is the number of memory references needed, and k is the ratio between
memory cycle time and processor cycle time. The five performance factors in the
preceding equation (Ic, p, m, k, t) are influenced by four system attributes: the
design of the instruction set (known as instruction set architecture); compiler tech-
nology (how effective the compiler is in producing an efficient machine language
program from a high-level language program); processor implementation; and
cache and memory hierarchy. Table 2.1 is a matrix in which one dimension shows
the five performance factors and the other dimension shows the four system attri-
butes. An X in a cell indicates a system attribute that affects a performance factor.

Table 2.1  Performance Factors and System Attributes

Ic p m k t

Instruction set architecture X X

Compiler technology X X X

Processor implementation X X

Cache and memory hierarchy X X

2.5 / Calculating the Mean   59

A common measure of performance for a processor is the rate at which
instructions are executed, expressed as millions of instructions per second (MIPS),
referred to as the MIPS rate. We can express the MIPS rate in terms of the clock
rate and CPI as follows:

	 MIPS rate =
Ic

T * 106 =
f

CPI * 106	 (2.3)

 Example 2.2   Consider the execution of a program that results in the execution of
2 million instructions on a 400-MHz processor. The program consists of four major types
of instructions. The instruction mix and the CPI for each instruction type are given below,
based on the result of a program trace experiment:

Instruction Type CPI Instruction Mix (%)

Arithmetic and logic 1 60

Load/store with cache hit 2 18

Branch 4 12

Memory reference with cache miss 8 10

The average CPI when the program is executed on a uniprocessor with the above
trace results is CPI = 0.6 + (2 * 0.18) + (4 * 0.12) + (8 * 0.1) = 2.24. The corres-
ponding MIPS rate is (400 * 106)/(2.24 * 106) ≈ 178.

Another common performance measure deals only with floating-point instruc-
tions. These are common in many scientific and game applications. Floating-point
performance is expressed as millions of floating-point operations per second
(MFLOPS), defined as follows:

MFLOPS rate =
Number of executed floating - point operations in a program

Execution time * 106

	 2.5	C alculating the Mean

In evaluating some aspect of computer system performance, it is often the case that a
single number, such as execution time or memory consumed, is used to characterize
performance and to compare systems. Clearly, a single number can provide only a
very simplified view of a system’s capability. Nevertheless, and especially in the field
of benchmarking, single numbers are typically used for performance comparison
[SMIT88].

As is discussed in Section 2.6, the use of benchmarks to compare systems
involves calculating the mean value of a set of data points related to execution
time. It turns out that there are multiple alternative algorithms that can be used
for calculating a mean value, and this has been the source of some controversy in

60   Chapter 2 / Performance Issues

the benchmarking field. In this section, we define these alternative algorithms and
comment on some of their properties. This prepares us for a discussion in the next
section of mean calculation in benchmarking.

The three common formulas used for calculating a mean are arithmetic, geo-
metric, and harmonic. Given a set of n real numbers (x1, x2, …, xn), the three means
are defined as follows:

Arithmetic mean

	 AM =
x1 + g + xn

n
=

1
n a

n

i = 1
xi	 (2.4)

Geometric mean 

	 GM = n2x1 * g * xn = aq
n

i = 1
xib

1/n

= e
a1

n a
n

i = 1
ln(xi)b

	 (2.5)

Harmonic mean

	 HM =
n

a 1
x1

b + g + a 1
xn

b
=

n

a
n

i = 1
a 1

xi
b

   xi 7 0	  (2.6)

It can be shown that the following inequality holds:

AM … GM … HM

The values are equal only if x1 = x2 = c xn.
We can get a useful insight into these alternative calculations by defining the

functional mean. Let f(x) be a continuous monotonic function defined in the inter-
val 0 … y 6 ∞. The functional mean with respect to the function f(x) for n positive
real numbers (x1, x2, …, xn) is defined as

Functional mean  FM = f -1a f(x1) + g + f(xn)
n

b = f -1a1
n a

n

i = 1
f(xi)b

where f -1(x) is the inverse of f(x). The mean values defined in Equations (2.1)
through (2.3) are special cases of the functional mean, as follows:

■■ AM is the FM with respect to f(x) = x
■■ GM is the FM with respect to f(x) = ln x
■■ HM is the FM with respect to f(x) = 1/x

 Example 2.3   Figure 2.6 illustrates the three means applied to various data sets, each
of which has eleven data points and a maximum data point value of 11. The median value
is also included in the chart. Perhaps what stands out the most in this figure is that the HM
has a tendency to produce a misleading result when the data is skewed to larger values or
when there is a small-value outlier.

2.5 / Calculating the Mean   61

Let us now consider which of these means are appropriate for a given per-
formance measure. As a preface to these remarks, it should be noted that a num-
ber of papers ([CITR06], [FLEM86], [GILA95], [JACO95], [JOHN04], [MASH04],
[SMIT88]) and books ([HENN12], [HWAN93], [JAIN91], [LILJ00]) over the years
have argued the pros and cons of the three means for performance analysis and
come to conflicting conclusions. To simplify a complex controversy, we just note
that the conclusions reached depend very much on the examples chosen and the
way in which the objectives are stated.

0 2 4 6 8 9 101 3 5 7 11

MD
AM
GM
HM

(a)

MD
AM
GM
HM

(b)

MD
AM
GM
HM

(c)

MD
AM
GM
HM

(d)

MD
AM
GM
HM

(e)

MD
AM
GM
HM

(f)

MD
AM
GM
HM

MD = median
AM = arithmetic mean
GM = geometric mean
HM = harmonic mean

(a) Constant (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)
(b) Clustered around a central value (3, 5, 6, 6, 7, 7, 7, 8, 8, 9, 11)
(c) Uniform distribution (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
(d) Large-number bias (1, 4, 4, 7, 7, 9, 9, 10, 10, 11, 11)
(e) Small-number bias(1, 1, 2, 2, 3, 3, 5, 5, 8, 8, 11)
(f) Upper outlier (11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
(g) Lower outlier (1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)

(g)

Figure 2.6  Comparison of Means on Various Data Sets (each set has a maximum data
point value of 11)

62   Chapter 2 / Performance Issues

Arithmetic Mean

An AM is an appropriate measure if the sum of all the measurements is a meaningful
and interesting value. The AM is a good candidate for comparing the execution time per-
formance of several systems. For example, suppose we were interested in using a system
for large-scale simulation studies and wanted to evaluate several alternative products.
On each system we could run the simulation multiple times with different input val-
ues for each run, and then take the average execution time across all runs. The use of
multiple runs with different inputs should ensure that the results are not heavily biased
by some unusual feature of a given input set. The AM of all the runs is a good measure of
the system’s performance on simulations, and a good number to use for system comparison.

The AM used for a time-based variable (e.g., seconds), such as program exe-
cution time, has the important property that it is directly proportional to the total
time. So, if the total time doubles, the mean value doubles.

Harmonic Mean

For some situations, a system’s execution rate may be viewed as a more useful mea-
sure of the value of the system. This could be either the instruction execution rate,
measured in MIPS or MFLOPS, or a program execution rate, which measures the
rate at which a given type of program can be executed. Consider how we wish the
calculated mean to behave. It makes no sense to say that we would like the mean
rate to be proportional to the total rate, where the total rate is defined as the sum of
the individual rates. The sum of the rates would be a meaningless statistic. Rather,
we would like the mean to be inversely proportional to the total execution time. For
example, if the total time to execute all the benchmark programs in a suite of pro-
grams is twice as much for system C as for system D, we would want the mean value
of the execution rate to be half as much for system C as for system D.

Let us look at a basic example and first examine how the AM performs. Sup-
pose we have a set of n benchmark programs and record the execution times of each
program on a given system as t1, t2, …, tn. For simplicity, let us assume that each
program executes the same number of operations Z; we could weight the individual
programs and calculate accordingly but this would not change the conclusion of our
argument. The execution rate for each individual program is Ri = Z/ti. We use the
AM to calculate the average execution rate.

AM =
1
n a

n

i = 1
Ri =

1
n a

n

i = 1

Z
ti

=
Z
n a

n

i = 1

1
ti

We see that the AM execution rate is proportional to the sum of the inverse
execution times, which is not the same as being inversely proportional to the sum of
the execution times. Thus, the AM does not have the desired property.

The HM yields the following result.

HM =
n

a
n

i = 1
a 1

Ri
b

=
n

a
n

i = 1
a 1

Z/ti
b

=
nZ

a
n

i = 1
ti

The HM is inversely proportional to the total execution time, which is the
desired property.

2.5 / Calculating the Mean   63

The reader may wonder why go through all this effort. If we want to compare
execution times, we could simply compare the total execution times of the three
systems. If we want to compare rates, we could simply take the inverse of the total
execution time, as shown in the table. There are two reasons for doing the individ-
ual calculations rather than only looking at the aggregate numbers:

Table 2.2  A Comparison of Arithmetic and Harmonic Means for Rates

Computer
A time
(secs)

Computer
B time
(secs)

Computer
C time
(secs)

Computer
A rate

(MFLOPS)

Computer
B rate

(MFLOPS)

Computer
C rate

(MFLOPS)

Program 1
(108 FP ops)

2.0 1.0 0.75 50 100 133.33

Program 2
(108 FP ops)

0.75 2.0 4.0 133.33 50 25

Total
execution
time

2.75 3.0 4.75 — — —

Arithmetic
mean of
times

1.38 1.5 2.38 — — —

Inverse
of total
execution
time (1/sec)

0.36 0.33 0.21 — — —

Arithmetic
mean of
rates

— — — 91.67 75.00 79.17

Harmonic
mean of
rates

— — — 72.72 66.67 42.11

 Example 2.4   A simple numerical example will illustrate the difference between the
two means in calculating a mean value of the rates, shown in Table 2.2. The table compares
the performance of three computers on the execution of two programs. For simplicity, we
assume that the execution of each program results in the execution of 108 floating-point
operations. The left half of the table shows the execution times for each computer running
each program, the total execution time, and the AM of the execution times. Computer
A executes in less total time than B, which executes in less total time than C, and this is
reflected accurately in the AM.

The right half of the table provides a comparison in terms of rates, expressed
in MFLOPS. The rate calculation is straightforward. For example, program 1 executes
100 million floating-point operations. Computer A takes 2 seconds to execute the program
for a MFLOPS rate of 100/2 = 50. Next, consider the AM of the rates. The greatest value
is for computer A, which suggests that A is the fastest computer. In terms of total execu-
tion time, A has the minimum time, so it is the fastest computer of the three. But the AM
of rates shows B as slower than C, whereas in fact B is faster than C. Looking at the HM
values, we see that they correctly reflect the speed ordering of the computers. This confirms
that the HM is preferred when calculating rates.

64   Chapter 2 / Performance Issues

1.	 A customer or researcher may be interested not only in the overall average
performance but also performance against different types of benchmark pro-
grams, such as business applications, scientific modeling, multimedia appli-
cations, and systems programs. Thus, a breakdown by type of benchmark is
needed as well as a total.

2.	 Usually, the different programs used for evaluation are weighted differently.
In Table 2.2, it is assumed that the two test programs execute the same num-
ber of operations. If that is not the case, we may want to weight accordingly.
Or different programs could be weighted differently to reflect importance or
priority.

Let us see what the result is if test programs are weighted proportional to the
number of operations. Following the preceding notation, each program i executes
Zi instructions in a time ti. Each rate is weighted by the instructions count. The
weighted HM is therefore:

	 WHM =
1

a
n

i = 1
£° Zi

a n
j = 1Zj

 ¢a 1
Ri

b ≥ =
n

a
n

i = 1
£° Zi

a n
j = 1Zj

 ¢ a ti
Zi

b ≥ =
a n

j = 1Zj

a
n

i = 1
ti

	 (2.7)

We see that the weighted HM is the quotient of the sum of the operation
count divided by the sum of the execution times.

Geometric Mean

Looking at the equations for the three types of means, it is easier to get an intuitive
sense of the behavior of the AM and the HM than that of the GM. Several observa-
tions, from [FEIT15], may be helpful in this regard. First, we note that with respect to
changes in values, the GM gives equal weight to all of the values in the data set. For
example, suppose the set of data values to be averaged includes a few large values
and more small values. Here, the AM is dominated by the large values. A change of
10% in the largest value will have a noticeable effect, while a change in the smallest
value by the same factor will have a negligible effect. In contrast, a change in value
by 10% of any of the data values results in the same change in the GM: 2n 1.1.

 Example 2.5   This point is illustrated by data set (e) in Figure 2.6. Here are the effects
of increasing either the maximum or the minimum value in the data set by 10%:

Geometric Mean Arithmetic Mean

Original value 3.37 4.45

Increase max value
from 11 to 12.1 (+10%)

3.40 (+ 0.87,) 4.55 (+ 2.24,)

Increase min value
from 1 to 1.1 (+10%)

3.40 (+ 0.87,) 4.46 (+ 0.20,)

2.5 / Calculating the Mean   65

A second observation is that for the GM of a ratio, the GM of the ratios equals
the ratio of the GMs:

	 GM = aq
n

i = 1

Zi

ti
b

1/n

=
aq

n

i = 1
Zib

1/n

aq
n

i = 1
tib

1/n 	 (2.8)

Compare this with Equation 2.4.
For use with execution times, as opposed to rates, one drawback of the GM

is that it may be non-monotonic relative to the more intuitive AM. In other words
there may be cases where the AM of one data set is larger than that of another set,
but the GM is smaller.

 Example 2.6   In Figure 2.6, the AM for data set d is larger than the AM for data set c,
but the opposite is true for the GM.

Data set c Data set d

Arithmetic mean 7.00 7.55

Geometric mean 6.68 6.42

One property of the GM that has made it appealing for benchmark analy-
sis is that it provides consistent results when measuring the relative performance
of machines. This is in fact what benchmarks are primarily used for: to compare
one machine with another in terms of performance metrics. The results, as we have
seen, are expressed in terms of values that are normalized to a reference machine.

 Example 2.7   A simple example will illustrate the way in which the GM exhibits con-
sistency for normalized results. In Table 2.3, we use the same performance results as were
used in Table 2.2. In Table 2.3a, all results are normalized to Computer A, and the means
are calculated on the normalized values. Based on total execution time, A is faster than
B, which is faster than C. Both the AMs and GMs of the normalized times reflect this. In
Table 2.3b, the systems are now normalized to B. Again the GMs correctly reflect the rela-
tive speeds of the three computers, but now the AM produces a different ordering.

Sadly, consistency does not always produce correct results. In Table 2.4, some of the
execution times are altered. Once again, the AM reports conflicting results for the two
normalizations. The GM reports consistent results, but the result is that B is faster than A
and C, which are equal.

It is examples like this that have fueled the “benchmark means wars” in the
citations listed earlier. It is safe to say that no single number can provide all the
information that one needs for comparing performance across systems. However,

66   Chapter 2 / Performance Issues

Table 2.4  Another Comparison of Arithmetic and Geometric Means for Normalized Results

(a) Results normalized to Computer A

Computer A time Computer B time Computer C time

Program 1 2.0 (1.0) 1.0 (0.5) 0.20 (0.1)

Program 2 0.4 (1.0) 2.0 (5.0) 4.0 (10.0)

Total execution time 2.4 3.00 4.2

Arithmetic mean of
normalized times

1.00 2.75 5.05

Geometric mean of
normalized times

1.00 1.58 1.00

(b) Results normalized to Computer B

Computer A time Computer B time Computer C time

Program 1 2.0 (2.0) 1.0 (1.0) 0.20 (0.2)

Program 2 0.4 (0.2) 2.0 (1.0) 4.0 (2.0)

Total execution time 2.4 3.00 4.2

Arithmetic mean of
normalized times

1.10 1.00 1.10

Geometric mean of
normalized times

0.63 1.00 0.63

Table 2.3  A Comparison of Arithmetic and Geometric Means for Normalized Results

(a) Results normalized to Computer A

Computer A time Computer B time Computer C time

Program 1 2.0 (1.0) 1.0 (0.5) 0.75 (0.38)

Program 2 0.75 (1.0) 2.0 (2.67) 4.0 (5.33)

Total execution time 2.75 3.0 4.75

Arithmetic mean of
normalized times

1.00 1.58 2.85

Geometric mean of
normalized times

1.00 1.15 1.41

(b) Results normalized to Computer B

Computer A time Computer B time Computer C time

Program 1 2.0 (2.0) 1.0 (1.0) 0.75 (0.75)

Program 2 0.75 (0.38) 2.0 (1.0) 4.0 (2.0)

Total execution time 2.75 3.0 4.75

Arithmetic mean of
normalized times

1.19 1.00 1.38

Geometric mean of
normalized times

0.87 1.00 1.22

2.6 / Benchmarks and Spec   67

despite the conflicting opinions in the literature, SPEC has chosen to use the GM,
for several reasons:

1.	 As mentioned, the GM gives consistent results regardless of which system is
used as a reference. Because benchmarking is primarily a comparison analysis,
this is an important feature.

2.	 As documented in [MCMA93], and confirmed in subsequent analyses by SPEC
analysts [MASH04], the GM is less biased by outliers than the HM or AM.

3.	 [MASH04] demonstrates that distributions of performance ratios are better
modeled by lognormal distributions than by normal ones, because of the gen-
erally skewed distribution of the normalized numbers. This is confirmed in
[CITR06]. And, as shown in Equation (2.5), the GM can be described as the
back-transformed average of a lognormal distribution.

	 2.6	 Benchmarks and Spec

Benchmark Principles

Measures such as MIPS and MFLOPS have proven inadequate to evaluating the per-
formance of processors. Because of differences in instruction sets, the instruction execu-
tion rate is not a valid means of comparing the performance of different architectures.

 Example 2.8   Consider this high-level language statement:

A = B + C /* assume all quantities in main memory */

With a traditional instruction set architecture, referred to as a complex instruction
set computer (CISC), this instruction can be compiled into one processor instruction:

add	 mem(B), mem(C), mem (A)

On a typical RISC machine, the compilation would look something like this:

load	 mem(B), reg(1);
load	 mem(C), reg(2);
add	 reg(1), reg(2), reg(3);
store	reg(3), mem (A)

Because of the nature of the RISC architecture (discussed in Chapter 15), both ma-
chines may execute the original high-level language instruction in about the same time. If
this example is representative of the two machines, then if the CISC machine is rated at
1 MIPS, the RISC machine would be rated at 4 MIPS. But both do the same amount of
high-level language work in the same amount of time.

Another consideration is that the performance of a given processor on a given
program may not be useful in determining how that processor will perform on a
very different type of application. Accordingly, beginning in the late 1980s and
early 1990s, industry and academic interest shifted to measuring the performance of

68   Chapter 2 / Performance Issues

systems using a set of benchmark programs. The same set of programs can be run on
different machines and the execution times compared. Benchmarks provide guid-
ance to customers trying to decide which system to buy, and can be useful to ven-
dors and designers in determining how to design systems to meet benchmark goals.

[WEIC90] lists the following as desirable characteristics of a benchmark program:

1.	 It is written in a high-level language, making it portable across different machines.

2.	 It is representative of a particular kind of programming domain or paradigm, such
as systems programming, numerical programming, or commercial programming.

3.	 It can be measured easily.

4.	 It has wide distribution.

SPEC Benchmarks

The common need in industry and academic and research communities for generally
accepted computer performance measurements has led to the development of stan-
dardized benchmark suites. A benchmark suite is a collection of programs, defined
in a high-level language, that together attempt to provide a representative test of a
computer in a particular application or system programming area. The best known
such collection of benchmark suites is defined and maintained by the Standard
Performance Evaluation Corporation (SPEC), an industry consortium. This orga-
nization defines several benchmark suites aimed at evaluating computer systems.
SPEC performance measurements are widely used for comparison and research
purposes.

The best known of the SPEC benchmark suites is SPEC CPU2006. This is the
industry standard suite for processor-intensive applications. That is, SPEC CPU2006
is appropriate for measuring performance for applications that spend most of their
time doing computation rather than I/O.

Other SPEC suites include the following:

■■ SPECviewperf: Standard for measuring 3D graphics performance based on
professional applications.

■■ SPECwpc: benchmark to measure all key aspects of workstation performance
based on diverse professional applications, including media and entertain-
ment, product development, life sciences, financial services, and energy.

■■ SPECjvm2008: Intended to evaluate performance of the combined hardware
and software aspects of the Java Virtual Machine (JVM) client platform.

■■ SPECjbb2013 (Java Business Benchmark): A benchmark for evaluating serv-
er-side Java-based electronic commerce applications.

■■ SPECsfs2008: Designed to evaluate the speed and request-handling capabili-
ties of file servers.

■■ SPECvirt_sc2013: Performance evaluation of datacenter servers used in vir-
tualized server consolidation. Measures the end-to-end performance of all
system components including the hardware, virtualization platform, and the
virtualized guest operating system and application software. The benchmark
supports hardware virtualization, operating system virtualization, and hard-
ware partitioning schemes.

2.6 / Benchmarks and Spec   69

The CPU2006 suite is based on existing applications that have already been
ported to a wide variety of platforms by SPEC industry members. In order to make
the benchmark results reliable and realistic, the CPU2006 benchmarks are drawn
from real-life applications, rather than using artificial loop programs or synthetic
benchmarks. The suite consists of 12 integer benchmarks written in C and C++, and
17 floating-point benchmarks written in C, C++, and Fortran (Tables 2.5 and 2.6).
The suite contains over 3 million lines of code. This is the fifth generation of

Table 2.5  SPEC CPU2006 Integer Benchmarks

Benchmark
Reference

time (hours)
Instr count

(billion) Language
Application

Area Brief Description

400.perlbench 2.71 2378 C Programming
Language

PERL programming lan-
guage interpreter, applied
to a set of three programs.

401.bzip2 2.68 2472 C Compression General-purpose data
compression with most
work done in memory,
rather than doing I/O.

403.gcc 2.24 1064 C C Compiler Based on gcc Version 3.2,
generates code for Opteron.

429.mcf 2.53 327 C Combinatorial
Optimization

Vehicle scheduling
algorithm.

445.gobmk 2.91 1603 C Artificial
Intelligence

Plays the game of Go,
a simply described but
deeply complex game.

456.hmmer 2.59 3363 C Search Gene
Sequence

Protein sequence analysis
using profile-hidden
Markov models.

458.sjeng 3.36 2383 C Artificial
Intelligence

A highly ranked chess
program that also plays
several chess variants.

462.libquantum 5.76 3555 C Physics /
Quantum
Computing

Simulates a quantum
computer, running Shor’s
polynomial-time factor-
ization algorithm.

464.h264ref 6.15 3731 C Video
Compression

H.264/AVC (Advanced
Video Coding) video
compression.

471.omnetpp 1.74 687 C++ Discrete
Event
Simulation

Uses the OMNet++
discrete event simulator
to model a large Ethernet
campus network.

473.astar 1.95 1200 C++ Path-finding
Algorithms

Pathfinding library for 2D
maps.

483.xalancbmk 1.92 1184 C++ XML
Processing

A modified version of
Xalan-C++, which trans-
forms XML documents to
other document types.

70   Chapter 2 / Performance Issues

Table 2.6  SPEC CPU2006 Floating-Point Benchmarks

Benchmark
Reference

time (hours)
Instr count

(billion) Language
Application

Area Brief Description

410.bwaves 3.78 1176 Fortran Fluid
Dynamics

Computes 3D transonic
transient laminar viscous
flow.

416.gamess 5.44 5189 Fortran Quantum
Chemistry

Quantum chemical
computations.

433.milc 2.55 937 C Physics /
Quantum
Chromody-
namics

Simulates behavior of
quarks and gluons.

434.zeusmp 2.53 1566 Fortran Physics /
CFD

Computational fluid
dynamics simulation of
astrophysical phenomena.

435.gromacs 1.98 1958 C, Fortran Biochemistry
/ Molecular
Dynamics

Simulates Newtonian
equations of motion for
hundreds to millions of
particles.

436.
cactusADM

3.32 1376 C, Fortran Physics /
General
Relativity

Solves the Einstein evolu-
tion equations.

437.leslie3d 2.61 1273 Fortran Fluid
Dynamics

Models fuel injection
flows.

444.namd 2.23 2483 C++ Biology /
Molecular
Dynamics

Simulates large biomolecu-
lar systems.

447.dealII 3.18 2323 C++ Finite
Element
Analysis

Program library targeted
at adaptive finite elements
and error estimation.

450.soplex 2.32 703 C++ Linear Pro-
gramming,
Optimization

Test cases include railroad
planning and military
airlift models.

453.povray 1.48 940 C++ Image
Ray-Tracing

3D image rendering.

454.calculix 2.29 3,04 C, Fortran Structural
Mechanics

Finite element code for
linear and nonlinear 3D
structural applications.

459.
GemsFDTD

2.95 1320 Fortran Computa-
tional Elec-
tromagnetics

Solves the Maxwell equa-
tions in 3D.

465.tonto 2.73 2392 Fortran Quantum
Chemistry

Quantum chemistry pack-
age, adapted for crystallo-
graphic tasks.

470.lbm 3.82 1500 C Fluid
Dynamics

Simulates incompressible
fluids in 3D.

481.wrf 3.10 1684 C, Fortran Weather Weather forecasting model.

482.sphinx3 5.41 2472 C Speech
Recognition

Speech recognition
software.

2.6 / Benchmarks and Spec   71

processor-intensive suites from SPEC, replacing SPEC CPU2000, SPEC CPU95,
SPEC CPU92, and SPEC CPU89 [HENN07].

To better understand published results of a system using CPU2006, we define
the following terms used in the SPEC documentation:

■■ Benchmark: A program written in a high-level language that can be compiled
and executed on any computer that implements the compiler.

■■ System under test: This is the system to be evaluated.
■■ Reference machine: This is a system used by SPEC to establish a baseline per-

formance for all benchmarks. Each benchmark is run and measured on this
machine to establish a reference time for that benchmark. A system under test
is evaluated by running the CPU2006 benchmarks and comparing the results
for running the same programs on the reference machine.

■■ Base metric: These are required for all reported results and have strict guide-
lines for compilation. In essence, the standard compiler with more or less
default settings should be used on each system under test to achieve compar-
able results.

■■ Peak metric: This enables users to attempt to optimize system performance
by optimizing the compiler output. For example, different compiler options
may be used on each benchmark, and feedback-directed optimization is
allowed.

■■ Speed metric: This is simply a measurement of the time it takes to execute a
compiled benchmark. The speed metric is used for comparing the ability of a
computer to complete single tasks.

■■ Rate metric: This is a measurement of how many tasks a computer can accom-
plish in a certain amount of time; this is called a throughput, capacity, or rate
measure. The rate metric allows the system under test to execute simultaneous
tasks to take advantage of multiple processors.

SPEC uses a historical Sun system, the “Ultra Enterprise 2,” which was intro-
duced in 1997, as the reference machine. The reference machine uses a 296-MHz
UltraSPARC II processor. It takes about 12 days to do a rule-conforming run of
the base metrics for CINT2006 and CFP2006 on the CPU2006 reference machine.
Tables 2.5 and 2.6 show the amount of time to run each benchmark using the refer-
ence machine. The tables also show the dynamic instruction counts on the reference
machine, as reported in [PHAN07]. These values are the actual number of instruc-
tions executed during the run of each program.

We now consider the specific calculations that are done to assess a system. We
consider the integer benchmarks; the same procedures are used to create a floating-
point benchmark value. For the integer benchmarks, there are 12 programs in the
test suite. Calculation is a three-step process (Figure 2.7):

1.	 The first step in evaluating a system under test is to compile and run each pro-
gram on the system three times. For each program, the runtime is measured
and the median value is selected. The reason to use three runs and take the
median value is to account for variations in execution time that are not intrin-
sic to the program, such as disk access time variations, and OS kernel execu-
tion variations from one run to another.

72   Chapter 2 / Performance Issues

2.	 Next, each of the 12 results is normalized by calculating the runtime ratio of the
reference run time to the system run time. The ratio is calculated as follows:

	 ri =
Trefi

Tsuti
	 (2.9)

where Trefi is the execution time of benchmark program i on the reference
system and Tsuti is the execution time of benchmark program i on the system
under test. Thus, ratios are higher for faster machines.

3.	 Finally, the geometric mean of the 12 runtime ratios is calculated to yield the
overall metric:

rG = aq
12

i = 1
rib

1/12

For the integer benchmarks, four separate metrics can be calculated:

■■ SPECint2006: The geometric mean of 12 normalized ratios when the bench-
marks are compiled with peak tuning.

■■ SPECint_base2006: The geometric mean of 12 normalized ratios when the
benchmarks are compiled with base tuning.

■■ SPECint_rate2006: The geometric mean of 12 normalized throughput ratios
when the benchmarks are compiled with peak tuning.

■■ SPECint_rate_base2006: The geometric mean of 12 normalized throughput
ratios when the benchmarks are compiled with base tuning.

Start

Get next
program

Run program
three times

Select
median value

Ratio(prog) =
Tref(prog)/TSUT(prog)

More
programs?

Compute geometric
mean of all ratios

End

Yes No

Figure 2.7  SPEC Evaluation Flowchart

2.6 / Benchmarks and Spec   73

 Example 2.9   The results for the Sun Blade 1000 are shown in Table 2.7a. One of the SPEC
CPU2006 integer benchmark is 464.h264ref. This is a reference implementation of H.264/
AVC (Advanced Video Coding), the latest state-of-the-art video compression standard. The
Sun Blade 1000 executes this program in a median time of 5,259 seconds. The reference
implementation requires 22,130 seconds. The ratio is calculated as: 22,130/5,259 = 4.21.
The speed metric is calculated by taking the twelfth root of the product of the ratios:

(3.18 * 2.96 * 2.98 * 3.91 * 3.17 * 3.61 * 3.51 * 2.01 *

4.21 * 2.43 * 2.75 * 3.42)1/12 = 3.12

The rate metrics take into account a system with multiple processors. To test
a machine, a number of copies N is selected—usually this is equal to the number of
processors or the number of simultaneous threads of execution on the test system.
Each individual test program’s rate is determined by taking the median of three
runs. Each run consists of N copies of the program running simultaneously on the
test system. The execution time is the time it takes for all the copies to finish (i.e.,
the time from when the first copy starts until the last copy finishes). The rate metric
for that program is calculated by the following formula:

ratei = N *
Trefi

Tsuti

The rate score for the system under test is determined from a geometric mean of
rates for each program in the test suite.

 Example 2.10   The results for the Sun Blade X6250 are shown in Table 2.7b. This sys-
tem has two processor chips, with two cores per chip, for a total of four cores. To get the
rate metric, each benchmark program is executed simultaneously on all four cores, with
the execution time being the time from the start of all four copies to the end of the slowest
run. The speed ratio is calculated as before, and the rate value is simply four times the
speed ratio. The final rate metric is found by taking the geometric mean of the rate values:

(78.63 * 62.97 * 60.87 * 77.29 * 65.87 * 83.68 * 76.70 * 134.98 *

106.65 * 40.39 * 48.41 * 65.40)1/12 = 71.59

Table 2.7  Some SPEC CINT2006 Results

(a) Sun Blade 1000

Benchmark
Execution
time (secs)

Execution
time (secs)

Execution
time (secs)

Reference
time (secs) Ratio

400.perlbench 3077 3076 3080 9770 3.18

401.bzip2 3260 3263 3260 9650 2.96

403.gcc 2711 2701 2702 8050 2.98

429.mcf 2356 2331 2301 9120 3.91

445.gobmk 3319 3310 3308 10,490 3.17

456.hmmer 2586 2587 2601 9330 3.61

(Continued)

74   Chapter 2 / Performance Issues

Table 2.7  (Continued)

(a) Sun Blade 1000

Benchmark
Execution
time (secs)

Execution
time (secs)

Execution
time (secs)

Reference
time (secs) Ratio

458.sjeng 3452 3449 3449 12,100 3.51

462.libquantum 10,318 10,319 10,273 20,720 2.01

464.h264ref 5246 5290 5259 22,130 4.21

471.omnetpp 2565 2572 2582 6250 2.43

473.astar 2522 2554 2565 7020 2.75

483.xalancbmk 2014 2018 2018 6900 3.42

(b) Sun Blade X6250

Benchmark
Execution
time (secs)

Execution
time (secs)

Execution
time (secs)

Reference
time (secs) Ratio Rate

400.perlbench 497 497 497 9770 19.66 78.63

401.bzip2 613 614 613 9650 15.74 62.97

403.gcc 529 529 529 8050 15.22 60.87

429.mcf 472 472 473 9120 19.32 77.29

445.gobmk 637 637 637 10,490 16.47 65.87

456.hmmer 446 446 446 9330 20.92 83.68

458.sjeng 631 632 630 12,100 19.18 76.70

462.libquantum 614 614 614 20,720 33.75 134.98

464.h264ref 830 830 830 22,130 26.66 106.65

471.omnetpp 619 620 619 6250 10.10 40.39

473.astar 580 580 580 7020 12.10 48.41

483.xalancbmk 422 422 422 6900 16.35 65.40

	 2.7	K ey Terms, Review Questions, and Problems

Key Terms

Amdahl’s law
arithmetic mean (AM)
base metric
benchmark
clock cycle
clock cycle time
clock rate
clock speed
clock tick
cycles per instruction (CPI)

functional mean (FM)
general-purpose computing

on GPU (GPGPU)
geometric mean (GM)
graphics processing unit

(GPU)
harmonic mean (HM)
instruction execution rate
Little’s law
many integrated core (MIC)

microprocessor
MIPS rate
multicore
peak metric
rate metric
reference machine
speed metric
SPEC
system under test
throughput

