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chapter 1 Introduction

This important chapter serves as a framework for the rest 

of the textbook. The topics in this chapter include formulas, 

voltage sources, current sources, two circuit theorems, and 

troubleshooting. Although some of the discussion will be review, 

you will fi nd new ideas, such as circuit approximations, that can 

make it easier for you to understand semiconductor devices.
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Objectives

After studying this chapter, you should be 
able to:

■ Name the three types of formulas

and explain why each is true.

■ Explain why approximations 

are often used instead of exact 

formulas.

■ Defi ne an ideal voltage source 

and an ideal current source.

■ Describe how to recognize a stiff  

voltage source and a stiff  current 

source.

■ State Thevenin’s theorem and 

apply it to a circuit.

■ State Norton’s theorem and 

apply it to a circuit.

■ List two facts about an open 

device and two facts about a 

shorted device.
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1-1 The Three Kinds of Formulas
A formula is a rule that relates quantities. The rule may be an equation, an in-

equality, or other mathematical description. You will see many formulas in 

this book. Unless you know why each one is true, you may become confused 

as they accumulate. Fortunately, there are only three ways formulas can come 

into  existence. Knowing what they are will make your study of electronics more 

 logical and satisfying.

The Defi nition
When you study electricity and electronics, you have to memorize new words like 

current, voltage, and resistance. However, a verbal explanation of these words is 

not enough. Why? Because your idea of current must be mathematically identical 

to everyone else’s. The only way to get this identity is with a defi nition, a formula 

invented for a new concept.

 Here is an example of a defi nition. In your earlier course work, you 

learned that capacitance equals the charge on one plate divided by the voltage 

 between plates. The formula looks like this:

C 5 
Q

 __ V

This formula is a defi nition. It tells you what capacitance C is and how to calcu-

late it. Historically, some researcher made up this defi nition and it became widely 

accepted.

 Here is an example of how to create a new defi nition out of thin air. 

Suppose we are doing research on reading skills and need some way to measure 

reading speed. Out of the blue, we might decide to defi ne reading speed as the 

number of words read in a minute. If the number of words is W and the number of 

minutes is M, we could make up a formula like this:

S 5 
W__
M

In this equation, S is the speed measured in words per minute.

 To be fancy, we could use Greek letters: � for words, � for minutes, and 

� for speed. Our defi nition would then look like this:

� 5 
�__

 � 

This equation still translates to speed equals words divided by minutes. When you 

see an equation like this and know that it is a defi nition, it is no longer as impres-

sive and mysterious as it initially appears to be.

 In summary, defi nitions are formulas that a researcher creates. They are 

based on scientifi c observation and form the basis for the study of electronics. 

They are simply accepted as facts. It’s done all the time in science. A defi nition is 

true in the same sense that a word is true. Each represents something we want to 

talk about. When you know which formulas are defi nitions, electronics is easier 

to understand. Because defi nitions are starting points, all you need to do is under-

stand and memorize them.

The Law
A law is different. It summarizes a relationship that already exists in nature. Here 

is an example of a law:

f 5 K   
Q1Q2

 _____ 
d2

  

GOOD TO KNOW
For all practical purposes, a 

 formula is like a set of instruc-

tions written in mathematical 

shorthand. A formula describes 

how to go about calculating a 

particular quantity or parameter.
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where f 5 force 

 K 5 a constant of proportionality, 9(109)

 Q1 5 fi rst charge

 Q2 5 second charge

 d 5 distance between charges

This is Coulomb’s law. It says that the force of attraction or repulsion between 

two charges is directly proportional to the charges and inversely proportional to 

the square of the distance between them.

 This is an important equation, for it is the foundation of electricity. But 

where does it come from? And why is it true? To begin with, all the variables in 

this law existed before its discovery. Through experiments, Coulomb was able to 

prove that the force was directly proportional to each charge and inversely pro-

portional to the square of the distance between the charges. Coulomb’s law is an 

example of a relationship that exists in nature. Although earlier researchers could 

measure f, Q1, Q2, and d, Coulomb discovered the law relating the quantities and 

wrote a formula for it.

 Before discovering a law, someone may have a hunch that such a rela-

tionship exists. After a number of experiments, the researcher writes a formula 

that summarizes the discovery. When enough people confi rm the discovery 

through experiments, the formula becomes a law. A law is true because you can 
verify it with an experiment.

The Derivation
Given an equation like this:

y 5 3x

we can add 5 to both sides to get:

y 1 5 5 3x 1 5

The new equation is true because both sides are still equal. There are many other 

operations like subtraction, multiplication, division, factoring, and substitution 

that preserve the equality of both sides of the equation. For this reason, we can 

 derive many new formulas using mathematics.

 A derivation is a formula that we can get from other formulas. This 

means that we start with one or more formulas and, using mathematics, arrive 

at a new formula not in our original set of formulas. A derivation is true because 

mathematics preserves the equality of both sides of every equation between the 

starting formula and the derived formula.

 For instance, Ohm was experimenting with conductors. He discovered 

that the ratio of voltage to current was a constant. He named this constant resis-
tance and wrote the following formula for it:

R 5   
V __ I  

This is the original form of Ohm’s law. By rearranging it, we can get:

I 5   
V __ R  

This is a derivation. It is the original form of Ohm’s law converted to another 

equation.
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 Here is another example. The defi nition for capacitance is:

C 5   
Q

 __ 
V

 

We can multiply both sides by V to get the following new equation:

Q 5 CV

This is a derivation. It says that the charge on a capacitor equals its capacitance 

times the voltage across it.

What to Remember
Why is a formula true? There are three possible answers. To build your under-

standing of electronics on solid ground, classify each new formula in one of these 

three categories:

Defi nition: A formula invented for a new concept

Law: A formula for a relationship in nature

Derivation: A formula produced with mathematics

1-2 Approximations
We use approximations all the time in everyday life. If someone asks you how old 

you are, you might answer 21 (ideal). Or you might say 21 going on 22 (second 

approximation). Or, maybe, 21 years and 9 months (third approximation). Or, if 

you want to be more accurate, 21 years, 9 months, 2 days, 6 hours, 23 minutes, 

and 42 seconds (exact).

 The foregoing illustrates different levels of approximation: an ideal ap-

proximation, a second approximation, a third approximation, and an exact answer. 

The approximation to use will depend on the situation. The same is true in elec-

tronics work. In circuit analysis, we need to choose an approximation that fi ts the 

situation.

The Ideal Approximation
Did you know that 1 foot of AWG 22 wire that is 1 inch from a chassis has a 

resistance of 0.016 V, an inductance of 0.24 �H, and a capacitance of 3.3 pF? If 

we had to include the effects of resistance, inductance, and capacitance in every 

calculation for current, we would spend too much time on calculations. This is 

why everybody ignores the resistance, inductance, and capacitance of connecting 

wires in most situations.

 The ideal approximation, sometimes called the fi rst approximation, is 

the simplest equivalent circuit for a device. For instance, the ideal approximation 

of a piece of wire is a conductor of zero resistance. This ideal approximation is 

 adequate for everyday electronics work.

 The exception occurs at higher frequencies, where you have to con-

sider the inductance and capacitance of the wire. Suppose 1 inch of wire has an 

 inductance of 0.24 �H and a capacitance of 3.3 pF. At 10 MHz, the inductive 

reactance is 15.1 V, and the capacitive reactance is 4.82 kV. As you see, a cir-

cuit designer can no longer idealize a piece of wire. Depending on the rest of 

the  circuit, the inductance and capacitive reactances of a connecting wire may 

be important.
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 As a guideline, we can idealize a piece of wire at frequencies under 

1 MHz. This is usually a safe rule of thumb. But it does not mean that you can 

be careless about wiring. In general, keep connecting wires as short as possible, 

 because at some point on the frequency scale, those wires will begin to degrade 

circuit performance.

 When you are troubleshooting, the ideal approximation is usually adequate 

because you are looking for large deviations from normal voltages and currents. In 

this book, we will idealize semiconductor devices by reducing them to simple equiv-

alent circuits. With ideal approximations, it is easier to analyze and understand how 

semiconductor circuits work.

The Second Approximation
The ideal approximation of a fl ashlight battery is a voltage source of 1.5 V. The 

second approximation adds one or more components to the ideal approximation. 

For instance, the second approximation of a fl ashlight battery is a voltage source of 

1.5 V and a series resistance of 1 V. This series resistance is called the source or 

internal resistance of the battery. If the load resistance is less than 10 V, the load volt-

age will be noticeably less than 1.5 V because of the voltage drop across the source 

 resistance. In this case, accurate calculations must include the source resistance.

The Third Approximation and Beyond
The third approximation includes another component in the equivalent circuit 

of the device. An example of the third approximation will be examined when we 

discuss semiconductor diodes.

 Even higher approximations are possible with many components in the 

equivalent circuit of a device. Hand calculations using these higher approxima-

tions can become diffi cult and time consuming. Because of this, computers using 

circuit simulation software are often used. For instance, Multisim by National 

Instruments (NI) and PSpice are commercially available computer programs that 

use higher approximations to analyze and simulate semiconductor circuits. Many 

of the circuits and examples in this book can be analyzed and demonstrated using 

this type of software.

Conclusion
Which approximation to use depends on what you are trying to do. If you are 

troubleshooting, the ideal approximation is usually adequate. For many situations, 

the second approximation is the best choice because it is easy to use and does 

not require a computer. For higher approximations, you should use a computer 

and a program like Multisim. A Multisim tutorial can be found on the Instructor 

 Resources section of Connect for Electronic Principles.

1-3 Voltage Sources
An ideal dc voltage source produces a load voltage that is constant. The sim-

plest example of an ideal dc voltage source is a perfect battery, one whose inter-

nal  resistance is zero. Figure 1-1a shows an ideal voltage source connected to a 

 variable load resistance of 1 V to 10 MV. The voltmeter reads 10 V, exactly the 

same as the source voltage.

 Figure 1-1b shows a graph of load voltage versus load resistance. As you 

can see, the load voltage remains fi xed at 10 V when the load resistance changes 

from 1 V to 1 MV. In other words, an ideal dc voltage source produces a constant 

load voltage, regardless of how small or large the load resistance is. With an ideal 

voltage source, only the load current changes when the load resistance changes.
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Second Approximation
An ideal voltage source is a theoretical device; it cannot exist in nature. Why? 

When the load resistance approaches zero, the load current approaches infi nity. 

No real voltage source can produce infi nite current because a real voltage source 

always has some internal resistance. The second approximation of a dc voltage 

source includes this internal resistance.

 Figure 1-2a illustrates the idea. A source resistance RS of 1 V is now in 

series with the ideal battery. The voltmeter reads 5 V when RL is 1 V. Why? Be-

cause the load current is 10 V divided by 2 V, or 5 A. When 5 A fl ows through the 

source resistance of 1 V, it produces an internal voltage drop of 5 V. This is why 

the load voltage is only half of the ideal value, with the other half being dropped 

across the internal resistance.

 Figure 1-2b shows the graph of load voltage versus load resistance. In 

this case, the load voltage does not come close to the ideal value until the load 

resistance is much greater than the source resistance. But what does much greater 

mean? In other words, when can we ignore the source resistance?

Figure 1-1  (a) Ideal voltage source and variable load resistance; (b) load voltage is constant for all load resistances.
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Figure 1-2  (a) Second approximation includes source resistance; (b) load voltage is constant for large load resistances.
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Stiff  Voltage Source
Now is the time when a new defi nition can be useful. So, let us invent one. We 

can ignore the source resistance when it is at least 100 times smaller than the load 

 resistance. Any source that satisfi es this condition is a stiff voltage source. As a 

 defi nition,

Stiff voltage source: RS , 0.01RL (1-1)

This formula defi nes what we mean by a stiff voltage source. The boundary of the 

inequality (where , is changed to 5) gives us the following equation:

RS 5 0.01RL

Solving for load resistance gives the minimum load resistance we can use and still 

have a stiff source:

RL(min) 5 100RS (1-2)

In words, the minimum load resistance equals 100 times the source resistance.

 Equation (1-2) is a derivation. We started with the defi nition of a stiff 

voltage source and rearranged it to get the minimum load resistance permitted 

with a stiff voltage source. As long as the load resistance is greater than 100RS, the 

voltage source is stiff. When the load resistance equals this worst-case value, the 

calculation error from ignoring the source resistance is 1 percent, small enough to 

ignore in a second approximation.

 Figure 1-3 visually summarizes a stiff voltage source. The load resis-

tance has to be greater than 100RS for the voltage source to be stiff.

Figure 1-3  Stiff  region occurs when load resistance is large enough.

100Rs

Stiff region

RL resistance (Ohms)

VS (V)

GOOD TO KNOW
A well-regulated power supply is 

a good example of a stiff voltage 

source.

Example 1-1
The defi nition of a stiff voltage source applies to ac sources as well as to dc 

sources. Suppose an ac voltage source has a source resistance of 50 V. For what 

load resistance is the source stiff?

SOLUTION  Multiply by 100 to get the minimum load resistance:

RL 5 100RS 5 100(50 V) 5 5 kV
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1-4 Current Sources
A dc voltage source produces a constant load voltage for different load resis-

tances. A dc current source is different. It produces a constant load current for 

different load resistances. An example of a dc current source is a battery with a 

large source resistance (Fig. 1-4a). In this circuit, the source resistance is 1 MV

and the load current is:

IL 5   
VS _______
 RS 1 RL
   

When RL is 1 V in Fig. 1-4a, the load current is:

IL 5   
10 V
 ____________
  

1 MV  1 1 V
   5 10 �A

In this calculation, the small load resistance has an insignifi cant effect on the load 

current.

 Figure 1-4b shows the effect of varying the load resistance from 1 V to 

1 MV. In this case, the load current remains constant at 10 �A over a large range. 

It is only when the load resistance is greater than 10 kV that a noticeable drop-off 

occurs in load current.

As long as the load resistance is greater than 5 kV, the ac voltage source is stiff 

and we can ignore the internal resistance of the source.

 A fi nal point. Using the second approximation for an ac voltage source 

is valid only at low frequencies. At high frequencies, additional factors such as 
lead inductance and stray capacitance come into play. We will deal with these 

high-frequency effects in a later chapter.

PRACTICE PROBLEM 1-1  If the ac source resistance in Example 1-1 is 

600 V, for what load resistance is the source stiff?

GOOD TO KNOW
At the output terminals of a 

constant current source, the 

load voltage VL increases in 

direct proportion to the load 

resistance.

Figure 1-4  (a) Simulated current source with a dc voltage source and a large resistance; (b) load current is constant for 

small load resistances.
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Stiff  Current Source
Here is another defi nition that will be useful, especially with semiconductor cir-

cuits. We will ignore the source resistance of a current source when it is at least 

100 times larger than the load resistance. Any source that satisfi es this condition 

is a stiff current source. As a defi nition:

Stiff current source: RS . 100RL (1-3)

The upper boundary is the worst case. At this point:

RS 5 100RL

Solving for load resistance gives the maximum load resistance we can use and still 

have a stiff current source:

RL(max) 5 0.01RS (1-4)

In words: The maximum load resistance equals 1⁄100 of the source resistance.

 Equation (1-4) is a derivation because we started with the defi nition of a 

stiff current source and rearranged it to get the maximum load resistance. When 

the load resistance equals this worst-case value, the calculation error is 1 percent, 

small enough to ignore in a second approximation.

 Figure 1-5 shows the stiff region. As long as the load resistance is less 

than 0.01RS, the current source is stiff.

Schematic Symbol
Figure 1-6a is the schematic symbol of an ideal current source, one whose source 

resistance is infi nite. This ideal approximation cannot exist in nature, but it can 

exist mathematically. Therefore, we can use the ideal current source for fast  circuit 

analysis, as in troubleshooting.

 Figure 1-6a is a visual defi nition: It is the symbol for a current source. 

When you see this symbol, it means that the device produces a constant current IS. 

It may help to think of a current source as a pump that pushes out a fi xed number 

of coulombs per second. This is why you will hear expressions like “The current 

source pumps 5 mA through a load resistance of 1 kV.”

 Figure 1-6b shows the second approximation. The internal resistance 

is in parallel with the ideal current source, not in series as it was with an ideal 

 voltage source. Later in this chapter we will discuss Norton’s theorem. You will 

then see why the internal resistance must be in parallel with the current source. 

Summary Table 1-1 will help you understand the differences between a voltage 

source and a current source.

Figure 1-5  Stiff  region occurs when load resistance is small 

enough.
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Figure 1-6  (a) Schematic symbol of a current 

source; (b) second approximation of a current 

source.
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Summary Table 1-1 Properties of Voltage and 
 Current Sources

Quantity Voltage Source Current Source

 R S Typically low Typically high

 R L Greater than 100 R S Less than 0.01 R S 

 V L Constant Depends on  R L 

 I L Depends on  R L Constant

Example 1-2
A current source of 2 mA has an internal resistance of 10 MV. Over what range of load resistance is the current source stiff?

SOLUTION  Since this is a current source, the load resistance has to be small compared to the source resistance. With 

the 100:1 rule, the maximum load resistance is:

RL(max) 5 0.01(10 MV) 5 100 kV

The stiff range for the current source is a load resistance from 0 to 100 kV.

 Figure 1-7 summarizes the solution. In Fig. 1-7a, a current source of 2 mA is in parallel with 10 MV and a variable 

resistor set to 1 V. The ammeter measures a load current of 2 mA. When the load resistance changes from 1 V to 1 MV, as 

shown in Fig. 1-7b, the source remains stiff up to 100 kV. At this point, the load current is down about 1 percent from the 

ideal value. Stated another way, 99 percent of the source current passes through the load resistance. The other 1 percent passes 

through the source resistance. As the load resistance continues to increase, load current continues to decrease.

PRACTICE PROBLEM 1-2  What is the load voltage in Fig. 1-7a when the load resistance equals 10 kV?

Figure 1-7  Solution.
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1-5 Thevenin’s Theorem
Every once in a while, somebody makes a big breakthrough in engineering and 

carries all of us to a new high. A French engineer, M. L. Thevenin, made one of 

these quantum leaps when he derived the circuit theorem named after him: The-

venin’s theorem.

Defi nition of Thevenin Voltage and Resistance
A theorem is a statement that we can prove mathematically. Because of this, it 

is not a defi nition or a law. So, we classify it as a derivation. Recall the following 

ideas about Thevenin’s theorem from earlier courses. In Fig. 1-8a, the Thevenin 
voltage VTH is defi ned as the voltage across the load terminals when the load 

 resistor is open. Because of this, the Thevenin voltage is sometimes called the 

open-circuit voltage. As a defi nition:

Thevenin voltage: VTH 5 VOC (1-5)

 The Thevenin resistance is defi ned as the resistance that an ohmmeter 

measures across the load terminals of Fig. 1-8a when all sources are reduced to 

zero and the load resistor is open. As a defi nition:

Thevenin resistance: RTH 5 ROC (1-6)

With these two defi nitions, Thevenin was able to derive the famous theorem 

named after him.

 There is a subtle point in fi nding the Thevenin resistance. Reducing a 

source to zero has different meanings for voltage and current sources. When you 

reduce a voltage source to zero, you are effectively replacing it with a short be-

cause that’s the only way to guarantee zero voltage when a current fl ows through 

the voltage source. When you reduce a current source to zero, you are effectively 

 replacing it with an open because that’s the only way you can guarantee zero 

 current when there is a voltage across the current source. To summarize:

To zero a voltage source, replace it with a short.
To zero a current source, replace it with an open.

The Derivation
What is Thevenin’s theorem? Look at Fig. 1-8a. This black box can contain 

any circuit with dc sources and linear resistances. (A linear resistance does not 

change with increasing voltage.) Thevenin was able to prove that no matter how 

Application Example 1-3
When you analyze transistor circuits, you will visualize a transistor as a current 

source. In a well-designed circuit, the transistor will act like a stiff current source, 

so you can ignore its internal resistance. Then you can calculate the load  voltage. 

For instance, if a transistor is pumping 2 mA through a load resistance of 10 kV, 

the load voltage is 20 V.

(a)

(b)

B

A 

ANY CIRCUIT WITH

DC SOURCES AND

LINEAR RESISTANCES

RL

B

A

RL

RTH
VTH

–

+

Figure 1-8  (a) Black box has a 

linear circuit inside of it; (b) Thevenin 

circuit.
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 complicated the circuit inside the black box of Fig. 1-8a was, it would produce 

exactly the same load current as the simple circuit of Fig. 1-8b. As a derivation:

IL 5   
VTH _________ RTH 1 RL

   (1-7)

 Let the idea sink in. Thevenin’s theorem is a powerhouse tool. Engineers 

and technicians use the theorem constantly. Electronics could not possibly be 

where it is today without Thevenin’s theorem. It not only simplifi es calculations, 

it enables us to explain circuit operation that would be impossible to explain with 

only Kirchhoff equations.

Example 1-4
What are the Thevenin voltage and resistance in Fig. 1-9a?

SOLUTION  First, calculate the Thevenin voltage. To do this, you have to 

open the load resistor. Opening the load resistance is equivalent to removing it 

from the circuit, as shown in Fig. 1-9b. Since 8 mA fl ows through 6 kV in series 

with 3 kV, 24 V will appear across the 3 kV. With no current through the 4 kV, 

24 V will  appear across the AB terminals. Therefore:

VTH 5 24 V

 Second, get the Thevenin resistance. Reducing a dc source to zero is 

equivalent to replacing it with a short, as shown in Fig. 1-9c. If we connect an 

ohmmeter across the AB terminals of Fig. 1-9c, what will it read?

 It will read 6 kV. Why? Because looking back into the AB terminals with 

the battery shorted, the ohmmeter sees 4 kV in series with a parallel connection of 

3 kV and 6 kV. We can write:

RTH 5 4 kV 1   
3 kV 3 6 kV

  ___________
  

3 kV 1 6 kV
   5 6 kV

The product over sum of 3 kV and 6 kV is 2 kV, which, added to 4 kV, gives 6 kV.

 Again, we need a new defi nition. Parallel connections occur so often in 

electronics that most people use a shorthand notation for them. From now on, we 

will use the following notation:

i 5 in parallel with

Whenever you see two vertical bars in an equation, it means in parallel with. In 

the electronics industry, you will see the foregoing equation for Thevenin resist-

ance  written like this:

RTH 5 4 kV 1 (3 kV i 6 kV) 5 6 kV

Most engineers and technicians know that the vertical bars mean in  parallel with, 
so they automatically use product over sum or reciprocal method to calculate the 

equivalent resistance of 3 kV and 6 kV.

 Figure 1-10 shows the Thevenin circuit with a load resistor. Compare this 

simple circuit with the original circuit of Fig. 1-9a. Can you see how much easier 

Figure 1-9  (a) Original circuit; 

(b) open-load resistor to get Thevenin 

voltage; (c) reduce source to zero to 

get Thevenin resistance.
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it will be to calculate the load current for different load resistances? If not, the next 

example will drive the point home.

PRACTICE PROBLEM 1-4  Using Thevenin’s theorem, what is the load 

current in Fig. 1-9a for the following values of RL: 2 kV, 6 kV, and 18 kV?

 If you really want to appreciate the power of Thevenin’s theorem, try 

calculating the foregoing currents using the original circuit of Fig. 1-9a and any 

other method.

Figure 1-10  Thevenin circuit for 

Fig. 1-9a.

24 V RL

RTH
6 kΩ A

B
–

+

Application Example 1-5
A breadboard is a circuit often built with solderless connections without regard to 

the fi nal location of parts to prove the feasibility of a design. Suppose you have the 

circuit of Fig. 1-11a breadboarded on a lab bench. How would you measure the 

Thevenin voltage and resistance?

SOLUTION  Start by replacing the load resistor with a multimeter, as shown 

in Fig. 1-11b. After you set the multimeter to read volts, it will indicate 9 V. This is 

the Thevenin voltage. Next, replace the dc source with a short (Fig. 1-11c). Set the 

multimeter to read ohms, and it will indicate 1.5 kV. This is the Thevenin  resistance.

 Are there any sources of error in the foregoing measurements? Yes: The 

one thing to watch out for is the input impedance of the multimeter when voltage is 

measured. Because this input impedance is across the measured terminals, a small 

current fl ows through the multimeter. For instance, if you use a moving-coil multi-

meter, the typical sensitivity is 20 kV per volt. On the 10-V range, the voltmeter 

has an input resistance of 200 kV. This will load the circuit down slightly and 

decrease the load voltage from 9 to 8.93 V.

 As a guideline, the input impedance of the voltmeter should be at least 

100 times greater than the Thevenin resistance. Then, the loading error is less 

than 1 percent. To avoid loading error, use a digital multimeter (DMM) instead 
of a moving-coil multimeter. The input impedance of a DMM is at least 10 MV, 

which usually eliminates loading error. Loading error can also be produced when 

taking measurements with an oscilloscope. That is why in high-impedance cir-

cuits, a 103 probe should be used.

–

+

(a)

–

+

(a)

–

+

Figure 1-11  (a) Circuit on lab bench; (b) measuring Thevenin voltage; (c) measuring Thevenin resistance.
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Figure 1-11  (continued)

(b)

–

+

(b)

–

+

(c)(c)

1-6 Norton’s Theorem
Recall the following ideas about Norton’s theorem from earlier courses. In 

Fig.  1-12a, the Norton current IN is defi ned as the load current when the load 

resistor is shorted. Because of this, the Norton current is sometimes called the 
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short- circuit c urrent. As a defi nition:

Norton current: IN 5 ISC (1-8)

 The Norton resistance is the resistance that an ohmmeter measures 

across the load terminals when all sources are reduced to zero and the load resistor 

is open. As a defi nition:

Norton resistance: RN 5 ROC (1-9)

Since Thevenin resistance also equals ROC, we can write:

RN 5 RTH (1-10)

This derivation says that Norton resistance equals Thevenin resistance. If you 

 calculate a Thevenin resistance of 10 kV, you immediately know that the Norton 

resistance equals 10 kV.

Basic Idea
What is Norton’s theorem? Look at Fig. 1-12a. This black box can contain any 

 circuit with dc sources and linear resistances. Norton proved that the circuit inside 

the black box of Fig. 1-12a would produce exactly the same load voltage as the 

simple circuit of Fig. 1-12b. As a derivation, Norton’s theorem looks like this:

VL 5 IN(RN i RL) (1-11)

In words: The load voltage equals the Norton current times the Norton resistance 

in parallel with the load resistance.

 Earlier we saw that Norton resistance equals Thevenin resistance. But 

notice the difference in the location of the resistors: Thevenin resistance is always 

in series with a voltage source; Norton resistance is always in parallel with a cur-

rent source.

 Note: If you are using electron fl ow, keep the following in mind. In the 

electronics  industry, the arrow inside the current source is almost always drawn in 

the direction of conventional current. The exception is a current source drawn with 

a dashed arrow instead of a solid arrow. In this case, the source pumps  electrons 

in the  direction of the dashed arrow.

The Derivation
Norton’s theorem can be derived from the duality principle. It states that for any 

theorem in electrical circuit analysis, there is a dual (opposite) theorem in which 

GOOD TO KNOW
Like Thevenin’s theorem, 

Norton’s theorem can be 

applied to ac circuits  containing 

inductors, capacitors, and 

resistors. For ac circuits, the 

Norton current IN is usually 

stated as a complex number 

in polar form, whereas the 

 Norton impedance ZN is usually 

 expressed as a complex number 

in rectangular form.

(a)

(b)

B

A

ANY CIRCUIT WITH

DC SOURCES AND

LINEAR RESISTANCES

RL

B

A

RLRNIN

Figure 1-12  (a) Black box has a linear circuit inside of it; (b) Norton circuit.
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one replaces the original quantities with dual quantities. Here is a brief list of dual 

quantities:

Voltage  Current

Voltage source  Current source

Series  Parallel

Series resistance  Parallel resistance

Figure 1-13 summarizes the duality principle as it applies to Thevenin and Norton 

circuits. It means that we can use either circuit in our calculations. As you will see 

later, both equivalent circuits are useful. Sometimes, it is easier to use Thevenin. 

At other times, we use Norton. It depends on the specifi c problem. Summary 

Table 1-2 shows the steps for getting the Thevenin and Norton quantities.

Summary Table 1-2 Thevenin and Norton 
Values

Process Thevenin Norton

Step 1 Open the load resistor. Short the load resistor.

Step 2 Calculate or measure the 
open-circuit voltage. This 
is the Thevenin voltage.

Calculate or measure the 
short-circuit current. This is 
the Norton current.

Step 3 Short voltage sources 
and open current 
sources.

Short voltage sources, open 
current sources, and open 
load resistor.

Step 4 Calculate or measure the 
open-circuit resistance. 
This is the Thevenin 
resistance.

Calculate or measure the 
open-circuit resistance. This 
is the Norton resistance.

RNVTH

RTH A

B

A

B

VTH

RTH

RN

A

B

A

B

(a)

(b)

RTH�RN

VTH�INRN

IN

IN

VTH

RTH
IN�

RN�RTH
–

+

–

+

Figure 1-13  Duality principle: Thevenin’s theorem implies Norton’s theorem and vice versa. (a) Converting Thevenin to 

Norton; (b) converting Norton to Thevenin.
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Relationships Between Thevenin 
and Norton Circuits
We already know that the Thevenin and Norton resistances are equal in value but 

different in location: Thevenin resistance is in series with a voltage source, and 

Norton resistance is in parallel with a current source.

 We can derive two more relationships, as follows. We can convert any 

Thevenin circuit to a Norton circuit, as shown in Fig. 1-13a. The proof is straightfor-

ward. Short the AB terminals of the Thevenin circuit, and you get the Norton current:

IN 5   
VTH ____ RTH

   (1-12)

This derivation says that the Norton current equals the Thevenin voltage divided 

by the Thevenin resistance.

 Similarly, we can convert any Norton circuit to a Thevenin circuit, as 

shown in Fig. 1-13b. The open-circuit voltage is:

VTH 5 INRN (1-13)

This derivation says that the Thevenin voltage equals the Norton current times the 

Norton resistance.

 Figure 1-13 summarizes the equations for converting either circuit into 

the other.

Example 1-6
Suppose that we have reduced a complicated circuit to the Thevenin circuit shown 

in Fig. 1-14a. How can we convert this to a Norton circuit?

Figure 1-14  Calculating Norton current.

2 kΩ

B

(a)

10 V

A 2 kΩ

(b)

10 V

B

(c)

A

5 mA 2 kΩ
–

+

–

+

SOLUTION  Use Eq. (1-12) to get:

IN 5   
10 V

 _____
 

2 kV
   5 5 mA

Figure 1-14c shows the Norton circuit.

 Most engineers and technicians forget Eq. (1-12) soon after they leave 

school. But they always remember how to solve the same problem using Ohm’s 

law. Here is what they do. Look at Fig. 1-14a. Visualize a short across the AB 

terminals, as shown in Fig. 1-14b. The short-circuit current equals the Norton 

current:

IN 5   
10 V

 _____
 

2 kV
   5 5 mA

This is the same result, but calculated with Ohm’s law applied to the Thevenin 

 circuit. Figure 1-15 summarizes the idea. This memory aid will help you calculate 

the Norton current, given the Thevenin circuit.



20 Chapter 1

PRACTICE PROBLEM 1-6  If the Thevenin resistance of Fig. 1-14a is 

5 kV, determine the Norton current value.

Figure 1-15  A memory aid for Norton current.

VTH

RTH A

B

VTH

RTH
IN�

–

+

1-7 Troubleshooting
Troubleshooting means fi nding out why a circuit is not doing what it is supposed 

to do. The most common troubles are opens and shorts. Devices like transistors 

can become open or shorted in a number of ways. One way to destroy any transis-

tor is by exceeding its maximum-power rating.

 Resistors become open when their power dissipation is excessive. But 

you can get a shorted resistor indirectly as follows. During the stuffi ng and sol-

dering of printed-circuit boards, an undesirable splash of solder may connect two 

nearby conducting lines. Known as a solder bridge, this effectively shorts any 

 device between the two conducting lines. On the other hand, a poor solder con-

nection usually means no connection at all. This is known as a cold-solder joint 
and means that the device is open.

 Besides opens and shorts, anything is possible. For instance, temporar-

ily applying too much heat to a resistor may permanently change the resistance 

by several percent. If the value of resistance is critical, the circuit may not work 

properly after the heat shock.

 And then there is the troubleshooter’s nightmare: the intermittent trou-

ble. This kind of trouble is diffi cult to isolate because it appears and disappears. 

It may be a cold-solder joint that alternately makes and breaks a contact, or a 

loose cable connector, or any similar trouble that causes on-again, off-again 

 operation.

An Open Device
Always remember these two facts about an open device:

The current through an open device is zero.
The voltage across it is unknown.

The fi rst statement is true because an open device has infi nite resistance. No 

 current can exist in an infi nite resistance. The second statement is true because 

of Ohm’s law:

V 5 IR 5 (0)(`)
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In this equation, zero times infi nity is mathematically indeterminate. You have to 

fi gure out what the voltage is by looking at the rest of the circuit.

A Shorted Device
A shorted device is exactly the opposite. Always remember these two statements 

about a shorted device:

The voltage across a shorted device is zero.
The current through it is unknown.

The fi rst statement is true because a shorted device has zero resistance. No voltage 

can exist across zero resistance. The second statement is true because of Ohm’s 

law:

I 5   
V __ R   5   

0
 __
 

0
  

Zero divided by zero is mathematically meaningless. You have to fi gure out what 

the current is by looking at the rest of the circuit.

Procedure
Normally, you measure voltages with respect to ground. From these measurements 

and your knowledge of basic electricity, you can usually deduce the trouble. After 

you have isolated a component as the top suspect, you can unsolder or disconnect 

the component and use an ohmmeter or other instrument for confi rmation.

Normal Values
In Fig. 1-16, a stiff voltage divider consisting of R1 and R2 drives resistors R3 and 

R4 in series. Before you can troubleshoot this circuit, you have to know what the 

normal voltages are. The fi rst thing to do, therefore, is to work out the values of VA

and VB. The fi rst is the voltage between A and ground. The second is the voltage 

 between B and ground. Because R1 and R2 are much smaller than R3 and R4 (10 V

versus 100 kV), the stiff voltage at A is approximately 16 V. Furthermore, since 

R3 and R4 are equal, the voltage at B is approximately 13 V. When this circuit is 

 trouble free, you will measure 6 V between A and ground, and 3 V between B and 

ground. These two voltages are the fi rst entry of Summary Table 1-3.

R1 Open
When R1 is open, what do you think happens to the voltages? Since no current can 

fl ow through the open R1, no current can fl ow through R2. Ohm’s law tells us the 

voltage across R2 is zero. Therefore, VA 5 0 and VB 5 0, as shown in Summary 

Table 1-3 for R1 open.

R2 Open
When R2 is open, what happens to the voltages? Since no current can fl ow through 

the open R2, the voltage at A is pulled up toward the supply voltage. Since R1 is 

much smaller than R3 and R4, the voltage at A is approximately 12 V. Since R3 and 

R4 are equal, the voltage at B becomes 6 V. This is why VA 5 12 V and VB 5 6 V, 

as shown in Summary Table 1-3 for an R2 open.

Figure 1-16  Voltage divider 

and load used in troubleshooting 

discussion.

R1

DC

A B

10 Ω
R2

R3

R4

100 kΩ

100 kΩ

10 Ω

+12 V
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Remaining Troubles
If ground C is open, no current can pass through R2. This is equivalent to an open 

R2. This is why the trouble C open has VA 5 12 V and VB 5 6 V in Summary 

Table 1-3.

 You should work out all of the remaining entries in Summary Table 1-3, 

making sure that you understand why each voltage exists for the given trouble.

Summary Table 1-3 Troubles and Clues

Trouble VA VB

Circuit OK 6 V 3 V

R1 open 0 0 

R2 open 12 V 6 V

R3 open 6 V 0 

R4 open 6 V 6 V

C open 12 V 6 V

D open 6 V 6 V

R1 shorted 12 V 6 V

R2 shorted 0  0 

R3 shorted 6 V 6 V

R4 shorted 6 V 0

Example 1-7
In Fig. 1-16, you measure VA 5 0 and VB 5 0. What is the trouble?

SOLUTION  Look at Summary Table 1-3. As you can see, two troubles are 

possible: R1 open or R2 shorted. Both of these produce zero voltage at points A 

and B. To  isolate the trouble, you can disconnect R1 and measure it. If it measures 

open, you have found the trouble. If it measures OK, then R2 is the trouble.

PRACTICE PROBLEM 1-7  What could the possible troubles be if you 

measure VA 5 12 V and VB 5 6 V in Fig. 1-16?




