
1

Chapter

Basic concepts and
computer evolution

1.1 Organization and Architecture

1.2 Structure and Function
Function
Structure

1.3 A Brief History of Computers
The First Generation: Vacuum Tubes
The Second Generation: Transistors
The Third Generation: Integrated Circuits
Later Generations

1.4 The Evolution of the Intel x86 Architecture

1.5 Embedded Systems
The Internet of Things
Embedded Operating Systems
Application Processors versus Dedicated Processors
Microprocessors versus Microcontrollers
Embedded versus Deeply Embedded Systems

1.6 ARM Architecture
ARM Evolution
Instruction Set Architecture
ARM Products

1.7 Cloud Computing
Basic Concepts
Cloud Services

1.8 Key Terms, Review Questions, and Problems

Part One introduction

2 Chapter 1 / BasiC ConCepts and Computer evolution

 1.1 OrganizatiOn and architecture

In describing computers, a distinction is often made between computer architec-
ture and computer organization. Although it is difficult to give precise definitions
for these terms, a consensus exists about the general areas covered by each. For
example, see [VRAN80], [SIEW82], and [BELL78a]; an interesting alternative view
is presented in [REDD76].

Computer architecture refers to those attributes of a system visible to a pro-
grammer or, put another way, those attributes that have a direct impact on the
logical execution of a program. A term that is often used interchangeably with com-
puter architecture is instruction set architecture (ISA). The ISA defines instruction
formats, instruction opcodes, registers, instruction and data memory; the effect of
executed instructions on the registers and memory; and an algorithm for control-
ling instruction execution. Computer organization refers to the operational units
and their interconnections that realize the architectural specifications. Examples of
architectural attributes include the instruction set, the number of bits used to repre-
sent various data types (e.g., numbers, characters), I/O mechanisms, and techniques
for addressing memory. Organizational attributes include those hardware details
transparent to the programmer, such as control signals; interfaces between the com-
puter and peripherals; and the memory technology used.

For example, it is an architectural design issue whether a computer will have
a multiply instruction. It is an organizational issue whether that instruction will be
implemented by a special multiply unit or by a mechanism that makes repeated
use of the add unit of the system. The organizational decision may be based on the
anticipated frequency of use of the multiply instruction, the relative speed of the
two approaches, and the cost and physical size of a special multiply unit.

Historically, and still today, the distinction between architecture and organ-
ization has been an important one. Many computer manufacturers offer a family of
computer models, all with the same architecture but with differences in organization.
Consequently, the different models in the family have different price and perform-
ance characteristics. Furthermore, a particular architecture may span many years
and encompass a number of different computer models, its organization changing
with changing technology. A prominent example of both these phenomena is the
IBM System/370 architecture. This architecture was first introduced in 1970 and

Learning Objectives

After studying this chapter, you should be able to:

 r Explain the general functions and structure of a digital computer.
 r Present an overview of the evolution of computer technology from early
digital computers to the latest microprocessors.

 r Present an overview of the evolution of the x86 architecture.
 r Define embedded systems and list some of the requirements and constraints
that various embedded systems must meet.

1.2 / struCture and FunCtion 3

included a number of models. The customer with modest requirements could buy a
cheaper, slower model and, if demand increased, later upgrade to a more expensive,
faster model without having to abandon software that had already been developed.
Over the years, IBM has introduced many new models with improved technology
to replace older models, offering the customer greater speed, lower cost, or both.
These newer models retained the same architecture so that the customer’s soft-
ware investment was protected. Remarkably, the System/370 architecture, with a
few enhancements, has survived to this day as the architecture of IBM’s mainframe
product line.

In a class of computers called microcomputers, the relationship between archi-
tecture and organization is very close. Changes in technology not only influence
organization but also result in the introduction of more powerful and more complex
architectures. Generally, there is less of a requirement for generation- to- generation
compatibility for these smaller machines. Thus, there is more interplay between
organizational and architectural design decisions. An intriguing example of this is
the reduced instruction set computer (RISC), which we examine in Chapter 15.

This book examines both computer organization and computer architecture.
The emphasis is perhaps more on the side of organization. However, because a
computer organization must be designed to implement a particular architectural
specification, a thorough treatment of organization requires a detailed examination
of architecture as well.

 1.2 Structure and FunctiOn

A computer is a complex system; contemporary computers contain millions of
elementary electronic components. How, then, can one clearly describe them? The
key is to recognize the hierarchical nature of most complex systems, including the
computer [SIMO96]. A hierarchical system is a set of interrelated subsystems, each
of the latter, in turn, hierarchical in structure until we reach some lowest level of
elementary subsystem.

The hierarchical nature of complex systems is essential to both their design
and their description. The designer need only deal with a particular level of the
system at a time. At each level, the system consists of a set of components and
their interrelationships. The behavior at each level depends only on a simplified,
abstracted characterization of the system at the next lower level. At each level, the
designer is concerned with structure and function:

 ■ Structure: The way in which the components are interrelated.
 ■ Function: The operation of each individual component as part of the structure.

In terms of description, we have two choices: starting at the bottom and build-
ing up to a complete description, or beginning with a top view and decomposing the
system into its subparts. Evidence from a number of fields suggests that the top-
 down approach is the clearest and most effective [WEIN75].

The approach taken in this book follows from this viewpoint. The computer
system will be described from the top down. We begin with the major components
of a computer, describing their structure and function, and proceed to successively

4 Chapter 1 / BasiC ConCepts and Computer evolution

lower layers of the hierarchy. The remainder of this section provides a very brief
overview of this plan of attack.

Function

Both the structure and functioning of a computer are, in essence, simple. In general
terms, there are only four basic functions that a computer can perform:

 ■ Data processing: Data may take a wide variety of forms, and the range of pro-
cessing requirements is broad. However, we shall see that there are only a few
fundamental methods or types of data processing.

 ■ Data storage: Even if the computer is processing data on the fly (i.e., data
come in and get processed, and the results go out immediately), the computer
must temporarily store at least those pieces of data that are being worked on
at any given moment. Thus, there is at least a short- term data storage function.
Equally important, the computer performs a long- term data storage function.
Files of data are stored on the computer for subsequent retrieval and update.

 ■ Data movement: The computer’s operating environment consists of devices
that serve as either sources or destinations of data. When data are received
from or delivered to a device that is directly connected to the computer, the
process is known as input– output (I/O), and the device is referred to as a
peripheral. When data are moved over longer distances, to or from a remote
device, the process is known as data communications.

 ■ Control: Within the computer, a control unit manages the computer’s
resources and orchestrates the performance of its functional parts in response
to instructions.

The preceding discussion may seem absurdly generalized. It is certainly
possible, even at a top level of computer structure, to differentiate a variety of func-
tions, but to quote [SIEW82]:

There is remarkably little shaping of computer structure to fit the
function to be performed. At the root of this lies the general- purpose
nature of computers, in which all the functional specialization occurs
at the time of programming and not at the time of design.

Structure

We now look in a general way at the internal structure of a computer. We begin with
a traditional computer with a single processor that employs a microprogrammed
control unit, then examine a typical multicore structure.

simple single- processor computer Figure 1.1 provides a hierarchical view
of the internal structure of a traditional single- processor computer. There are four
main structural components:

 ■ Central processing unit (CPU): Controls the operation of the computer and
performs its data processing functions; often simply referred to as processor.

 ■ Main memory: Stores data.

1.2 / struCture and FunCtion 5

 ■ I/O: Moves data between the computer and its external environment.
 ■ System interconnection: Some mechanism that provides for communication

among CPU, main memory, and I/O. A common example of system intercon-
nection is by means of a system bus, consisting of a number of conducting
wires to which all the other components attach.

There may be one or more of each of the aforementioned components. Tra-
ditionally, there has been just a single processor. In recent years, there has been
increasing use of multiple processors in a single computer. Some design issues relat-
ing to multiple processors crop up and are discussed as the text proceeds; Part Five
focuses on such computers.

Main
memory

I/O

CPU

COMPUTER

System
bus

ALU
Registers

Control
unit

CPU

Internal
bus

Control unit
registers and
decoders

CONTROL
UNIT

Sequencing
logic

Control
memory

Figure 1.1 The Computer: Top- Level Structure

6 Chapter 1 / BasiC ConCepts and Computer evolution

Each of these components will be examined in some detail in Part Two. How-
ever, for our purposes, the most interesting and in some ways the most complex
component is the CPU. Its major structural components are as follows:

 ■ Control unit: Controls the operation of the CPU and hence the computer.
 ■ Arithmetic and logic unit (ALU): Performs the computer’s data processing

functions.
 ■ Registers: Provides storage internal to the CPU.
 ■ CPU interconnection: Some mechanism that provides for communication

among the control unit, ALU, and registers.

Part Three covers these components, where we will see that complexity is added by
the use of parallel and pipelined organizational techniques. Finally, there are sev-
eral approaches to the implementation of the control unit; one common approach is
a microprogrammed implementation. In essence, a microprogrammed control unit
operates by executing microinstructions that define the functionality of the control
unit. With this approach, the structure of the control unit can be depicted, as in
 Figure 1.1. This structure is examined in Part Four.

multicore computer structure As was mentioned, contemporary
computers generally have multiple processors. When these processors all reside
on a single chip, the term multicore computer is used, and each processing unit
(consisting of a control unit, ALU, registers, and perhaps cache) is called a core. To
clarify the terminology, this text will use the following definitions.

 ■ Central processing unit (CPU): That portion of a computer that fetches and
executes instructions. It consists of an ALU, a control unit, and registers.
In a system with a single processing unit, it is often simply referred to as a
processor.

 ■ Core: An individual processing unit on a processor chip. A core may be equiv-
alent in functionality to a CPU on a single- CPU system. Other specialized pro-
cessing units, such as one optimized for vector and matrix operations, are also
referred to as cores.

 ■ Processor: A physical piece of silicon containing one or more cores. The
processor is the computer component that interprets and executes instruc-
tions. If a processor contains multiple cores, it is referred to as a multicore
processor.

After about a decade of discussion, there is broad industry consensus on this usage.
Another prominent feature of contemporary computers is the use of multiple

layers of memory, called cache memory, between the processor and main memory.
Chapter 4 is devoted to the topic of cache memory. For our purposes in this section,
we simply note that a cache memory is smaller and faster than main memory and is
used to speed up memory access, by placing in the cache data from main memory,
that is likely to be used in the near future. A greater performance improvement may
be obtained by using multiple levels of cache, with level 1 (L1) closest to the core
and additional levels (L2, L3, and so on) progressively farther from the core. In this
scheme, level n is smaller and faster than level n + 1.

1.2 / struCture and FunCtion 7

Figure 1.2 is a simplified view of the principal components of a typical mul-
ticore computer. Most computers, including embedded computers in smartphones
and tablets, plus personal computers, laptops, and workstations, are housed on a
motherboard. Before describing this arrangement, we need to define some terms.
A printed circuit board (PCB) is a rigid, flat board that holds and interconnects
chips and other electronic components. The board is made of layers, typically two
to ten, that interconnect components via copper pathways that are etched into
the board. The main printed circuit board in a computer is called a system board
or motherboard, while smaller ones that plug into the slots in the main board are
called expansion boards.

The most prominent elements on the motherboard are the chips. A chip is
a single piece of semiconducting material, typically silicon, upon which electronic
circuits and logic gates are fabricated. The resulting product is referred to as an
integrated circuit.

MOTHERBOARD

PROCESSOR CHIP

CORE

Processor
chip

Main memory chips

I/O chips

Core

L3 cache

Instruction
logic

L1 I-cache

L2 instruction
cache

L2 data
cache

L1 data cache

Arithmetic
and logic

unit (ALU)

Load/
store logic

L3 cache

Core Core Core

Core Core Core Core

Figure 1.2 Simplified View of Major Elements of a Multicore Computer

8 Chapter 1 / BasiC ConCepts and Computer evolution

The motherboard contains a slot or socket for the processor chip, which typ-
ically contains multiple individual cores, in what is known as a multicore processor.
There are also slots for memory chips, I/O controller chips, and other key computer
components. For desktop computers, expansion slots enable the inclusion of more
components on expansion boards. Thus, a modern motherboard connects only a
few individual chip components, with each chip containing from a few thousand up
to hundreds of millions of transistors.

Figure 1.2 shows a processor chip that contains eight cores and an L3 cache.
Not shown is the logic required to control operations between the cores and the
cache and between the cores and the external circuitry on the motherboard. The
figure indicates that the L3 cache occupies two distinct portions of the chip surface.
However, typically, all cores have access to the entire L3 cache via the aforemen-
tioned control circuits. The processor chip shown in Figure 1.2 does not represent
any specific product, but provides a general idea of how such chips are laid out.

Next, we zoom in on the structure of a single core, which occupies a portion of
the processor chip. In general terms, the functional elements of a core are:

 ■ Instruction logic: This includes the tasks involved in fetching instructions,
and decoding each instruction to determine the instruction operation and the
memory locations of any operands.

 ■ Arithmetic and logic unit (ALU): Performs the operation specified by an
instruction.

 ■ Load/store logic: Manages the transfer of data to and from main memory via
cache.

The core also contains an L1 cache, split between an instruction cache
(I- cache) that is used for the transfer of instructions to and from main memory, and
an L1 data cache, for the transfer of operands and results. Typically, today’s pro-
cessor chips also include an L2 cache as part of the core. In many cases, this cache
is also split between instruction and data caches, although a combined, single L2
cache is also used.

Keep in mind that this representation of the layout of the core is only intended
to give a general idea of internal core structure. In a given product, the functional
elements may not be laid out as the three distinct elements shown in Figure 1.2,
especially if some or all of these functions are implemented as part of a micropro-
grammed control unit.

examples It will be instructive to look at some real- world examples that
illustrate the hierarchical structure of computers. Figure 1.3 is a photograph of the
motherboard for a computer built around two Intel Quad- Core Xeon processor
chips. Many of the elements labeled on the photograph are discussed subsequently
in this book. Here, we mention the most important, in addition to the processor
sockets:

 ■ PCI- Express slots for a high- end display adapter and for additional peripher-
als (Section 3.6 describes PCIe).

 ■ Ethernet controller and Ethernet ports for network connections.
 ■ USB sockets for peripheral devices.

1.2 / struCture and FunCtion 9

2x Quad-Core Intel® Xeon® Processors
with Integrated Memory Controllers

Six Channel DDR3-1333 Memory
Interfaces Up to 48GB

Intel® 3420
Chipset

Serial ATA/300 (SATA)
Interfaces

2x USB 2.0
Internal

2x Ethernet Ports
10/100/1000Base-T

Ethernet Controller

ClockPCI Express®

Connector A
PCI Express®

Connector B
Power & Backplane I/O

Connector C

VGA Video Output

BIOS

2x USB 2.0
External

Figure 1.3 Motherboard with Two Intel Quad- Core Xeon Processors
Source: Chassis Plans, www.chassis-plans.com

 ■ Serial ATA (SATA) sockets for connection to disk memory (Section 7.7
 discusses Ethernet, USB, and SATA).

 ■ Interfaces for DDR (double data rate) main memory chips (Section 5.3
 discusses DDR).

 ■ Intel 3420 chipset is an I/O controller for direct memory access operations
between peripheral devices and main memory (Section 7.5 discusses DDR).

Following our top- down strategy, as illustrated in Figures 1.1 and 1.2, we can
now zoom in and look at the internal structure of a processor chip. For variety, we
look at an IBM chip instead of the Intel processor chip. Figure 1.4 is a photograph
of the processor chip for the IBM zEnterprise EC12 mainframe computer. This chip
has 2.75 billion transistors. The superimposed labels indicate how the silicon real
estate of the chip is allocated. We see that this chip has six cores, or processors.
In addition, there are two large areas labeled L3 cache, which are shared by all six
processors. The L3 control logic controls traffic between the L3 cache and the cores
and between the L3 cache and the external environment. Additionally, there is stor-
age control (SC) logic between the cores and the L3 cache. The memory controller
(MC) function controls access to memory external to the chip. The GX I/O bus
controls the interface to the channel adapters accessing the I/O.

Going down one level deeper, we examine the internal structure of a single
core, as shown in the photograph of Figure 1.5. Keep in mind that this is a portion
of the silicon surface area making up a single- processor chip. The main sub- areas
within this core area are the following:

 ■ ISU (instruction sequence unit): Determines the sequence in which instructions
are executed in what is referred to as a superscalar architecture (Chapter 16).

 ■ IFU (instruction fetch unit): Logic for fetching instructions.

http:\\www.chassis-plans.com

10 Chapter 1 / BasiC ConCepts and Computer evolution

 ■ IDU (instruction decode unit): The IDU is fed from the IFU buffers, and is
responsible for the parsing and decoding of all z/Architecture operation codes.

 ■ LSU (load- store unit): The LSU contains the 96-kB L1 data cache,1 and man-
ages data traffic between the L2 data cache and the functional execution
units. It is responsible for handling all types of operand accesses of all lengths,
modes, and formats as defined in the z/Architecture.

 ■ XU (translation unit): This unit translates logical addresses from instructions
into physical addresses in main memory. The XU also contains a translation
lookaside buffer (TLB) used to speed up memory access. TLBs are discussed
in Chapter 8.

 ■ FXU (fixed- point unit): The FXU executes fixed- point arithmetic operations.
 ■ BFU (binary floating- point unit): The BFU handles all binary and hexadeci-

mal floating- point operations, as well as fixed- point multiplication operations.
 ■ DFU (decimal floating- point unit): The DFU handles both fixed- point and

 floating- point operations on numbers that are stored as decimal digits.
 ■ RU (recovery unit): The RU keeps a copy of the complete state of the sys-

tem that includes all registers, collects hardware fault signals, and manages the
hardware recovery actions.

Figure 1.4 zEnterprise EC12 Processor Unit
(PU) chip diagram
Source: IBM zEnterprise EC12 Technical Guide,
December 2013, SG24-8049-01. IBM, Reprinted by
Permission

Figure 1.5 zEnterprise EC12 Core layout
Source: IBM zEnterprise EC12 Technical Guide,
December 2013, SG24-8049-01. IBM, Reprinted by
Permission

1kB = kilobyte = 2048 bytes. Numerical prefixes are explained in a document under the “Other Useful”
tab at ComputerScienceStudent.com.

1.3 / a BrieF history oF Computers 11

 ■ COP (dedicated co- processor): The COP is responsible for data compression
and encryption functions for each core.

 ■ I- cache: This is a 64-kB L1 instruction cache, allowing the IFU to prefetch
instructions before they are needed.

 ■ L2 control: This is the control logic that manages the traffic through the two
L2 caches.

 ■ Data- L2: A 1-MB L2 data cache for all memory traffic other than instructions.
 ■ Instr- L2: A 1-MB L2 instruction cache.

As we progress through the book, the concepts introduced in this section will
become clearer.

 1.3 a BrieF hiStOry OF cOmputerS2

In this section, we provide a brief overview of the history of the development of
computers. This history is interesting in itself, but more importantly, provides a basic
introduction to many important concepts that we deal with throughout the book.

The First Generation: Vacuum Tubes

The first generation of computers used vacuum tubes for digital logic elements and
memory. A number of research and then commercial computers were built using
vacuum tubes. For our purposes, it will be instructive to examine perhaps the most
famous first- generation computer, known as the IAS computer.

A fundamental design approach first implemented in the IAS computer is
known as the stored- program concept. This idea is usually attributed to the mathem-
atician John von Neumann. Alan Turing developed the idea at about the same time.
The first publication of the idea was in a 1945 proposal by von Neumann for a new
computer, the EDVAC (Electronic Discrete Variable Computer).3

In 1946, von Neumann and his colleagues began the design of a new stored-
 program computer, referred to as the IAS computer, at the Princeton Institute for
Advanced Studies. The IAS computer, although not completed until 1952, is the
prototype of all subsequent general- purpose computers.4

Figure 1.6 shows the structure of the IAS computer (compare with Figure 1.1).
It consists of

 ■ A main memory, which stores both data and instructions5

 ■ An arithmetic and logic unit (ALU) capable of operating on binary data

2 This book’s Companion Web site (WilliamStallings.com/ComputerOrganization) contains several links
to sites that provide photographs of many of the devices and components discussed in this section.

4A 1954 report [GOLD54] describes the implemented IAS machine and lists the final instruction set. It
is available at box.com/COA10e.

3The 1945 report on EDVAC is available at box.com/COA10e.

5In this book, unless otherwise noted, the term instruction refers to a machine instruction that is directly
interpreted and executed by the processor, in contrast to a statement in a high- level language, such as Ada
or C++, which must first be compiled into a series of machine instructions before being executed.

12 Chapter 1 / BasiC ConCepts and Computer evolution

 ■ A control unit, which interprets the instructions in memory and causes them
to be executed

 ■ Input– output (I/O) equipment operated by the control unit

This structure was outlined in von Neumann’s earlier proposal, which is worth
quoting in part at this point [VONN45]:

2.2 First: Since the device is primarily a computer, it will
have to perform the elementary operations of arithmetic most fre-
quently. These are addition, subtraction, multiplication, and divi-
sion. It is therefore reasonable that it should contain specialized
organs for just these operations.

Control
circuits

Addresses

Control
signals

Instructions
and data

AC: Accumulator register
MQ: multiply-quotient register
MBR: memory buffer register
IBR: instruction buffer register
PC: program counter
MAR: memory address register
IR: insruction register

Instructions
and data

M(0)
M(1)
M(2)
M(3)
M(4)

M(4095)
M(4093)
M(4092)

MBR

Arithmetic-logic unit (CA)

Central processing unit (CPU)

Program control unit (CC)

Input-
output

equipment
(I, O)

Main
memory

(M)

AC MQ

Arithmetic-logic
circuits

IBRPC

IRMAR

Figure 1.6 IAS Structure

It must be observed, however, that while this principle as such
is probably sound, the specific way in which it is realized requires
close scrutiny. At any rate a central arithmetical part of the device will
probably have to exist, and this constitutes the first specific part: CA.

2.3 Second: The logical control of the device, that is, the
proper sequencing of its operations, can be most efficiently car-
ried out by a central control organ. If the device is to be elastic,
that is, as nearly as possible all purpose, then a distinction must
be made between the specific instructions given for and defining
a particular problem, and the general control organs that see to it
that these instructions— no matter what they are— are carried out.
The former must be stored in some way; the latter are represented
by definite operating parts of the device. By the central control we
mean this latter function only, and the organs that perform it form
the second specific part: CC.

2.4 Third: Any device that is to carry out long and compli-
cated sequences of operations (specifically of calculations) must
have a considerable memory . . .

The instructions which govern a complicated problem may
constitute considerable material, particularly so if the code is cir-
cumstantial (which it is in most arrangements). This material must
be remembered.

At any rate, the total memory constitutes the third specific
part of the device: M.

2.6 The three specific parts CA, CC (together C), and M cor-
respond to the associative neurons in the human nervous system. It
remains to discuss the equivalents of the sensory or afferent and the
motor or efferent neurons. These are the input and output organs of
the device.

The device must be endowed with the ability to maintain
input and output (sensory and motor) contact with some specific
medium of this type. The medium will be called the outside record-
ing medium of the device: R.

2.7 Fourth: The device must have organs to transfer informa-
tion from R into its specific parts C and M. These organs form its
input, the fourth specific part: I. It will be seen that it is best to make
all transfers from R (by I) into M and never directly from C.

2.8 Fifth: The device must have organs to transfer from its
specific parts C and M into R. These organs form its output, the
fifth specific part: O. It will be seen that it is again best to make all
transfers from M (by O) into R, and never directly from C.

With rare exceptions, all of today’s computers have this same general structure
and function and are thus referred to as von Neumann machines. Thus, it is worth-
while at this point to describe briefly the operation of the IAS computer [BURK46,
GOLD54]. Following [HAYE98], the terminology and notation of von Neumann

1.3 / a BrieF history oF Computers 13

14 Chapter 1 / BasiC ConCepts and Computer evolution

are changed in the following to conform more closely to modern usage; the exam-
ples accompanying this discussion are based on that latter text.

The memory of the IAS consists of 4,096 storage locations, called words, of
40 binary digits (bits) each.6 Both data and instructions are stored there. Numbers are
represented in binary form, and each instruction is a binary code. Figure 1.7 illustrates
these formats. Each number is represented by a sign bit and a 39-bit value. A word
may alternatively contain two 20-bit instructions, with each instruction consisting
of an 8-bit operation code (opcode) specifying the operation to be performed and
a 12-bit address designating one of the words in memory (numbered from 0 to 999).

The control unit operates the IAS by fetching instructions from memory
and executing them one at a time. We explain these operations with reference to
 Figure 1.6. This figure reveals that both the control unit and the ALU contain stor-
age locations, called registers, defined as follows:

 ■ Memory buffer register (MBR): Contains a word to be stored in memory or sent
to the I/O unit, or is used to receive a word from memory or from the I/O unit.

 ■ Memory address register (MAR): Specifies the address in memory of the word
to be written from or read into the MBR.

 ■ Instruction register (IR): Contains the 8-bit opcode instruction being executed.
 ■ Instruction buffer register (IBR): Employed to hold temporarily the right-

 hand instruction from a word in memory.
 ■ Program counter (PC): Contains the address of the next instruction pair to be

fetched from memory.
 ■ Accumulator (AC) and multiplier quotient (MQ): Employed to hold tem-

porarily operands and results of ALU operations. For example, the result

6There is no universal definition of the term word. In general, a word is an ordered set of bytes or bits
that is the normal unit in which information may be stored, transmitted, or operated on within a given
computer. Typically, if a processor has a fixed- length instruction set, then the instruction length equals
the word length.

(a) Number wordsign bit

0 39

(b) Instruction word

opcode (8 bits) address (12 bits)

left instruction (20 bits)

0 8 20 28 39

1

right instruction (20 bits)

opcode (8 bits) address (12 bits)

Figure 1.7 IAS Memory Formats

of multiplying two 40-bit numbers is an 80-bit number; the most significant
40 bits are stored in the AC and the least significant in the MQ.

The IAS operates by repetitively performing an instruction cycle, as shown in
Figure 1.8. Each instruction cycle consists of two subcycles. During the fetch cycle,
the opcode of the next instruction is loaded into the IR and the address portion is
loaded into the MAR. This instruction may be taken from the IBR, or it can be
obtained from memory by loading a word into the MBR, and then down to the IBR,
IR, and MAR.

Why the indirection? These operations are controlled by electronic circuitry
and result in the use of data paths. To simplify the electronics, there is only one reg-
ister that is used to specify the address in memory for a read or write and only one
register used for the source or destination.

1.3 / a BrieF history oF Computers 15

Start

Is next
instruction

in IBR?
MAR PC

MBR M(MAR)

IR IBR (0:7)
MAR IBR (8:19)

IR MBR (20:27)
MAR MBR (28:39)

Left
instruction
required?

IBR MBR (20:39)
IR MBR (0:7)

MAR MBR (8:19)

PC PC + 1

Yes

Yes

Yes

No

No

No

M(X) = contents of memory location whose address is X
(i:j) = bits i through j

No memory
access

required

Decode instruction in IR

AC M(X) Go to M(X, 0:19) If AC > 0 then
go to M(X, 0:19)

AC AC + M(X)

Is AC > 0?

MBR M(MAR) MBR M(MAR)PC MAR

AC MBR AC AC + MBR

Fetch
cycle

Execution
cycle

Figure 1.8 Partial Flowchart of IAS Operation

16 Chapter 1 / BasiC ConCepts and Computer evolution

Once the opcode is in the IR, the execute cycle is performed. Control circuitry
interprets the opcode and executes the instruction by sending out the appropri-
ate control signals to cause data to be moved or an operation to be performed by
the ALU.

The IAS computer had a total of 21 instructions, which are listed in Table 1.1.
These can be grouped as follows:

 ■ Data transfer: Move data between memory and ALU registers or between two
ALU registers.

 ■ Unconditional branch: Normally, the control unit executes instructions in
sequence from memory. This sequence can be changed by a branch instruc-
tion, which facilitates repetitive operations.

Table 1.1 The IAS Instruction Set

Instruction
Type Opcode

Symbolic
Representation Description

Data transfer

00001010 LOAD MQ Transfer contents of register MQ to the accumulator AC

00001001 LOAD MQ,M(X) Transfer contents of memory location X to MQ

00100001 STOR M(X) Transfer contents of accumulator to memory location X

00000001 LOAD M(X) Transfer M(X) to the accumulator

00000010 LOAD –M(X) Transfer –M(X) to the accumulator

00000011 LOAD |M(X)| Transfer absolute value of M(X) to the accumulator

00000100 LOAD –|M(X)| Transfer –|M(X)| to the accumulator

Unconditional
branch

00001101 JUMP M(X,0:19) Take next instruction from left half of M(X)

00001110 JUMP M(X,20:39) Take next instruction from right half of M(X)

Conditional
branch

00001111 JUMP + M(X,0:19) If number in the accumulator is nonnegative, take next
instruction from left half of M(X)

00010000 JUMP + M(X,20:39) If number in the accumulator is nonnegative, take next
instruction from right half of M(X)

Arithmetic

00000101 ADD M(X) Add M(X) to AC; put the result in AC

00000111 ADD |M(X)| Add |M(X)| to AC; put the result in AC

00000110 SUB M(X) Subtract M(X) from AC; put the result in AC

00001000 SUB |M(X)| Subtract |M(X)| from AC; put the remainder in AC

00001011 MUL M(X) Multiply M(X) by MQ; put most significant bits of result
in AC, put least significant bits in MQ

00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ and the
remainder in AC

00010100 LSH Multiply accumulator by 2; that is, shift left one bit position

00010101 RSH Divide accumulator by 2; that is, shift right one position

Address
modify

00010010 STOR M(X,8:19) Replace left address field at M(X) by 12 rightmost bits
of AC

00010011 STOR M(X,28:39) Replace right address field at M(X) by 12 rightmost bits
of AC

 ■ Conditional branch: The branch can be made dependent on a condition, thus
allowing decision points.

 ■ Arithmetic: Operations performed by the ALU.
 ■ Address modify: Permits addresses to be computed in the ALU and then

inserted into instructions stored in memory. This allows a program consider-
able addressing flexibility.

Table 1.1 presents instructions (excluding I/O instructions) in a symbolic,
 easy- to- read form. In binary form, each instruction must conform to the format of
Figure 1.7b. The opcode portion (first 8 bits) specifies which of the 21 instructions is
to be executed. The address portion (remaining 12 bits) specifies which of the 4,096
memory locations is to be involved in the execution of the instruction.

Figure 1.8 shows several examples of instruction execution by the control unit.
Note that each operation requires several steps, some of which are quite elaborate.
The multiplication operation requires 39 suboperations, one for each bit position
except that of the sign bit.

The Second Generation: Transistors

The first major change in the electronic computer came with the replacement of the
vacuum tube by the transistor. The transistor, which is smaller, cheaper, and gener-
ates less heat than a vacuum tube, can be used in the same way as a vacuum tube to
construct computers. Unlike the vacuum tube, which requires wires, metal plates, a
glass capsule, and a vacuum, the transistor is a solid- state device, made from silicon.

The transistor was invented at Bell Labs in 1947 and by the 1950s had launched
an electronic revolution. It was not until the late 1950s, however, that fully transis-
torized computers were commercially available. The use of the transistor defines
the second generation of computers. It has become widely accepted to classify com-
puters into generations based on the fundamental hardware technology employed
(Table 1.2). Each new generation is characterized by greater processing perfor-
mance, larger memory capacity, and smaller size than the previous one.

But there are other changes as well. The second generation saw the intro-
duction of more complex arithmetic and logic units and control units, the use of
 high- level programming languages, and the provision of system software with the

1.3 / a BrieF history oF Computers 17

Table 1.2 Computer Generations

Generation
Approximate

Dates Technology
Typical Speed

(operations per second)

1 1946–1957 Vacuum tube 40,000

2 1957–1964 Transistor 200,000

3 1965–1971 Small- and medium- scale
integration

1,000,000

4 1972–1977 Large scale integration 10,000,000

5 1978–1991 Very large scale integration 100,000,000

6 1991– Ultra large scale integration >1,000,000,000

18 Chapter 1 / BasiC ConCepts and Computer evolution

computer. In broad terms, system software provided the ability to load programs,
move data to peripherals, and libraries to perform common computations, similar
to what modern operating systems, such as Windows and Linux, do.

It will be useful to examine an important member of the second generation: the
IBM 7094 [BELL71]. From the introduction of the 700 series in 1952 to the introduc-
tion of the last member of the 7000 series in 1964, this IBM product line underwent
an evolution that is typical of computer products. Successive members of the product
line showed increased performance, increased capacity, and/or lower cost.

The size of main memory, in multiples of 210 36-bit words, grew from
2k (1k = 210) to 32k words,7 while the time to access one word of memory, the mem-
ory cycle time, fell from 30 ms to 1.4 ms. The number of opcodes grew from a modest
24 to 185.

Also, over the lifetime of this series of computers, the relative speed of the
CPU increased by a factor of 50. Speed improvements are achieved by improved
electronics (e.g., a transistor implementation is faster than a vacuum tube imple-
mentation) and more complex circuitry. For example, the IBM 7094 includes an
Instruction Backup Register, used to buffer the next instruction. The control unit
fetches two adjacent words from memory for an instruction fetch. Except for the
occurrence of a branching instruction, which is relatively infrequent (perhaps 10 to
15%), this means that the control unit has to access memory for an instruction on
only half the instruction cycles. This prefetching significantly reduces the average
instruction cycle time.

Figure 1.9 shows a large (many peripherals) configuration for an IBM 7094,
which is representative of second- generation computers. Several differences from
the IAS computer are worth noting. The most important of these is the use of data
channels. A data channel is an independent I/O module with its own processor and
instruction set. In a computer system with such devices, the CPU does not execute
detailed I/O instructions. Such instructions are stored in a main memory to be
executed by a special- purpose processor in the data channel itself. The CPU initi-
ates an I/O transfer by sending a control signal to the data channel, instructing it to
execute a sequence of instructions in memory. The data channel performs its task
independently of the CPU and signals the CPU when the operation is complete.
This arrangement relieves the CPU of a considerable processing burden.

Another new feature is the multiplexor, which is the central termination
point for data channels, the CPU, and memory. The multiplexor schedules access
to the memory from the CPU and data channels, allowing these devices to act
independently.

The Third Generation: Integrated Circuits

A single, self- contained transistor is called a discrete component. Throughout
the 1950s and early 1960s, electronic equipment was composed largely of discrete
 components— transistors, resistors, capacitors, and so on. Discrete components were
manufactured separately, packaged in their own containers, and soldered or wired

7A discussion of the uses of numerical prefixes, such as kilo and giga, is contained in a supporting docu-
ment at the Computer Science Student Resource Site at ComputerScienceStudent.com.

together onto Masonite- like circuit boards, which were then installed in computers,
oscilloscopes, and other electronic equipment. Whenever an electronic device called
for a transistor, a little tube of metal containing a pinhead- sized piece of silicon had
to be soldered to a circuit board. The entire manufacturing process, from transistor
to circuit board, was expensive and cumbersome.

These facts of life were beginning to create problems in the computer indus-
try. Early second- generation computers contained about 10,000 transistors. This
figure grew to the hundreds of thousands, making the manufacture of newer, more
powerful machines increasingly difficult.

In 1958 came the achievement that revolutionized electronics and started the
era of microelectronics: the invention of the integrated circuit. It is the integrated
circuit that defines the third generation of computers. In this section, we provide a
brief introduction to the technology of integrated circuits. Then we look at perhaps
the two most important members of the third generation, both of which were intro-
duced at the beginning of that era: the IBM System/360 and the DEC PDP- 8.

microelectronics Microelectronics means, literally, “small electronics.” Since the
beginnings of digital electronics and the computer industry, there has been a persistent
and consistent trend toward the reduction in size of digital electronic circuits. Before
examining the implications and benefits of this trend, we need to say something about
the nature of digital electronics. A more detailed discussion is found in Chapter 11.

CPU

Memory

IBM 7094 computer Peripheral devices

Data
channel

Mag tape
units

Card
punch

Line
printer

Card
reader

Drum

Disk

Disk

Hyper-
tapes

Teleprocessing
equipment

Data
channel

Data
channel

Data
channel

Multi-
plexor

Figure 1.9 An IBM 7094 Configuration

1.3 / a BrieF history oF Computers 19

20 Chapter 1 / BasiC ConCepts and Computer evolution

The basic elements of a digital computer, as we know, must perform data stor-
age, movement, processing, and control functions. Only two fundamental types of
components are required (Figure 1.10): gates and memory cells. A gate is a device
that implements a simple Boolean or logical function. For example, an AND gate
with inputs A and B and output C implements the expression IF A AND B ARE
TRUE THEN C IS TRUE. Such devices are called gates because they control data
flow in much the same way that canal gates control the flow of water. The memory
cell is a device that can store 1 bit of data; that is, the device can be in one of two
stable states at any time. By interconnecting large numbers of these fundamental
devices, we can construct a computer. We can relate this to our four basic functions
as follows:

 ■ Data storage: Provided by memory cells.
 ■ Data processing: Provided by gates.
 ■ Data movement: The paths among components are used to move data from

memory to memory and from memory through gates to memory.
 ■ Control: The paths among components can carry control signals. For example,

a gate will have one or two data inputs plus a control signal input that activates
the gate. When the control signal is ON, the gate performs its function on the
data inputs and produces a data output. Conversely, when the control signal
is OFF, the output line is null, such as the one produced by a high impedance
state. Similarly, the memory cell will store the bit that is on its input lead when
the WRITE control signal is ON and will place the bit that is in the cell on its
output lead when the READ control signal is ON.

Thus, a computer consists of gates, memory cells, and interconnections among
these elements. The gates and memory cells are, in turn, constructed of simple elec-
tronic components, such as transistors and capacitors.

The integrated circuit exploits the fact that such components as transistors,
resistors, and conductors can be fabricated from a semiconductor such as silicon.
It is merely an extension of the solid- state art to fabricate an entire circuit in a tiny
piece of silicon rather than assemble discrete components made from separate
pieces of silicon into the same circuit. Many transistors can be produced at the same
time on a single wafer of silicon. Equally important, these transistors can be con-
nected with a process of metallization to form circuits.

Boolean
logic

function
Input

Activate
signal

(a) Gate

Output
•
•
•

Binary
storage

cell
Input

Read

Write

(b) Memory cell

Output

Figure 1.10 Fundamental Computer Elements

Figure 1.11 depicts the key concepts in an integrated circuit. A thin wafer of
silicon is divided into a matrix of small areas, each a few millimeters square. The
identical circuit pattern is fabricated in each area, and the wafer is broken up into
chips. Each chip consists of many gates and/or memory cells plus a number of input
and output attachment points. This chip is then packaged in housing that protects
it and provides pins for attachment to devices beyond the chip. A number of these
packages can then be interconnected on a printed circuit board to produce larger
and more complex circuits.

Initially, only a few gates or memory cells could be reliably manufactured and
packaged together. These early integrated circuits are referred to as small- scale
integration (SSI). As time went on, it became possible to pack more and more com-
ponents on the same chip. This growth in density is illustrated in Figure 1.12; it is
one of the most remarkable technological trends ever recorded.8 This figure reflects
the famous Moore’s law, which was propounded by Gordon Moore, cofounder of
Intel, in 1965 [MOOR65]. Moore observed that the number of transistors that could
be put on a single chip was doubling every year, and correctly predicted that this
pace would continue into the near future. To the surprise of many, including Moore,
the pace continued year after year and decade after decade. The pace slowed to a
doubling every 18 months in the 1970s but has sustained that rate ever since.

The consequences of Moore’s law are profound:

1. The cost of a chip has remained virtually unchanged during this period of rapid
growth in density. This means that the cost of computer logic and memory cir-
cuitry has fallen at a dramatic rate.

Wafer

Chip

Gate

Packaged
chip

Figure 1.11 Relationship among
Wafer, Chip, and Gate

1.3 / a BrieF history oF Computers 21

8Note that the vertical axis uses a log scale. A basic review of log scales is in the math refresher document
at the Computer Science Student Resource Site at ComputerScienceStudent.com.

22 Chapter 1 / BasiC ConCepts and Computer evolution

2. Because logic and memory elements are placed closer together on more
densely packed chips, the electrical path length is shortened, increasing oper-
ating speed.

3. The computer becomes smaller, making it more convenient to place in a vari-
ety of environments.

4. There is a reduction in power requirements.

5. The interconnections on the integrated circuit are much more reliable than
solder connections. With more circuitry on each chip, there are fewer inter-
chip connections.

ibm system/360 By 1964, IBM had a firm grip on the computer market with
its 7000 series of machines. In that year, IBM announced the System/360, a new
family of computer products. Although the announcement itself was no surprise, it
contained some unpleasant news for current IBM customers: the 360 product line
was incompatible with older IBM machines. Thus, the transition to the 360 would
be difficult for the current customer base, but IBM felt this was necessary to break
out of some of the constraints of the 7000 architecture and to produce a system
capable of evolving with the new integrated circuit technology [PADE81, GIFF87].
The strategy paid off both financially and technically. The 360 was the success of
the decade and cemented IBM as the overwhelmingly dominant computer vendor,
with a market share above 70%. And, with some modifications and extensions, the
architecture of the 360 remains to this day the architecture of IBM’s mainframe9
computers. Examples using this architecture can be found throughout this text.

The System/360 was the industry’s first planned family of computers. The family
covered a wide range of performance and cost. The models were compatible in the

1
1947

Firs
t w

or
kin

g

tra
nsis

to
r

M
oo

re
’s

law

pro
m

ulga
ted

In
ve

ntio
n of

in
teg

ra
ted

 ci
rc

uit

50 55 60 65 70 75 80 85 90 95 2000 05 11

10
100
1,000
10,000
100,000
10 m
100 m
1 bn
10 bn
100 bn

Figure 1.12 Growth in Transistor Count on Integrated Circuits

9The term mainframe is used for the larger, most powerful computers other than supercomputers. Typical
characteristics of a mainframe are that it supports a large database, has elaborate I/O hardware, and is
used in a central data processing facility.

sense that a program written for one model should be capable of being executed by
another model in the series, with only a difference in the time it takes to execute.

The concept of a family of compatible computers was both novel and extremely
successful. A customer with modest requirements and a budget to match could start
with the relatively inexpensive Model 30. Later, if the customer’s needs grew, it was
possible to upgrade to a faster machine with more memory without sacrificing the
investment in already- developed software. The characteristics of a family are as follows:

 ■ Similar or identical instruction set: In many cases, the exact same set of
machine instructions is supported on all members of the family. Thus, a pro-
gram that executes on one machine will also execute on any other. In some
cases, the lower end of the family has an instruction set that is a subset of
that of the top end of the family. This means that programs can move up but
not down.

 ■ Similar or identical operating system: The same basic operating system is
available for all family members. In some cases, additional features are added
to the higher- end members.

 ■ Increasing speed: The rate of instruction execution increases in going from
lower to higher family members.

 ■ Increasing number of I/O ports: The number of I/O ports increases in going
from lower to higher family members.

 ■ Increasing memory size: The size of main memory increases in going from
lower to higher family members.

 ■ Increasing cost: At a given point in time, the cost of a system increases in going
from lower to higher family members.

How could such a family concept be implemented? Differences were achieved
based on three factors: basic speed, size, and degree of simultaneity [STEV64]. For
example, greater speed in the execution of a given instruction could be gained by
the use of more complex circuitry in the ALU, allowing suboperations to be car-
ried out in parallel. Another way of increasing speed was to increase the width of
the data path between main memory and the CPU. On the Model 30, only 1 byte
(8 bits) could be fetched from main memory at a time, whereas 8 bytes could be
fetched at a time on the Model 75.

The System/360 not only dictated the future course of IBM but also had a pro-
found impact on the entire industry. Many of its features have become standard on
other large computers.

dec pdp- 8 In the same year that IBM shipped its first System/360, another
momentous first shipment occurred: PDP- 8 from Digital Equipment Corporation
(DEC). At a time when the average computer required an air- conditioned room,
the PDP- 8 (dubbed a minicomputer by the industry, after the miniskirt of the day)
was small enough that it could be placed on top of a lab bench or be built into
other equipment. It could not do everything the mainframe could, but at $16,000, it
was cheap enough for each lab technician to have one. In contrast, the System/360
series of mainframe computers introduced just a few months before cost hundreds
of thousands of dollars.

1.3 / a BrieF history oF Computers 23

24 Chapter 1 / BasiC ConCepts and Computer evolution

The low cost and small size of the PDP- 8 enabled another manufacturer to
purchase a PDP- 8 and integrate it into a total system for resale. These other manu-
facturers came to be known as original equipment manufacturers (OEMs), and the
OEM market became and remains a major segment of the computer marketplace.

In contrast to the central- switched architecture (Figure 1.9) used by IBM on its
700/7000 and 360 systems, later models of the PDP- 8 used a structure that became vir-
tually universal for microcomputers: the bus structure. This is illustrated in Figure 1.13.
The PDP- 8 bus, called the Omnibus, consists of 96 separate signal paths, used to carry
control, address, and data signals. Because all system components share a common
set of signal paths, their use can be controlled by the CPU. This architecture is highly
flexible, allowing modules to be plugged into the bus to create various configurations.
It is only in recent years that the bus structure has given way to a structure known as
 point- to- point interconnect, described in Chapter 3.

Later Generations

Beyond the third generation there is less general agreement on defining generations
of computers. Table 1.2 suggests that there have been a number of later generations,
based on advances in integrated circuit technology. With the introduction of large-
 scale integration (LSI), more than 1,000 components can be placed on a single inte-
grated circuit chip. Very- large- scale integration (VLSI) achieved more than 10,000
components per chip, while current ultra- large- scale integration (ULSI) chips can
contain more than one billion components.

With the rapid pace of technology, the high rate of introduction of new prod-
ucts, and the importance of software and communications as well as hardware, the
classification by generation becomes less clear and less meaningful. In this section,
we mention two of the most important of developments in later generations.

semiconductor memory The first application of integrated circuit technology
to computers was the construction of the processor (the control unit and the
arithmetic and logic unit) out of integrated circuit chips. But it was also found that
this same technology could be used to construct memories.

In the 1950s and 1960s, most computer memory was constructed from tiny
rings of ferromagnetic material, each about a sixteenth of an inch in diameter.
These rings were strung up on grids of fine wires suspended on small screens inside
the computer. Magnetized one way, a ring (called a core) represented a one; mag-
netized the other way, it stood for a zero. Magnetic- core memory was rather fast;
it took as little as a millionth of a second to read a bit stored in memory. But it was

Console
controller

CPU

Omnibus

Main
memory

I/O
module

I/O
module

• • •

Figure 1.13 PDP- 8 Bus Structure

expensive and bulky, and used destructive readout: The simple act of reading a core
erased the data stored in it. It was therefore necessary to install circuits to restore
the data as soon as it had been extracted.

Then, in 1970, Fairchild produced the first relatively capacious semiconductor
memory. This chip, about the size of a single core, could hold 256 bits of memory. It
was nondestructive and much faster than core. It took only 70 billionths of a second
to read a bit. However, the cost per bit was higher than for that of core.

In 1974, a seminal event occurred: The price per bit of semiconductor memory
dropped below the price per bit of core memory. Following this, there has been a con-
tinuing and rapid decline in memory cost accompanied by a corresponding increase in
physical memory density. This has led the way to smaller, faster machines with mem-
ory sizes of larger and more expensive machines from just a few years earlier. Devel-
opments in memory technology, together with developments in processor technology
to be discussed next, changed the nature of computers in less than a decade. Although
bulky, expensive computers remain a part of the landscape, the computer has also
been brought out to the “end user,” with office machines and personal computers.

Since 1970, semiconductor memory has been through 13 generations: 1k, 4k,
16k, 64k, 256k, 1M, 4M, 16M, 64M, 256M, 1G, 4G, and, as of this writing, 8 Gb
on a single chip (1 k = 210, 1 M = 220, 1 G = 230). Each generation has provided
increased storage density, accompanied by declining cost per bit and declining
access time. Densities are projected to reach 16 Gb by 2018 and 32 Gb by 2023
[ITRS14].

microprocessors Just as the density of elements on memory chips has continued
to rise, so has the density of elements on processor chips. As time went on, more
and more elements were placed on each chip, so that fewer and fewer chips were
needed to construct a single computer processor.

A breakthrough was achieved in 1971, when Intel developed its 4004. The
4004 was the first chip to contain all of the components of a CPU on a single chip:
The microprocessor was born.

The 4004 can add two 4-bit numbers and can multiply only by repeated addi-
tion. By today’s standards, the 4004 is hopelessly primitive, but it marked the begin-
ning of a continuing evolution of microprocessor capability and power.

This evolution can be seen most easily in the number of bits that the processor
deals with at a time. There is no clear- cut measure of this, but perhaps the best meas-
ure is the data bus width: the number of bits of data that can be brought into or sent
out of the processor at a time. Another measure is the number of bits in the accumu-
lator or in the set of general- purpose registers. Often, these measures coincide, but
not always. For example, a number of microprocessors were developed that operate
on 16-bit numbers in registers but can only read and write 8 bits at a time.

The next major step in the evolution of the microprocessor was the introduc-
tion in 1972 of the Intel 8008. This was the first 8-bit microprocessor and was almost
twice as complex as the 4004.

Neither of these steps was to have the impact of the next major event: the
introduction in 1974 of the Intel 8080. This was the first general- purpose micropro-
cessor. Whereas the 4004 and the 8008 had been designed for specific applications,
the 8080 was designed to be the CPU of a general- purpose microcomputer. Like the

1.3 / a BrieF history oF Computers 25

26 Chapter 1 / BasiC ConCepts and Computer evolution

Table 1.3 Evolution of Intel Microprocessors (page 1 of 2)

(a) 1970s Processors

4004 8008 8080 8086 8088

Introduced 1971 1972 1974 1978 1979

Clock speeds 108 kHz 108 kHz 2 MHz 5 MHz, 8 MHz, 10 MHz 5 MHz, 8 MHz

Bus width 4 bits 8 bits 8 bits 16 bits 8 bits

Number of transistors 2,300 3,500 6,000 29,000 29,000

Feature size (mm) 10 8 6 3 6

Addressable memory 640 bytes 16 KB 64 KB 1 MB 1 MB

(b) 1980s Processors

80286 386TM DX 386TM SX 486TM DX CPU

Introduced 1982 1985 1988 1989

Clock speeds 6–12.5 MHz 16–33 MHz 16–33 MHz 25–50 MHz

Bus width 16 bits 32 bits 16 bits 32 bits

Number of transistors 134,000 275,000 275,000 1.2 million

Feature size (µm) 1.5 1 1 0.8–1

Addressable memory 16 MB 4 GB 16 MB 4 GB

Virtual memory 1 GB 64 TB 64 TB 64 TB

Cache — — — 8 kB

(c) 1990s Processors

486TM SX Pentium Pentium Pro Pentium II

Introduced 1991 1993 1995 1997

Clock speeds 16–33 MHz 60–166 MHz, 150–200 MHz 200–300 MHz

Bus width 32 bits 32 bits 64 bits 64 bits

Number of transistors 1.185 million 3.1 million 5.5 million 7.5 million

Feature size (µm) 1 0.8 0.6 0.35

Addressable memory 4 GB 4 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 8 kB 8 kB 512 kB L1 and
1 MB L2

512 kB L2

8008, the 8080 is an 8-bit microprocessor. The 8080, however, is faster, has a richer
instruction set, and has a large addressing capability.

About the same time, 16-bit microprocessors began to be developed. How-
ever, it was not until the end of the 1970s that powerful, general- purpose 16-bit
microprocessors appeared. One of these was the 8086. The next step in this trend
occurred in 1981, when both Bell Labs and Hewlett- Packard developed 32-bit,
 single- chip microprocessors. Intel introduced its own 32-bit microprocessor, the
80386, in 1985 (Table 1.3).

1.4 / the evolution oF the intel x86 arChiteCture 27

(d) Recent Processors

Pentium III Pentium 4 Core 2 Duo Core i7 EE 4960X

Introduced 1999 2000 2006 2013

Clock speeds 450–660 MHz 1.3–1.8 GHz 1.06–1.2 GHz 4 GHz

Bus width 64 bits 64 bits 64 bits 64 bits

Number of transistors 9.5 million 42 million 167 million 1.86 billion

Feature size (nm) 250 180 65 22

Addressable memory 64 GB 64 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 512 kB L2 256 kB L2 2 MB L2 1.5 MB L2/15 MB L3

Number of cores 1 1 2 6

 1.4 the evOlutiOn OF the intel x86 architecture

Throughout this book, we rely on many concrete examples of computer design and
implementation to illustrate concepts and to illuminate trade- offs. Numerous sys-
tems, both contemporary and historical, provide examples of important computer
architecture design features. But the book relies principally on examples from two
processor families: the Intel x86 and the ARM architectures. The current x86 offer-
ings represent the results of decades of design effort on complex instruction set com-
puters (CISCs). The x86 incorporates the sophisticated design principles once found
only on mainframes and supercomputers and serves as an excellent example of CISC
design. An alternative approach to processor design is the reduced instruction set
computer (RISC). The ARM architecture is used in a wide variety of embedded sys-
tems and is one of the most powerful and best- designed RISC- based systems on the
market. In this section and the next, we provide a brief overview of these two systems.

In terms of market share, Intel has ranked as the number one maker of micro-
processors for non- embedded systems for decades, a position it seems unlikely to
yield. The evolution of its flagship microprocessor product serves as a good indica-
tor of the evolution of computer technology in general.

Table 1.3 shows that evolution. Interestingly, as microprocessors have grown
faster and much more complex, Intel has actually picked up the pace. Intel used
to develop microprocessors one after another, every four years. But Intel hopes
to keep rivals at bay by trimming a year or two off this development time, and has
done so with the most recent x86 generations.10

10Intel refers to this as the tick- tock model. Using this model, Intel has successfully delivered next-
 generation silicon technology as well as new processor microarchitecture on alternating years for the
past several years. See http://www.intel.com/content/www/us/en/ silicon- innovations/intel-tick-tock-
model-general.html.

http://www.intel.com/content/www/us/en/ silicon-innovations/intel-tick-tock-model-general.html
http://www.intel.com/content/www/us/en/ silicon-innovations/intel-tick-tock-model-general.html

28 Chapter 1 / BasiC ConCepts and Computer evolution

It is worthwhile to list some of the highlights of the evolution of the Intel prod-
uct line:

 ■ 8080: The world’s first general- purpose microprocessor. This was an 8-bit
machine, with an 8-bit data path to memory. The 8080 was used in the first
personal computer, the Altair.

 ■ 8086: A far more powerful, 16-bit machine. In addition to a wider data path
and larger registers, the 8086 sported an instruction cache, or queue, that
prefetches a few instructions before they are executed. A variant of this pro-
cessor, the 8088, was used in IBM’s first personal computer, securing the suc-
cess of Intel. The 8086 is the first appearance of the x86 architecture.

 ■ 80286: This extension of the 8086 enabled addressing a 16-MB memory instead
of just 1 MB.

 ■ 80386: Intel’s first 32-bit machine, and a major overhaul of the product. With
a 32-bit architecture, the 80386 rivaled the complexity and power of minicom-
puters and mainframes introduced just a few years earlier. This was the first
Intel processor to support multitasking, meaning it could run multiple pro-
grams at the same time.

 ■ 80486: The 80486 introduced the use of much more sophisticated and power-
ful cache technology and sophisticated instruction pipelining. The 80486 also
offered a built- in math coprocessor, offloading complex math operations from
the main CPU.

 ■ Pentium: With the Pentium, Intel introduced the use of superscalar tech-
niques, which allow multiple instructions to execute in parallel.

 ■ Pentium Pro: The Pentium Pro continued the move into superscalar organiza-
tion begun with the Pentium, with aggressive use of register renaming, branch
prediction, data flow analysis, and speculative execution.

 ■ Pentium II: The Pentium II incorporated Intel MMX technology, which is
designed specifically to process video, audio, and graphics data efficiently.

 ■ Pentium III: The Pentium III incorporates additional floating- point instruc-
tions: The Streaming SIMD Extensions (SSE) instruction set extension added
70 new instructions designed to increase performance when exactly the same
operations are to be performed on multiple data objects. Typical applications
are digital signal processing and graphics processing.

 ■ Pentium 4: The Pentium 4 includes additional floating- point and other
enhancements for multimedia.11

 ■ Core: This is the first Intel x86 microprocessor with a dual core, referring to
the implementation of two cores on a single chip.

 ■ Core 2: The Core 2 extends the Core architecture to 64 bits. The Core 2 Quad
provides four cores on a single chip. More recent Core offerings have up to 10
cores per chip. An important addition to the architecture was the Advanced
Vector Extensions instruction set that provided a set of 256-bit, and then 512-
bit, instructions for efficient processing of vector data.

11With the Pentium 4, Intel switched from Roman numerals to Arabic numerals for model numbers.

1.5 / emBedded systems 29

Almost 40 years after its introduction in 1978, the x86 architecture continues to
dominate the processor market outside of embedded systems. Although the organiza-
tion and technology of the x86 machines have changed dramatically over the decades,
the instruction set architecture has evolved to remain backward compatible with ear-
lier versions. Thus, any program written on an older version of the x86 architecture
can execute on newer versions. All changes to the instruction set architecture have
involved additions to the instruction set, with no subtractions. The rate of change has
been the addition of roughly one instruction per month added to the architecture
[ANTH08], so that there are now thousands of instructions in the instruction set.

The x86 provides an excellent illustration of the advances in computer hard-
ware over the past 35 years. The 1978 8086 was introduced with a clock speed of
5 MHz and had 29,000 transistors. A six- core Core i7 EE 4960X introduced in 2013
operates at 4 GHz, a speedup of a factor of 800, and has 1.86 billion transistors,
about 64,000 times as many as the 8086. Yet the Core i7 EE 4960X is in only a
slightly larger package than the 8086 and has a comparable cost.

 1.5 emBedded SyStemS

The term embedded system refers to the use of electronics and software within a
product, as opposed to a general- purpose computer, such as a laptop or desktop sys-
tem. Millions of computers are sold every year, including laptops, personal comput-
ers, workstations, servers, mainframes, and supercomputers. In contrast, billions of
computer systems are produced each year that are embedded within larger devices.
Today, many, perhaps most, devices that use electric power have an embedded com-
puting system. It is likely that in the near future virtually all such devices will have
embedded computing systems.

Types of devices with embedded systems are almost too numerous to list.
Examples include cell phones, digital cameras, video cameras, calculators, micro-
wave ovens, home security systems, washing machines, lighting systems, ther-
mostats, printers, various automotive systems (e.g., transmission control, cruise
control, fuel injection, anti- lock brakes, and suspension systems), tennis rack-
ets, toothbrushes, and numerous types of sensors and actuators in automated
systems.

Often, embedded systems are tightly coupled to their environment. This can
give rise to real- time constraints imposed by the need to interact with the environ-
ment. Constraints, such as required speeds of motion, required precision of meas-
urement, and required time durations, dictate the timing of software operations. If
multiple activities must be managed simultaneously, this imposes more complex
 real- time constraints.

Figure 1.14 shows in general terms an embedded system organization. In addi-
tion to the processor and memory, there are a number of elements that differ from
the typical desktop or laptop computer:

 ■ There may be a variety of interfaces that enable the system to measure, manip-
ulate, and otherwise interact with the external environment. Embedded sys-
tems often interact (sense, manipulate, and communicate) with external world
through sensors and actuators and hence are typically reactive systems; a

30 Chapter 1 / BasiC ConCepts and Computer evolution

reactive system is in continual interaction with the environment and executes
at a pace determined by that environment.

 ■ The human interface may be as simple as a flashing light or as complicated as
 real- time robotic vision. In many cases, there is no human interface.

 ■ The diagnostic port may be used for diagnosing the system that is being
 controlled— not just for diagnosing the computer.

 ■ Special- purpose field programmable (FPGA), application- specific (ASIC), or
even nondigital hardware may be used to increase performance or reliability.

 ■ Software often has a fixed function and is specific to the application.
 ■ Efficiency is of paramount importance for embedded systems. They are opti-

mized for energy, code size, execution time, weight and dimensions, and cost.

There are several noteworthy areas of similarity to general- purpose computer
systems as well:

 ■ Even with nominally fixed function software, the ability to field upgrade to fix
bugs, to improve security, and to add functionality, has become very important
for embedded systems, and not just in consumer devices.

 ■ One comparatively recent development has been of embedded system plat-
forms that support a wide variety of apps. Good examples of this are smart-
phones and audio/visual devices, such as smart TVs.

The Internet of Things

It is worthwhile to separately callout one of the major drivers in the proliferation of
embedded systems. The Internet of things (IoT) is a term that refers to the expanding

Memory

Custom
logic

Human
interface

Diagnostic
port

Processor

D/A
Conversion

Actuators/
indicators

A/D
conversion

Sensors

Figure 1.14 Possible Organization of an Embedded
System

1.5 / emBedded systems 31

interconnection of smart devices, ranging from appliances to tiny sensors. A domi-
nant theme is the embedding of short- range mobile transceivers into a wide array of
gadgets and everyday items, enabling new forms of communication between people
and things, and between things themselves. The Internet now supports the intercon-
nection of billions of industrial and personal objects, usually through cloud systems.
The objects deliver sensor information, act on their environment, and, in some cases,
modify themselves, to create overall management of a larger system, like a factory
or city.

The IoT is primarily driven by deeply embedded devices (defined below).
These devices are low- bandwidth, low- repetition data- capture, and low- bandwidth
 data- usage appliances that communicate with each other and provide data via user
interfaces. Embedded appliances, such as high- resolution video security cameras,
video VoIP phones, and a handful of others, require high- bandwidth streaming
capabilities. Yet countless products simply require packets of data to be intermit-
tently delivered.

With reference to the end systems supported, the Internet has gone through
roughly four generations of deployment culminating in the IoT:

1. Information technology (IT): PCs, servers, routers, firewalls, and so on, bought
as IT devices by enterprise IT people and primarily using wired connectivity.

2. Operational technology (OT): Machines/appliances with embedded IT built
by non- IT companies, such as medical machinery, SCADA (supervisory con-
trol and data acquisition), process control, and kiosks, bought as appliances by
enterprise OT people and primarily using wired connectivity.

3. Personal technology: Smartphones, tablets, and eBook readers bought as IT
devices by consumers (employees) exclusively using wireless connectivity and
often multiple forms of wireless connectivity.

4. Sensor/actuator technology: Single- purpose devices bought by consumers, IT,
and OT people exclusively using wireless connectivity, generally of a single
form, as part of larger systems.

It is the fourth generation that is usually thought of as the IoT, and it is marked
by the use of billions of embedded devices.

Embedded Operating Systems

There are two general approaches to developing an embedded operating system
(OS). The first approach is to take an existing OS and adapt it for the embedded
application. For example, there are embedded versions of Linux, Windows, and
Mac, as well as other commercial and proprietary operating systems specialized for
embedded systems. The other approach is to design and implement an OS intended
solely for embedded use. An example of the latter is TinyOS, widely used in wireless
sensor networks. This topic is explored in depth in [STAL15].

Application Processors versus Dedicated Processors

In this subsection, and the next two, we briefly introduce some terms commonly
found in the literature on embedded systems. Application processors are defined

32 Chapter 1 / BasiC ConCepts and Computer evolution

by the processor’s ability to execute complex operating systems, such as Linux,
Android, and Chrome. Thus, the application processor is general- purpose in nature.
A good example of the use of an embedded application processor is the smartphone.
The embedded system is designed to support numerous apps and perform a wide
variety of functions.

Most embedded systems employ a dedicated processor, which, as the name
implies, is dedicated to one or a small number of specific tasks required by the host
device. Because such an embedded system is dedicated to a specific task or tasks,
the processor and associated components can be engineered to reduce size and cost.

Microprocessors versus Microcontrollers

As we have seen, early microprocessor chips included registers, an ALU, and some
sort of control unit or instruction processing logic. As transistor density increased, it
became possible to increase the complexity of the instruction set architecture, and
ultimately to add memory and more than one processor. Contemporary micropro-
cessor chips, as shown in Figure 1.2, include multiple cores and a substantial amount
of cache memory.

A microcontroller chip makes a substantially different use of the logic space
available. Figure 1.15 shows in general terms the elements typically found on a
microcontroller chip. As shown, a microcontroller is a single chip that contains the
processor, non- volatile memory for the program (ROM), volatile memory for input
and output (RAM), a clock, and an I/O control unit. The processor portion of the
microcontroller has a much lower silicon area than other microprocessors and much
higher energy efficiency. We examine microcontroller organization in more detail
in Section 1.6.

Also called a “computer on a chip,” billions of microcontroller units are
embedded each year in myriad products from toys to appliances to automobiles. For
example, a single vehicle can use 70 or more microcontrollers. Typically, especially
for the smaller, less expensive microcontrollers, they are used as dedicated proces-
sors for specific tasks. For example, microcontrollers are heavily utilized in automa-
tion processes. By providing simple reactions to input, they can control machinery,
turn fans on and off, open and close valves, and so forth. They are integral parts of
modern industrial technology and are among the most inexpensive ways to produce
machinery that can handle extremely complex functionalities.

Microcontrollers come in a range of physical sizes and processing power. Pro-
cessors range from 4-bit to 32-bit architectures. Microcontrollers tend to be much
slower than microprocessors, typically operating in the MHz range rather than the
GHz speeds of microprocessors. Another typical feature of a microcontroller is that
it does not provide for human interaction. The microcontroller is programmed for a
specific task, embedded in its device, and executes as and when required.

Embedded versus Deeply Embedded Systems

We have, in this section, defined the concept of an embedded system. A subset of
embedded systems, and a quite numerous subset, is referred to as deeply embed-
ded systems. Although this term is widely used in the technical and commercial

1.6 / arm arChiteCture 33

literature, you will search the Internet in vain (or at least I did) for a straightfor-
ward definition. Generally, we can say that a deeply embedded system has a proces-
sor whose behavior is difficult to observe both by the programmer and the user.
A deeply embedded system uses a microcontroller rather than a microprocessor, is
not programmable once the program logic for the device has been burned into ROM
(read- only memory), and has no interaction with a user.

Deeply embedded systems are dedicated, single- purpose devices that detect
something in the environment, perform a basic level of processing, and then do some-
thing with the results. Deeply embedded systems often have wireless capability and
appear in networked configurations, such as networks of sensors deployed over a large
area (e.g., factory, agricultural field). The Internet of things depends heavily on deeply
embedded systems. Typically, deeply embedded systems have extreme resource con-
straints in terms of memory, processor size, time, and power consumption.

 1.6 arm architecture

The ARM architecture refers to a processor architecture that has evolved from
RISC design principles and is used in embedded systems. Chapter 15 examines
RISC design principles in detail. In this section, we give a brief overview of the
ARM architecture.

A/D
converter

Analog data
acquisition

Temporary
data

Processor

System
bus

RAM

D/A
converter

ROM

Serial I/O
ports

EEPROM

Parallel I/O
ports

TIMER

Program
and data

Permanent
data

Timing
functions

Analog data
transmission

Send/receive
data

Peripheral
interfaces

Figure 1.15 Typical Microcontroller Chip Elements

34 Chapter 1 / BasiC ConCepts and Computer evolution

ARM Evolution

ARM is a family of RISC- based microprocessors and microcontrollers designed by
ARM Holdings, Cambridge, England. The company doesn’t make processors but
instead designs microprocessor and multicore architectures and licenses them to man-
ufacturers. Specifically, ARM Holdings has two types of licensable products: proces-
sors and processor architectures. For processors, the customer buys the rights to use
 ARM- supplied design in their own chips. For a processor architecture, the customer
buys the rights to design their own processor compliant with ARM’s architecture.

ARM chips are high- speed processors that are known for their small die size
and low power requirements. They are widely used in smartphones and other hand-
held devices, including game systems, as well as a large variety of consumer prod-
ucts. ARM chips are the processors in Apple’s popular iPod and iPhone devices,
and are used in virtually all Android smartphones as well. ARM is probably the
most widely used embedded processor architecture and indeed the most widely
used processor architecture of any kind in the world [VANC14].

The origins of ARM technology can be traced back to the British- based Acorn
Computers company. In the early 1980s, Acorn was awarded a contract by the Brit-
ish Broadcasting Corporation (BBC) to develop a new microcomputer architecture
for the BBC Computer Literacy Project. The success of this contract enabled Acorn
to go on to develop the first commercial RISC processor, the Acorn RISC Machine
(ARM). The first version, ARM1, became operational in 1985 and was used for
internal research and development as well as being used as a coprocessor in the
BBC machine.

In this early stage, Acorn used the company VLSI Technology to do the actual
fabrication of the processor chips. VLSI was licensed to market the chip on its own
and had some success in getting other companies to use the ARM in their products,
particularly as an embedded processor.

The ARM design matched a growing commercial need for a high- performance,
 low- power- consumption, small- size, and low- cost processor for embedded appli-
cations. But further development was beyond the scope of Acorn’s capabilities.
Accordingly, a new company was organized, with Acorn, VLSI, and Apple Com-
puter as founding partners, known as ARM Ltd. The Acorn RISC Machine became
Advanced RISC Machines.12

Instruction Set Architecture

The ARM instruction set is highly regular, designed for efficient implementation of
the processor and efficient execution. All instructions are 32 bits long and follow a
regular format. This makes the ARM ISA suitable for implementation over a wide
range of products.

Augmenting the basic ARM ISA is the Thumb instruction set, which is a re-
 encoded subset of the ARM instruction set. Thumb is designed to increase the per-
formance of ARM implementations that use a 16-bit or narrower memory data bus,

12The company dropped the designation Advanced RISC Machines in the late 1990s. It is now simply
known as the ARM architecture.

1.6 / arm arChiteCture 35

and to allow better code density than provided by the ARM instruction set. The
Thumb instruction set contains a subset of the ARM 32-bit instruction set recoded
into 16-bit instructions. The current defined version is Thumb- 2.

The ARM and Thumb- 2 ISAs are discussed in Chapters 12 and 13.

ARM Products

ARM Holdings licenses a number of specialized microprocessors and related tech-
nologies, but the bulk of their product line is the Cortex family of microprocessor
architectures. There are three Cortex architectures, conveniently labeled with the
initials A, R, and M.

 cortex- a/ cortex- a50 The Cortex- A and Cortex- A50 are application
processors, intended for mobile devices such as smartphones and eBook readers,
as well as consumer devices such as digital TV and home gateways (e.g., DSL and
cable Internet modems). These processors run at higher clock frequency (over
1 GHz), and support a memory management unit (MMU), which is required for full
feature OSs such as Linux, Android, MS Windows, and mobile OSs. An MMU is
a hardware module that supports virtual memory and paging by translating virtual
addresses into physical addresses; this topic is explored in Chapter 8.

The two architectures use both the ARM and Thumb- 2 instruction sets; the
principal difference is that the Cortex- A is a 32-bit machine, and the Cortex- A50 is
a 64-bit machine.

 cortex- r The Cortex- R is designed to support real- time applications, in which
the timing of events needs to be controlled with rapid response to events. They can
run at a fairly high clock frequency (e.g., 200MHz to 800MHz) and have very low
response latency. The Cortex- R includes enhancements both to the instruction set
and to the processor organization to support deeply embedded real- time devices.
Most of these processors do not have MMU; the limited data requirements and
the limited number of simultaneous processes eliminates the need for elaborate
hardware and software support for virtual memory. The Cortex- R does have a
Memory Protection Unit (MPU), cache, and other memory features designed for
industrial applications. An MPU is a hardware module that prohibits one program
in memory from accidentally accessing memory assigned to another active program.
Using various methods, a protective boundary is created around the program, and
instructions within the program are prohibited from referencing data outside of that
boundary.

Examples of embedded systems that would use the Cortex- R are automotive
braking systems, mass storage controllers, and networking and printing devices.

 cortex- m Cortex- M series processors have been developed primarily for the
microcontroller domain where the need for fast, highly deterministic interrupt
management is coupled with the desire for extremely low gate count and
lowest possible power consumption. As with the Cortex- R series, the Cortex- M
architecture has an MPU but no MMU. The Cortex- M uses only the Thumb- 2
instruction set. The market for the Cortex- M includes IoT devices, wireless
sensor/actuator networks used in factories and other enterprises, automotive
body electronics, and so on.

36 Chapter 1 / BasiC ConCepts and Computer evolution

There are currently four versions of the Cortex- M series:

 ■ Cortex- M0: Designed for 8- and 16-bit applications, this model emphasizes low
cost, ultra low power, and simplicity. It is optimized for small silicon die size
(starting from 12k gates) and use in the lowest cost chips.

 ■ Cortex- M0+: An enhanced version of the M0 that is more energy efficient.
 ■ Cortex- M3: Designed for 16- and 32-bit applications, this model emphasizes

performance and energy efficiency. It also has comprehensive debug and trace
features to enable software developers to develop their applications quickly.

 ■ Cortex- M4: This model provides all the features of the Cortex- M3, with addi-
tional instructions to support digital signal processing tasks.

In this text, we will primarily use the ARM Cortex- M3 as our example embed-
ded system processor. It is the best suited of all ARM models for general- purpose
microcontroller use. The Cortex- M3 is used by a variety of manufacturers of micro-
controller products. Initial microcontroller devices from lead partners already
combine the Cortex- M3 processor with flash, SRAM, and multiple peripherals to
provide a competitive offering at the price of just $1.

Figure 1.16 provides a block diagram of the EFM32 microcontroller from Sil-
icon Labs. The figure also shows detail of the Cortex- M3 processor and core com-
ponents. We examine each level in turn.

The Cortex- M3 core makes use of separate buses for instructions and data.
This arrangement is sometimes referred to as a Harvard architecture, in contrast
with the von Neumann architecture, which uses the same signal buses and mem-
ory for both instructions and data. By being able to read both an instruction and
data from memory at the same time, the Cortex- M3 processor can perform many
operations in parallel, speeding application execution. The core contains a decoder
for Thumb instructions, an advanced ALU with support for hardware multiply and
divide, control logic, and interfaces to the other components of the processor. In
particular, there is an interface to the nested vector interrupt controller (NVIC) and
the embedded trace macrocell (ETM) module.

The core is part of a module called the Cortex- M3 processor. This term is
somewhat misleading, because typically in the literature, the terms core and pro-
cessor are viewed as equivalent. In addition to the core, the processor includes the
following elements:

 ■ NVIC: Provides configurable interrupt handling abilities to the processor. It
facilitates low- latency exception and interrupt handling, and controls power
management.

 ■ ETM: An optional debug component that enables reconstruction of program
execution. The ETM is designed to be a high- speed, low- power debug tool
that only supports instruction trace.

 ■ Debug access port (DAP): This provides an interface for external debug
access to the processor.

 ■ Debug logic: Basic debug functionality includes processor halt, single- step,
processor core register access, unlimited software breakpoints, and full system
memory access.

Cortex-M3 Core

Microcontroller Chip

Cortex-M3
Processor

NVIC
interface

ETM
interface

Hardware
divider

32-bit
multiplier

32-bit ALU

Control
logic

Thumb
decode

Instruction
interface

Data
interface

ICode
interface

Debug logic

ARM
core

DAP

NVIC ETM

Memory
protection unit

Bus matrix

SRAM &
peripheral I/F

Security Analog Interfaces Timers & Triggers Parallel I/O Ports Serial Interfaces

Peripheral bus

Core and memoryClock managementEnergy management

Cortex-M3 processor
Memory
protec-

tion unit

Flash
memory
64 kB

Voltage
regula-

tor

Power-
on reset

Brown-
out de-
tector

Voltage
compar-

ator

High fre-
quency RC
oscillator

Low fre-
quency RC
oscillator

High freq
crystal

oscillator

Low freq
crystal

oscillator

SRAM
memory
64 kB

Debug
inter-
face

DMA
control-

ler

Pulse
counter

Watch-
dog tmr

Low
energy

Real
time ctr

Periph
bus int

Timer/
counter

General
purpose

I/O

External
Inter-
rupts

UART

USART

Low-
energy
UART

USB
Pin

reset

32-bit bus

A/D
con-

verter

Hard-
ware
AES

D/A
con-

verter

Figure 1.16 Typical Microcontroller Chip Based on Cortex- M3

37

38 Chapter 1 / BasiC ConCepts and Computer evolution

 ■ ICode interface: Fetches instructions from the code memory space.
 ■ SRAM & peripheral interface: Read/write interface to data memory and

peripheral devices.
 ■ Bus matrix: Connects the core and debug interfaces to external buses on the

microcontroller.
 ■ Memory protection unit: Protects critical data used by the operating system

from user applications, separating processing tasks by disallowing access
to each other’s data, disabling access to memory regions, allowing memory
regions to be defined as read- only, and detecting unexpected memory accesses
that could potentially break the system.

The upper part of Figure 1.16 shows the block diagram of a typical micro-
controller built with the Cortex- M3, in this case the EFM32 microcontroller. This
microcontroller is marketed for use in a wide variety of devices, including energy,
gas, and water metering; alarm and security systems; industrial automation devices;
home automation devices; smart accessories; and health and fitness devices. The sil-
icon chip consists of 10 main areas:13

 ■ Core and memory: This region includes the Cortex- M3 processor, static RAM
(SRAM) data memory,14 and flash memory15 for storing program instructions
and nonvarying application data. Flash memory is nonvolatile (data is not lost
when power is shut off) and so is ideal for this purpose. The SRAM stores
variable data. This area also includes a debug interface, which makes it easy to
reprogram and update the system in the field.

 ■ Parallel I/O ports: Configurable for a variety of parallel I/O schemes.
 ■ Serial interfaces: Supports various serial I/O schemes.
 ■ Analog interfaces: Analog- to- digital and digital- to- analog logic to support

sensors and actuators.
 ■ Timers and triggers: Keeps track of timing and counts events, generates out-

put waveforms, and triggers timed actions in other peripherals.
 ■ Clock management: Controls the clocks and oscillators on the chip. Multiple

clocks and oscillators are used to minimize power consumption and provide
short startup times.

 ■ Energy management: Manages the various low- energy modes of operation of
the processor and peripherals to provide real- time management of the energy
needs so as to minimize energy consumption.

 ■ Security: The chip includes a hardware implementation of the Advanced
Encryption Standard (AES).

13This discussion does not go into details about all of the individual modules; for the interested reader, an
 in- depth discussion is provided in the document EFM32G200.pdf, available at box.com/COA10e.
14Static RAM (SRAM) is a form of random- access memory used for cache memory; see Chapter 5.
15Flash memory is a versatile form of memory used both in microcontrollers and as external memory; it
is discussed in Chapter 6.

1.7 / Cloud Computing 39

 ■ 32-bit bus: Connects all of the components on the chip.
 ■ Peripheral bus: A network which lets the different peripheral module commu-

nicate directly with each other without involving the processor. This supports
 timing- critical operation and reduces software overhead.

Comparing Figure 1.16 with Figure 1.2, you will see many similarities and
the same general hierarchical structure. Note, however, that the top level of a
microcontroller computer system is a single chip, whereas for a multicore com-
puter, the top level is a motherboard containing a number of chips. Another note-
worthy difference is that there is no cache, neither in the Cortex- M3 processor
nor in the microcontroller as a whole, which plays an important role if the code or
data resides in external memory. Though the number of cycles to read the instruc-
tion or data varies depending on cache hit or miss, the cache greatly improves the
performance when external memory is used. Such overhead is not needed for a
microcontroller.

 1.7 clOud cOmputing

Although the general concepts for cloud computing go back to the 1950s, cloud
computing services first became available in the early 2000s, particularly targeted
at large enterprises. Since then, cloud computing has spread to small and medium
size businesses, and most recently to consumers. Apple’s iCloud was launched in
2012 and had 20 million users within a week of launch. Evernote, the cloud- based
notetaking and archiving service, launched in 2008, approached 100 million users
in less than 6 years. In this section, we provide a brief overview. Cloud computing is
examined in more detail in Chapter 17.

Basic Concepts

There is an increasingly prominent trend in many organizations to move a substantial
portion or even all information technology (IT) operations to an Internet- connected
infrastructure known as enterprise cloud computing. At the same time, individual
users of PCs and mobile devices are relying more and more on cloud computing
services to backup data, synch devices, and share, using personal cloud computing.
NIST defines cloud computing, in NIST SP- 800-145 (The NIST Definition of Cloud
Computing), as follows:

Cloud computing: A model for enabling ubiquitous, convenient, on- demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

Basically, with cloud computing, you get economies of scale, professional
network management, and professional security management. These features can
be attractive to companies large and small, government agencies, and individual
PC and mobile users. The individual or company only needs to pay for the storage

40 Chapter 1 / BasiC ConCepts and Computer evolution

capacity and services they need. The user, be it company or individual, doesn’t have
the hassle of setting up a database system, acquiring the hardware they need, doing
maintenance, and backing up the data— all these are part of the cloud service.

In theory, another big advantage of using cloud computing to store your data
and share it with others is that the cloud provider takes care of security. Alas, the
customer is not always protected. There have been a number of security failures
among cloud providers. Evernote made headlines in early 2013 when it told all of its
users to reset their passwords after an intrusion was discovered.

Cloud networking refers to the networks and network management function-
ality that must be in place to enable cloud computing. Most cloud computing solu-
tions rely on the Internet, but that is only a piece of the networking infrastructure.
One example of cloud networking is the provisioning of high- performance and/or
 high- reliability networking between the provider and subscriber. In this case, some
or all of the traffic between an enterprise and the cloud bypasses the Internet and
uses dedicated private network facilities owned or leased by the cloud service pro-
vider. More generally, cloud networking refers to the collection of network capa-
bilities required to access a cloud, including making use of specialized services over
the Internet, linking enterprise data centers to a cloud, and using firewalls and other
network security devices at critical points to enforce access security policies.

We can think of cloud storage as a subset of cloud computing. In essence, cloud
storage consists of database storage and database applications hosted remotely on
cloud servers. Cloud storage enables small businesses and individual users to take
advantage of data storage that scales with their needs and to take advantage of a
variety of database applications without having to buy, maintain, and manage the
storage assets.

Cloud Services

The essential purpose of cloud computing is to provide for the convenient rental
of computing resources. A cloud service provider (CSP) maintains computing and
data storage resources that are available over the Internet or private networks.
Customers can rent a portion of these resources as needed. Virtually all cloud ser-
vice is provided using one of three models (Figure 1.17): SaaS, PaaS, and IaaS, which
we examine in this section.

software as a service (saas) As the name implies, a SaaS cloud provides
service to customers in the form of software, specifically application software,
running on and accessible in the cloud. SaaS follows the familiar model of Web
services, in this case applied to cloud resources. SaaS enables the customer to use
the cloud provider’s applications running on the provider’s cloud infrastructure. The
applications are accessible from various client devices through a simple interface
such as a Web browser. Instead of obtaining desktop and server licenses for
software products it uses, an enterprise obtains the same functions from the cloud
service. SaaS saves the complexity of software installation, maintenance, upgrades,
and patches. Examples of services at this level are Gmail, Google’s e- mail service,
and Salesforce.com, which help firms keep track of their customers.

Common subscribers to SaaS are organizations that want to provide their
employees with access to typical office productivity software, such as document

1.7 / Cloud Computing 41

management and email. Individuals also commonly use the SaaS model to acquire
cloud resources. Typically, subscribers use specific applications on demand. The
cloud provider also usually offers data- related features such as automatic backup
and data sharing between subscribers.

platform as a service (paas) A PaaS cloud provides service to customers in
the form of a platform on which the customer’s applications can run. PaaS enables
the customer to deploy onto the cloud infrastructure containing customer- created
or acquired applications. A PaaS cloud provides useful software building blocks,
plus a number of development tools, such as programming languages, run- time
environments, and other tools that assist in deploying new applications. In effect,
PaaS is an operating system in the cloud. PaaS is useful for an organization that
wants to develop new or tailored applications while paying for the needed computing
resources only as needed and only for as long as needed. Google App Engine and
the Salesforce1 Platform from Salesforce.com are examples of PaaS.

Applications

Infrastructure as
a service (IaaS)

Traditional IT
architecture

Platform as a
service (PaaS)

Software as a
service (SaaS)

M
an

ag
ed

 b
y

cl
ie

nt Application
Framework

Compilers

Run-time
environment

Databases

Operating
system

Virtual
machine

Server
hardware

Storage

Networking

Applications

Application
Framework

Compilers

Run-time
environment

Databases

Operating
system

Virtual
machine

Server
hardware

Storage

Networking

More complex
More upfront cost

Less scalable
More customizable

Less complex
Lower upfront cost
More scalable
Less customizable

IT = information technology
CSP = cloud service provider

M
an

ag
ed

 b
y

C
SP

Applications

M
an

ag
ed

by
 c

lie
nt

Application
Framework

Compilers

Run-time
environment

Databases

Operating
system

Virtual
machine

Server
hardware

Storage

Networking

M
an

ag
ed

 b
y

C
SP

Applications

Application
Framework

Compilers

Run-time
environment

Databases

Operating
system

Virtual
machine

Server
hardware

Storage

Networking

M
an

ag
ed

 b
y

C
SP

Figure 1.17 Alternative Information Technology Architectures

42 Chapter 1 / BasiC ConCepts and Computer evolution

infrastructure as a service (iaas) With IaaS, the customer has access to the
underlying cloud infrastructure. IaaS provides virtual machines and other abstracted
hardware and operating systems, which may be controlled through a service
application programming interface (API). IaaS offers the customer processing,
storage, networks, and other fundamental computing resources so that the customer
is able to deploy and run arbitrary software, which can include operating systems
and applications. IaaS enables customers to combine basic computing services,
such as number crunching and data storage, to build highly adaptable computer
systems. Examples of IaaS are Amazon Elastic Compute Cloud (Amazon EC2) and
Windows Azure.

1.8 Key termS, review QueStiOnS, and prOBlemS

Key Terms

application processor
arithmetic and logic unit

(ALU)
ARM
central processing unit

(CPU)
chip
cloud computing
cloud networking
cloud storage
computer architecture
computer organization
control unit
core
dedicated processor
deeply embedded system
embedded system

gate
infrastructure as a service

(IaaS)
 input– output (I/O)
instruction set architecture

(ISA)
integrated circuit
Intel x86
Internet of things (IoT)
main memory
memory cell
memory management unit

(MMU)
memory protection unit

(MPU)
microcontroller
microelectronics

microprocessor
motherboard
multicore
multicore processor
original equipment

manufacturer (OEM)
platform as a service

(PaaS)
printed circuit board
processor
registers
semiconductor
semiconductor memory
software as a service (SaaS)
system bus
system interconnection
vacuum tubes

