
242

7
Integer Arithmetic

7.1 Shift and Rotate Instructions
7.1.1 Logical Shifts and Arithmetic Shifts
7.1.2 SHL Instruction
7.1.3 SHR Instruction
7.1.4 SAL and SAR Instructions
7.1.5 ROL Instruction
7.1.6 ROR Instruction
7.1.7 RCL and RCR Instructions
7.1.8 Signed Overflow
7.1.9 SHLD/SHRD Instructions
7.1.10 Section Review

7.2 Shift and Rotate Applications
7.2.1 Shifting Multiple Doublewords
7.2.2 Binary Multiplication
7.2.3 Displaying Binary Bits
7.2.4 Extracting File Date Fields
7.2.5 Section Review

7.3 Multiplication and Division Instructions
7.3.1 MUL Instruction
7.3.2 IMUL Instruction
7.3.3 Measuring Program Execution Times
7.3.4 DIV Instruction
7.3.5 Signed Integer Division
7.3.6 Implementing Arithmetic Expressions
7.3.7 Section Review

7.4 Extended Addition and Subtraction
7.4.1 ADC Instruction
7.4.2 Extended Addition Example
7.4.3 SBB Instruction
7.4.4 Section Review

7.5 ASCII and Unpacked Decimal Arithmetic
7.5.1 AAA Instruction
7.5.2 AAS Instruction
7.5.3 AAM Instruction
7.5.4 AAD Instruction
7.5.5 Section Review

7.6 Packed Decimal Arithmetic
7.6.1 DAA Instruction
7.6.2 DAS Instruction
7.6.3 Section Review

7.7 Chapter Summary
7.8 Key Terms

7.8.1 Terms
7.8.2 Instructions, Operators, and Directives

7.9 Review Questions and Exercises
7.9.1 Short Answer
7.9.2 Algorithm Workbench

7.10 Programming Exercises

This chapter introduces the fundamental binary shift and rotation techniques, playing to one of
the great strengths of assembly language. In fact, bit manipulation is an intrinsic part of com-
puter graphics, data encryption, and hardware manipulation. Instructions that do this are power-
ful tools, and are only partially implemented by high-level languages, and somewhat obscured
by their need to be platform-independent. We show quite a few ways you can apply bit shifting,
including optimized multiplication and division.

7.1 Shift and Rotate Instructions 243

Arithmetic with arbitrary-length integers is not supported by all high-level languages. But
assembly language instructions make it possible to add and subtract integers of virtually any
size. You will also be exposed to specialized instructions that perform arithmetic on packed dec-
imal integers and integer strings.

7.1 Shift and Rotate Instructions
Along with bitwise instructions introduced in Chapter 6, shift instructions are among the most
characteristic of assembly language. Bit shifting means to move bits right and left inside an operand.
x86 processors provide a particularly rich set of instructions in this area (Table 7-1), all affecting the
Overflow and Carry flags.

7.1.1 Logical Shifts and Arithmetic Shifts
There are two ways to shift an operand’s bits. The first, logical shift, fills the newly created bit posi-
tion with zero. In the following illustration, a byte is logically shifted one position to the right. In
other words, each bit is moved to the next lowest bit position. Note that bit 7 is assigned 0:

The following illustration shows a single logical right shift on the binary value 11001111, pro-
ducing 01100111. The lowest bit is shifted into the Carry flag:

Table 7-1 Shift and Rotate Instructions.

SHL Shift left

SHR Shift right

SAL Shift arithmetic left

SAR Shift arithmetic right

ROL Rotate left

ROR Rotate right

RCL Rotate carry left

RCR Rotate carry right

SHLD Double-precision shift left

SHRD Double-precision shift right

CF

0

(cf)1 1 0 0 1 1 1 1

0 1 1 0 0 1 1 1

244 Chapter 7 • Integer Arithmetic

Another type of shift is called an arithmetic shift. The newly created bit position is filled with
a copy of the original number’s sign bit:

Binary 11001111, for example, has a 1 in the sign bit. When shifted arithmetically 1 bit to the
right, it becomes 11100111:

7.1.2 SHL Instruction
The SHL (shift left) instruction performs a logical left shift on the destination operand, filling the
lowest bit with 0. The highest bit is moved to the Carry flag, and the bit that was in the Carry flag
is discarded:

If you shift 11001111 left by 1 bit, it becomes 10011110:

The first operand in SHL is the destination and the second is the shift count:

SHL destination,count

The following lists the types of operands permitted by this instruction:

SHL reg,imm8
SHL mem,imm8
SHL reg,CL
SHL mem,CL

x86 processors permit imm8 to be any integer between 0 and 255. Alternatively, the CL register
can contain a shift count. Formats shown here also apply to the SHR, SAL, SAR, ROR, ROL,
RCR, and RCL instructions.

Example In the following instructions, BL is shifted once to the left. The highest bit is copied
into the Carry flag and the lowest bit position is assigned zero:

mov bl,8Fh ; BL = 10001111b
shl bl,1 ; CF = 1, BL = 00011110b

CF

(cf)1 1 0 0 1 1 1 1

1 1 1 0 0 1 1 1

CF

0

(cf) 1 1 0 0 1 1 1 1

1 0 0 1 1 1 1 0

7.1 Shift and Rotate Instructions 245

When a value is shifted leftward multiple times, the Carry flag contains the last bit to be shifted
out of the most significant bit (MSB). In the following example, bit 7 does not end up in the
Carry flag because it is replaced by bit 6 (a zero):

mov al,10000000b
shl al,2 ; CF = 0, AL = 00000000b

Similarly, when a value is shifted rightward multiple times, the Carry flag contains the last bit to
be shifted out of the least significant bit (LSB).

Bitwise Multiplication Bitwise multiplication is performed when you shift a number’s bits in a
leftward direction (toward the MSB). For example, SHL can perform multiplication by powers of 2.
Shifting any operand left by n bits multiplies the operand by 2n. For example, shifting the integer 5
left by 1 bit yields the product of 5 � 21 � 10:

mov dl,5

shl dl,1

If binary 00001010 (decimal 10) is shifted left by two bits, the result is the same as multiplying
10 by 22:

mov dl,10 ; before: 00001010
shl dl,2 ; after: 00101000

7.1.3 SHR Instruction
The SHR (shift right) instruction performs a logical right shift on the destination operand,
replacing the highest bit with a 0. The lowest bit is copied into the Carry flag, and the bit that
was previously in the Carry flag is lost:

SHR uses the same instruction formats as SHL. In the following example, the 0 from the low-
est bit in AL is copied into the Carry flag, and the highest bit in AL is filled with a zero:

mov al,0D0h ; AL = 11010000b
shr al,1 ; AL = 01101000b, CF = 0

In a multiple shift operation, the last bit to be shifted out of position 0 (the LSB) ends up in the
Carry flag:

mov al,00000010b
shr al,2 ; AL = 00000000b, CF = 1

Bitwise Division Bitwise division is accomplished when you shift a number’s bits in a right-
ward direction (toward the LSB). Shifting an unsigned integer right by n bits divides the operand
by 2n. In the following statements, we divide 32 by 21, producing 16:

mov dl,32

shr dl,1

0 0 0 0 0 1 0 1 � 5Before:

0 0 0 0 1 0 1 0 � 10After:

CF

0

0 0 1 0 0 0 0 0 � 32Before:

0 0 0 1 0 0 0 0 � 16After:

246 Chapter 7 • Integer Arithmetic

In the following example, 64 is divided by 23:

mov al,01000000b ; AL = 64
shr al,3 ; divide by 8, AL = 00001000b

Division of signed numbers by shifting is accomplished using the SAR instruction because it
preserves the number’s sign bit.

7.1.4 SAL and SAR Instructions
The SAL (shift arithmetic left) instruction works the same as the SHL instruction. For each shift count,
SAL shifts each bit in the destination operand to the next highest bit position. The lowest bit is assigned
0. The highest bit is moved to the Carry flag, and the bit that was in the Carry flag is discarded:

If you shift binary 11001111 to the left by one bit, it becomes 10011110:

The SAR (shift arithmetic right) instruction performs a right arithmetic shift on its destination
operand:

The operands for SAL and SAR are identical to those for SHL and SHR. The shift may be
repeated, based on the counter in the second operand:

SAR destination,count

The following example shows how SAR duplicates the sign bit. AL is negative before and
after it is shifted to the right:

mov al,0F0h ; AL = 11110000b (-16)
sar al,1 ; AL = 11111000b (-8), CF = 0

Signed Division You can divide a signed operand by a power of 2, using the SAR instruction.
In the following example, –128 is divided by 23. The quotient is –16:

mov dl,-128 ; DL = 10000000b
sar dl,3 ; DL = 11110000b

Sign-Extend AX into EAX Suppose AX contains a signed integer and you want to extend its
sign into EAX. First shift EAX 16 bits to the left, then shift it arithmetically 16 bits to the right:

mov ax,-128 ; EAX = ????FF80h
shl eax,16 ; EAX = FF800000h
sar eax,16 ; EAX = FFFFFF80h

CF

0

(cf) 1 1 0 0 1 1 1 1

1 0 0 1 1 1 1 0

CF

7.1 Shift and Rotate Instructions 247

7.1.5 ROL Instruction
Bitwise rotation occurs when you move the bits in a circular fashion. In some versions, the bit
leaving one end of the number is immediately copied into the other end. Another type of rotation
uses the Carry flag as an intermediate point for shifted bits.

The ROL (rotate left) instruction shifts each bit to the left. The highest bit is copied into the
Carry flag and the lowest bit position. The instruction format is the same as for SHL:

Bit rotation does not lose bits. A bit rotated off one end of a number appears again at the other
end. Note in the following example how the high bit is copied into both the Carry flag and bit
position 0:

mov al,40h ; AL = 01000000b
rol al,1 ; AL = 10000000b, CF = 0
rol al,1 ; AL = 00000001b, CF = 1
rol al,1 ; AL = 00000010b, CF = 0

Multiple Rotations When using a rotation count greater than 1, the Carry flag contains the last
bit rotated out of the MSB position:

mov al,00100000b
rol al,3 ; CF = 1, AL = 00000001b

Exchanging Groups of Bits You can use ROL to exchange the upper (bits 4–7) and lower
(bits 0–3) halves of a byte. For example, 26h rotated four bits in either direction becomes 62h:

mov al,26h
rol al,4 ; AL = 62h

When rotating a multibyte integer by four bits, the effect is to rotate each hexadecimal digit one
position to the right or left. Here, for example, we repeatedly rotate 6A4Bh left four bits, eventu-
ally ending up with the original value:

mov ax,6A4Bh
rol ax,4 ; AX = A4B6h
rol ax,4 ; AX = 4B6Ah
rol ax,4 ; AX = B6A4h
rol ax,4 ; AX = 6A4Bh

7.1.6 ROR Instruction
The ROR (rotate right) instruction shifts each bit to the right and copies the lowest bit
into the Carry flag and the highest bit position. The instruction format is the same as for
SHL:

CF

CF

248 Chapter 7 • Integer Arithmetic

In the following examples, note how the lowest bit is copied into both the Carry flag and the
highest bit position of the result:

mov al,01h ; AL = 00000001b
ror al,1 ; AL = 10000000b, CF = 1
ror al,1 ; AL = 01000000b, CF = 0

Multiple Rotations When using a rotation count greater than 1, the Carry flag contains the last
bit rotated out of the LSB position:

mov al,00000100b
ror al,3 ; AL = 10000000b, CF = 1

7.1.7 RCL and RCR Instructions
The RCL (rotate carry left) instruction shifts each bit to the left, copies the Carry flag to the
LSB, and copies the MSB into the Carry flag:

If we imagine the Carry flag as an extra bit added to the high end of the operand, RCL looks like
a rotate left operation. In the following example, the CLC instruction clears the Carry flag. The
first RCL instruction moves the high bit of BL into the Carry flag and shifts the other bits left.
The second RCL instruction moves the Carry flag into the lowest bit position and shifts the other
bits left:

clc ; CF = 0
mov bl,88h ; CF,BL = 0 10001000b
rcl bl,1 ; CF,BL = 1 00010000b
rcl bl,1 ; CF,BL = 0 00100001b

Recover a Bit from the Carry Flag RCL can recover a bit that was previously shifted into
the Carry flag. The following example checks the lowest bit of testval by shifting its lowest bit
into the Carry flag. If the lowest bit of testval is 1, a jump is taken; if the lowest bit is 0, RCL
restores the number to its original value:

.data
testval BYTE 01101010b
.code
shr testval,1 ; shift LSB into Carry flag
jc exit ; exit if Carry flag set
rcl testval,1 ; else restore the number

RCR Instruction The RCR (rotate carry right) instruction shifts each bit to the right, copies
the Carry flag into the MSB, and copies the LSB into the Carry flag:

CF

CF

7.1 Shift and Rotate Instructions 249

As in the case of RCL, it helps to visualize the integer in this figure as a 9-bit value, with the
Carry flag to the right of the LSB.

The following code example uses STC to set the Carry flag; then, it performs a rotate carry
right operation on the AH register:

stc ; CF = 1
mov ah,10h ; AH, CF = 00010000 1
rcr ah,1 ; AH, CF = 10001000 0

7.1.8 Signed Overflow
The Overflow flag is set if the act of shifting or rotating a signed integer by one bit position gener-
ates a value outside the signed integer range of the destination operand. To put it another way,
the number’s sign is reversed. In the following example, a positive integer (�127) stored in an
8-bit register becomes negative (�2) when rotated left:

mov al,+127 ; AL = 01111111b
rol al,1 ; OF = 1, AL = 11111110b

Similarly, when –128 is shifted one position to the right, the Overflow flag is set. The result in
AL (+64) has the opposite sign:

mov al,-128 ; AL = 10000000b
shr al,1 ; OF = 1, AL = 01000000b

The value of the Overflow flag is undefined when the shift or rotation count is greater than 1.

7.1.9 SHLD/SHRD Instructions
The SHLD (shift left double) instruction shifts a destination operand a given number of bits to the left.
The bit positions opened up by the shift are filled by the most significant bits of the source operand.
The source operand is not affected, but the Sign, Zero, Auxiliary, Parity, and Carry flags are affected:

SHLD dest, source, count

The following illustration shows the execution of SHLD with a shift count of 1. The highest
bit of the source operand is copied into the lowest bit of the destination operand. All the destina-
tion operand bits are shifted left:

The SHRD (shift right double) instruction shifts a destination operand a given number of bits to the
right. The bit positions opened up by the shift are filled by the least significant bits of the source operand:

SHRD dest, source, count

1 0 0 1 1 1 0 11 1 0 0 0 0 01

SourceDestination

11 1 0 0 0 0 0

Destination

CF

250 Chapter 7 • Integer Arithmetic

The following illustration shows the execution of SHRD with a shift count of 1:

The following instruction formats apply to both SHLD and SHRD. The destination operand
can be a register or memory operand, and the source operand must be a register. The count oper-
and can be the CL register or an 8-bit immediate operand:

SHLD reg16,reg16,CL/imm8
SHLD mem16,reg16,CL/imm8
SHLD reg32,reg32,CL/imm8
SHLD mem32,reg32,CL/imm8

Example 1 The following statements shift wval to the left 4 bits and insert the high 4 bits of
AX into the low 4 bit positions of wval:

.data
wval WORD 9BA6h
.code
mov ax,0AC36h
shld wval,ax,4 ; wval = BA6Ah

The data movement is shown in the following figure:

Example 2 In the following example, AX is shifted to the right 4 bits, and the low 4 bits of
DX are shifted into the high 4 positions of AX:

mov ax,234Bh
mov dx,7654h
shrd ax,dx,4

0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1

Source Destination

1 1 1 0 0 0 0 0

Destination

CF

9BA6 AC36

wval AX

BA6A AC36

7654 234B

7654 4234

DX AX

7.2 Shift and Rotate Applications 251

SHLD and SHRD can be used to manipulate bit-mapped images, when groups of bits must be
shifted left and right to reposition images on the screen. Another potential application is data
encryption, in which the encryption algorithm involves the shifting of bits. Finally, the two instruc-
tions can be used when performing fast multiplication and division with very long integers.

The following code example demonstrates SHRD by shifting an array of doublewords to the
right by 4 bits:

.data
array DWORD 648B2165h,8C943A29h,6DFA4B86h,91F76C04h,8BAF9857h

.code
mov bl,4 ; shift count
mov esi,OFFSET array ; offset of the array
mov ecx,(LENGTHOF array) – 1 ; number of array elements

L1: push ecx ; save loop counter
mov eax,[esi + TYPE DWORD]
mov cl,bl ; shift count
shrd [esi],eax,cl ; shift EAX into high bits of

[ESI]
add esi,TYPE DWORD ; point to next doubleword pair
pop ecx ; restore loop counter
loop L1

shr DWORD PTR [esi],COUNT ; shift the last doubleword

7.1.10 Section Review
1. Which instruction shifts each bit in an operand to the left and copies the highest bit into both

the Carry flag and the lowest bit position?

2. Which instruction shifts each bit to the right, copies the lowest bit into the Carry flag, and
copies the Carry flag into the highest bit position?

3. Which instruction performs the following operation (CF = Carry flag)?

Before: CF,AL = 1 11010101
After: CF,AL = 1 10101011

4. What happens to the Carry flag when the SHR AX,1 instruction is executed?

5. Challenge: Write a series of instructions that shift the lowest bit of AX into the highest bit
of BX without using the SHRD instruction. Next, perform the same operation using SHRD.

6. Challenge: One way to calculate the parity of a 32-bit number in EAX is to use a loop that
shifts each bit into the Carry flag and accumulates a count of the number of times the Carry
flag was set. Write a code that does this, and set the Parity flag accordingly.

7.2 Shift and Rotate Applications
When a program needs to move bits from one part of an integer to another, assembly language is a
great tool for the job. Sometimes, we move a subset of a number’s bits to position 0 to make it eas-
ier to isolate the value of the bits. In this section, we show a few common bit shift and rotate appli-
cations that are easy to implement. More applications will be found in the chapter exercises.

252 Chapter 7 • Integer Arithmetic

7.2.1 Shifting Multiple Doublewords
You can shift an extended-precision integer that has been divided into an array of bytes, words,
or doublewords. Before doing this, you must know how the array elements are stored. A com-
mon way to store the integer is called little-endian order. It works like this: Place the low-order
byte at the array’s starting address. Then, working your way up from that byte to the high-order
byte, store each in the next sequential memory location. Instead of storing the array as a series
of bytes, you could store it as a series of words or doublewords. If you did so, the individual
bytes would still be in little-endian order, because x86 machines store words and doublewords in
little-endian order.

The following steps show how to shift an array of bytes 1 bit to the right:

Step 1: Shift the highest byte at [ESI+2] to the right, automatically copying its lowest bit into the
Carry flag.

Step 2: Rotate the value at [ESI+1] to the right, filling the highest bit with the value of the Carry
flag, and shifting the lowest bit into the Carry flag:

Step 3: Rotate the value at [ESI] to the right, filling the highest bit with the value of the Carry
flag, and shifting the lowest bit into the Carry flag:

After Step 3 is complete, all bits have been shifted 1 position to the right:

01001100

[esi�2]

Step 1: 1

CF

10011001

[esi�2]

10011001

[esi�1]

10011001

[esi]

Starting values:

01001100

[esi�2]

Step 2: 10011001

[esi�1]

1

CF CF

11001100

[esi�1]CF

1

CF

Step 3: 01001100

[esi�2]

10011001

[esi]

1

CF CF

11001100

[esi]CF

1

CF

11001100

[esi�1]

01001100

[esi�2]

11001100

[esi�1]

11001100

[esi]

7.2 Shift and Rotate Applications 253

The following code excerpt from the Multishift.asm program implements the steps we just outlined:

.data
ArraySize = 3
array BYTE ArraySize DUP(99h) ; 1001 pattern in each nybble
.code
main PROC

mov esi,0
shr array[esi+2],1 ; high byte
rcr array[esi+1],1 ; middle byte, include Carry flag
rcr array[esi],1 ; low byte, include Carry flag

Although our current example only shifts 3 bytes, the example could easily be modified to shift
an array of words or doublewords. Using a loop, you could shift an array of arbitrary size.

7.2.2 Binary Multiplication
Sometimes programmers squeeze every performance advantage they can into integer multiplica-
tion by using bit shifting rather than the MUL instruction. The SHL instruction performs
unsigned multiplication when the multiplier is a power of 2. Shifting an unsigned integer n bits
to the left multiplies it by 2n. Any other multiplier can be expressed as the sum of powers of 2.
For example, to multiply unsigned EAX by 36, we can write 36 as 25 + 22 and use the distribu-
tive property of multiplication:

EAX * 36 = EAX * (25 + 22)
= EAX * (32 + 4)
= (EAX * 32) + (EAX * 4)

The following figure shows the multiplication 123 * 36, producing 4428, the product:

It is interesting to note that bits 2 and 5 are set in the multiplier (36), and the integers 2 and 5 are
also the required shift counters. Using this information, the following code snippet multiplies
123 by 36, using SHL and ADD instructions:

mov eax,123
mov ebx,eax
shl eax,5 ; multiply by 25

shl ebx,2 ; multiply by 22

add eax,ebx ; add the products

As a chapter programming exercise, you will be asked to generalize this example and create a
procedure that multiplies any two 32-bit unsigned integers using shifting and addition.

0 1 1 1 1 0 1 1

0 0 1 0 0 1 0 0 36

123

0 1 1 1 1 0 1 1 123 SHL 2

0 1 1 1 1 0 1 1 123 SHL 5

0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 4428

�

�

254 Chapter 7 • Integer Arithmetic

7.2.3 Displaying Binary Bits
A common programming task is converting a binary integer to an ASCII binary string, allowing
the latter to be displayed. The SHL instruction is useful in this regard because it copies the high-
est bit of an operand into the Carry flag each time the operand is shifted left. The following
BinToAsc procedure is a simple implementation:

;---
BinToAsc PROC
;
; Converts 32-bit binary integer to ASCII binary.
; Receives: EAX = binary integer, ESI points to buffer
; Returns: buffer filled with ASCII binary digits
;---

push ecx
push esi

mov ecx,32 ; number of bits in EAX

L1: shl eax,1 ; shift high bit into Carry flag
mov BYTE PTR [esi],'0' ; choose 0 as default digit
jnc L2 ; if no Carry, jump to L2
mov BYTE PTR [esi],'1' ; else move 1 to buffer

L2: inc esi ; next buffer position
loop L1 ; shift another bit to left

pop esi
pop ecx
ret

BinToAsc ENDP

7.2.4 Extracting File Date Fields
When storage space is at a premium, system-level software often packs multiple data fields into
a single integer. To uncover this data, applications often need to extract sequences of bits called
bit strings. For example, in real-address mode, MS-DOS function 57h returns the date stamp of
a file in DX. (The date stamp shows the date on which the file was last modified.) Bits 0 through
4 represent a day number between 1 and 31, bits 5 through 8 are the month number, and bits 9
through 15 hold the year number. If a file was last modified on March 10, 1999, the file’s date
stamp would appear as follows in the DX register (the year number is relative to 1980):

To extract a single bit string, shift its bits into the lowest part of a register and clear the irrele-
vant bit positions. The following code example extracts the day number field of a date stamp
integer by making a copy of DL and masking off bits not belonging to the field:

DH DL

Year Month Day

9-15 5-8 0-4

Field:

Bit numbers:

01 000 10 1 10 1 010 10

7.3 Multiplication and Division Instructions 255

mov al,dl ; make a copy of DL
and al,00011111b ; clear bits 5-7
mov day,al ; save in day

To extract the month number field, we shift bits 5 through 8 into the low part of AL before
masking off all other bits. AL is then copied into a variable:

mov ax,dx ; make a copy of DX
shr ax,5 ; shift right 5 bits
and al,00001111b ; clear bits 4-7
mov month,al ; save in month

The year number (bits 9 through 15) field is completely within the DH register. We copy it to AL
and shift right by 1 bit:

mov al,dh ; make a copy of DH
shr al,1 ; shift right one position
mov ah,0 ; clear AH to zeros
add ax,1980 ; year is relative to 1980
mov year,ax ; save in year

7.2.5 Section Review
1. Write assembly language instructions that calculate EAX * 24 using binary multiplication.

2. Write assembly language instructions that calculate EAX * 21 using binary multiplication.
Hint: 21 � 24 � 22 � 20.

3. What change would you make to the BinToAsc procedure in Section 7.2.3 in order to dis-
play the binary bits in reverse order?

4. The time stamp field of a file directory entry uses bits 0 through 4 for the seconds, bits 5
through 10 for the minutes, and bits 11 through 15 for the hours. Write instructions that
extract the minutes and copy the value to a byte variable named bMinutes.

7.3 Multiplication and Division Instructions
In 32-bit mode, integer multiplication can be performed as a 32-bit, 16-bit, or 8-bit operation.
In 64-bit mode, you can also use 64-bit operands. The MUL and IMUL instructions perform
unsigned and signed integer multiplication, respectively. The DIV instruction performs unsigned
integer division, and IDIV performs signed integer division.

7.3.1 MUL Instruction
In 32-bit mode, the MUL (unsigned multiply) instruction comes in three versions: The first
version multiplies an 8-bit operand by the AL register. The second version multiplies a 16-bit
operand by the AX register, and the third version multiplies a 32-bit operand by the EAX
register. The multiplier and multiplicand must always be the same size, and the product is
twice their size. The three formats accept register and memory operands, but not immediate
operands:

MUL reg/mem8
MUL reg/mem16
MUL reg/mem32

256 Chapter 7 • Integer Arithmetic

The single operand in the MUL instruction is the multiplier. Table 7-2 shows the default mul-
tiplicand and product, depending on the size of the multiplier. Because the destination operand is
twice the size of the multiplicand and multiplier, overflow cannot occur. MUL sets the Carry and
Overflow flags if the upper half of the product is not equal to zero. The Carry flag is ordinarily
used for unsigned arithmetic, so we’ll focus on it here. When AX is multiplied by a 16-bit oper-
and, for example, the product is stored in the combined DX and AX registers. That is, the high
16 bits of the product are stored in DX, and the low 16 bits are stored in AX. The Carry flag is set
if DX is not equal to zero, which lets us know that the product will not fit into the lower half of
the implied destination operand.

MUL Examples
The following statements multiply AL by BL, storing the product in AX. The Carry flag is clear
(CF = 0) because AH (the upper half of the product) equals zero:

mov al,5h
mov bl,10h
mul bl ; AX = 0050h, CF = 0

The following diagram illustrates the movement between registers:

The following statements multiply the 16-bit value 2000h by 0100h. The Carry flag is set
because the upper part of the product (located in DX) is not equal to zero:

.data
val1 WORD 2000h
val2 WORD 0100h
.code
mov ax,val1 ; AX = 2000h
mul val2 ; DX:AX = 00200000h, CF = 1

Table 7-2 MUL Operands.

Multiplicand Multiplier Product

AL reg/mem8 AX

AX reg/mem16 DX:AX

EAX reg/mem32 EDX:EAX

A good reason for checking the Carry flag after executing MUL is to know whether the upper half
of the product can safely be ignored.

05 10�

AL BL

0050

AX

0

CF

2000 0100�

AX BX

0020

DX

0000

AX

1

CF

7.3 Multiplication and Division Instructions 257

The following statements multiply 12345h by 1000h, producing a 64-bit product in the com-
bined EDX and EAX registers. The Carry flag is clear because the upper half of the product in
EDX equals zero:

mov eax,12345h
mov ebx,1000h
mul ebx ; EDX:EAX = 0000000012345000h, CF = 0

The following diagram illustrates the movement between registers:

Using MUL in 64-Bit Mode
In 64-bit mode, you can use 64-bit operands with the MUL instruction. A 64-bit register
or memory operand is multiplied against RDX, producing a 128-bit product in RDX:RAX.
In the following example, each bit in RAX is shifted one position to the left when RAX is
multiplied by 2. The highest bit of RAX spills over into the RDX register, which equals
0000000000000001 hexadecimal:

mov rax,0FFFF0000FFFF0000h
mov rbx,2
mul rbx ; RDX:RAX = 0000000000000001FFFE0001FFFE0000

In the next example, we multiply RAX by a 64-bit memory operand. The value is being multi-
plied by 16, so each hexadecimal digit is shifted one position to the left (a 4-bit shift is the same
as multiplying by 16).

.data
multiplier QWORD 10h
.code
mov rax,0AABBBBCCCCDDDDh
mul multiplier ; RDX:RAX = 00000000000000000AABBBBCCCCDDDD0h

7.3.2 IMUL Instruction
The IMUL (signed multiply) instruction performs signed integer multiplication. Unlike the
MUL instruction, IMUL preserves the sign of the product. It does this by sign extending the
highest bit of the lower half of the product into the upper bits of the product. The x86 instruction
set supports three formats for the IMUL instruction: one operand, two operands, and three oper-
ands. In the one-operand format, the multiplier and multiplicand are the same size and the prod-
uct is twice their size.

Single-Operand Formats The one-operand formats store the product in AX, DX:AX, or
EDX:EAX:

IMUL reg/mem8 ; AX = AL * reg/mem8
IMUL reg/mem16 ; DX:AX = AX * reg/mem16
IMUL reg/mem32 ; EDX:EAX = EAX * reg/mem32

00012345 �

EAX

00001000

EBX

00000000

EDX

12345000

EAX

0

CF

258 Chapter 7 • Integer Arithmetic

As in the case of MUL, the storage size of the product makes overflow impossible. Also, the
Carry and Overflow flags are set if the upper half of the product is not a sign extension of
the lower half. You can use this information to decide whether to ignore the upper half of the
product.

Two-Operand Formats (32-Bit Mode) The two-operand version of the IMUL instruction in
32-bit mode stores the product in the first operand, which must be a register. The second operand
(the multiplier) can be a register, a memory operand, or an immediate value. Following are the
16-bit formats:

IMUL reg16,reg/mem16
IMUL reg16,imm8
IMUL reg16,imm16

Following are the 32-bit operand types showing that the multiplier can be a 32-bit register, a
32-bit memory operand, or an immediate value (8 or 32 bits):

IMUL reg32,reg/mem32
IMUL reg32,imm8
IMUL reg32,imm32

The two-operand formats truncate the product to the length of the destination. If significant dig-
its are lost, the Overflow and Carry flags are set. Be sure to check one of these flags after per-
forming an IMUL operation with two operands.

Three-Operand Formats The three-operand formats in 32-bit mode store the product in the
first operand. The second operand can be a 16-bit register or memory operand, which is multi-
plied by the third operand, an 8- or 16-bit immediate value:

IMUL reg16,reg/mem16,imm8
IMUL reg16,reg/mem16,imm16

A 32-bit register or memory operand can be multiplied by an 8- or 32-bit immediate value:

IMUL reg32,reg/mem32,imm8
IMUL reg32,reg/mem32,imm32

If significant digits are lost when IMUL executes, the Overflow and Carry flags are set. Be sure
to check one of these flags after performing an IMUL operation with three operands.

Using IMUL in 64-Bit Mode
In 64-bit mode, you can use 64-bit operands with the MUL instruction. In the two-operand
format, a 64-bit register or memory operand is multiplied against RDX, producing a 128-bit
sign-extended product in RDX:RAX. In the next example, RBX is multiplied by RAX, produc-
ing a 128-bit product of �16.

mov rax,-4
mov rbx,4
imul rb ; RDX = 0FFFFFFFFFFFFFFFFh, RAX = -16

In other words, decimal �16 is represented as FFFFFFFFFFF0 hexadecimal in RAX, and RDX
just contains an extension of RAX’s high-order bit, also known as its sign bit.

7.3 Multiplication and Division Instructions 259

The three-operand format is also available in 64-bit mode. In the next example, we multiply
the multiplicand (�16) by 4, producing �64 in the RAX register:

.data
multiplicand QWORD -16
.code
imul rax, multiplicand, 4 ; RAX = FFFFFFFFFFFFFFC0 (-64)

Unsigned Multiplication The two-operand and three-operand IMUL formats may also be
used for unsigned multiplication because the lower half of the product is the same for signed and
unsigned numbers. There is a small disadvantage to doing so: The Carry and Overflow flags will
not indicate whether the upper half of the product equals zero.

IMUL Examples
The following instructions multiply 48 by 4, producing �192 in AX. Although the product is
correct, AH is not a sign extension of AL, so the Overflow flag is set:

mov al,48
mov bl,4
imul bl ; AX = 00C0h, OF = 1

The following instructions multiply �4 by 4, producing �16 in AX. AH is a sign extension of
AL, so the Overflow flag is clear:

mov al,-4
mov bl,4
imul bl ; AX = FFF0h, OF = 0

The following instructions multiply 48 by 4, producing �192 in DX:AX. DX is a sign extension of
AX, so the Overflow flag is clear:

mov ax,48
mov bx,4
imul bx ; DX:AX = 000000C0h, OF = 0

The following instructions perform 32-bit signed multiplication (4,823,424 * �423), produc-
ing �2,040,308,352 in EDX:EAX. The Overflow flag is clear because EDX is a sign extension
of EAX:

mov eax,+4823424
mov ebx,-423
imul ebx ; EDX:EAX = FFFFFFFF86635D80h, OF = 0

The following instructions demonstrate two-operand formats:

.data
word1 SWORD 4
dword1 SDWORD 4
.code
mov ax,-16 ; AX = -16
mov bx,2 ; BX = 2
imul bx,ax ; BX = -32
imul bx,2 ; BX = -64

260 Chapter 7 • Integer Arithmetic

imul bx,word1 ; BX = -256
mov eax,-16 ; EAX = -16
mov ebx,2 ; EBX = 2
imul ebx,eax ; EBX = -32
imul ebx,2 ; EBX = -64
imul ebx,dword1 ; EBX = -256

The two-operand and three-operand IMUL instructions use a destination operand that is the
same size as the multiplier. Therefore, it is possible for signed overflow to occur. Always check
the Overflow flag after executing these types of IMUL instructions. The following two-operand
instructions demonstrate signed overflow because �64,000 cannot fit within the 16-bit destina-
tion operand:

mov ax,-32000
imul ax,2 ; OF = 1

The following instructions demonstrate three-operand formats, including an example of signed
overflow:

.data
word1 SWORD 4
dword1 SDWORD 4
.code
imul bx,word1,-16 ; BX = word1 * -16
imul ebx,dword1,-16 ; EBX = dword1 * -16
imul ebx,dword1,-2000000000 ; signed overflow!

7.3.3 Measuring Program Execution Times
Programmers often find it useful to compare the performance of one code implementation to
another by measuring their performance times. The Microsoft Windows API provides the neces-
sary tools to do this, which we have made even more accessible with the GetMseconds proce-
dure in the Irvine32 library. The procedure gets the number of system milliseconds that have
elapsed since midnight. In the following code example, GetMseconds is called first, so we can
record the system starting time. Then we call the procedure whose execution time we wish to
measure (FirstProcedureToTest). Finally, GetMseconds is called a second time, and the differ-
ence between the current milliseconds value and the starting time is calculated:

.data
startTime DWORD ?
procTime1 DWORD ?
procTime2 DWORD ?
.code
call GetMseconds ; get start time
mov startTime,eax
.
call FirstProcedureToTest
.
call GetMseconds ; get stop time
sub eax,startTime ; calculate the elapsed time
mov procTime1,eax ; save the elapsed time

7.3 Multiplication and Division Instructions 261

There is, of course, a small amount of execution time used up by calling GetMseconds twice.
But this overhead is insignificant when we measure the ratio of performance times between one
code implementation and another. Here, we call the other procedure we wish to test, and save its
execution time (procTime2):

call GetMseconds ; get start time
mov startTime,eax
.
call SecondProcedureToTest
.
call GetMseconds ; get stop time
sub eax,startTime ; calculate the elapsed time
mov procTime2,eax ; save the elapsed time

Now, the ratio of procTime1 to procTime2 indicates the relative performance of the two procedures.

Comparing MUL and IMUL to Bit Shifting
In older x86 processors, there was a significant difference in performance between multiplica-
tion by bit shifting versus multiplication using the MUL and IMUL instructions. We can use the
GetMseconds procedure to compare the execution time of the two types of multiplication. The
following two procedures perform multiplication repeatedly using a LOOP_COUNT constant to
determine the amount of repetition:

mult_by_shifting PROC
;
; Multiplies EAX by 36 using SHL, LOOP_COUNT times.
;

mov ecx,LOOP_COUNT
L1: push eax ; save original EAX

mov ebx,eax
shl eax,5
shl ebx,2
add eax,ebx
pop eax ; restore EAX
loop L1
ret

mult_by_shifting ENDP

mult_by_MUL PROC
;
; Multiplies EAX by 36 using MUL, LOOP_COUNT times.
;

mov ecx,LOOP_COUNT
L1: push eax ; save original EAX

mov ebx,36
mul ebx
pop eax ; restore EAX
loop L1
ret

mult_by_MUL ENDP

262 Chapter 7 • Integer Arithmetic

The following code calls mult_by_shifting and displays the timing results. See the Compare-
Mult.asm program from the book’s Chapter 7 examples for the complete implementation:

.data
LOOP_COUNT = 0FFFFFFFFh
.data
intval DWORD 5
startTime DWORD ?
.code
call GetMseconds ; get start time
mov startTime,eax
mov eax,intval ; multiply now
call mult_by_shifting
call GetMseconds ; get stop time
sub eax,startTime
call WriteDec ; display elapsed time

After calling mult_by_MUL in the same manner, the resulting timings on a legacy 4-GHz Pen-
tium 4 showed that the SHL approach executed in 6.078 seconds and the MUL approach executed
in 20.718 seconds. In other words, using MUL instruction was 241 percent slower. However,
when running the same program on a more recent processor, the timings of both function calls
were exactly the same. This example shows that Intel has managed to greatly optimize the MUL
and IMUL instructions in recent processors.

7.3.4 DIV Instruction
In 32-bit mode, the DIV (unsigned divide) instruction performs 8-bit, 16-bit, and 32-bit
unsigned integer division. The single register or memory operand is the divisor. The formats are

DIV reg/mem8
DIV reg/mem16
DIV reg/mem32

The following table shows the relationship between the dividend, divisor, quotient, and remainder:

In 64-bit mode, the DIV instruction uses RDX:RAX as the dividend, and it permits the divisor to
be a 64-bit register or memory operand. The quotient is stored in RAX, and the remainder in RDX.

DIV Examples
The following instructions perform 8-bit unsigned division (83h/2), producing a quotient of 41h
and a remainder of 1:

mov ax,0083h ; dividend
mov bl,2 ; divisor
div bl ; AL = 41h, AH = 01h

Dividend Divisor Quotient Remainder

AX reg/mem8 AL AH

DX:AX reg/mem16 AX DX

EDX:EAX reg/mem32 EAX EDX

7.3 Multiplication and Division Instructions 263

The following diagram illustrates the movement between registers:

The following instructions perform 16-bit unsigned division (8003h/100h), producing a
quotient of 80h and a remainder of 3. DX contains the high part of the dividend, so it must be
cleared before the DIV instruction executes:

mov dx,0 ; clear dividend, high
mov ax,8003h ; dividend, low
mov cx,100h ; divisor
div cx ; AX = 0080h, DX = 0003h

The following diagram illustrates the movement between registers:

The following instructions perform 32-bit unsigned division using a memory operand as the divisor:

.data
dividend QWORD 0000000800300020h
divisor DWORD 00000100h
.code
mov edx,DWORD PTR dividend + 4 ; high doubleword
mov eax,DWORD PTR dividend ; low doubleword
div divisor ; EAX = 08003000h, EDX = 00000020h

The following diagram illustrates the movement between registers:

The following 64-bit division produces the quotient (0108000000003330h) in RAX and the
remainder (0000000000000020h) in RDX:

.data
dividend_hi QWORD 0000000000000108h
dividend_lo QWORD 0000000033300020h
divisor QWORD 0000000000010000h
.code
mov rdx, dividend_hi
mov rax, dividend_lo
div divisor ; RAX = 0108000000003330
 ; RDX = 0000000000000020

0083 02

AX BL

41

AL

Quotient Remainder

01

AH

0000 0100

DX

8003

AX CX

0080

AX

Quotient Remainder

0003

DX

00000008

EDX

00300020

EAX

00000100

Divisor

08003000

EAX

00000020

EDX

Quotient Remainder

264 Chapter 7 • Integer Arithmetic

Notice how each hexadecimal digit in the dividend was shifted 4 positions to the right,
because it was divided by 64. (Division by 16 would have moved each digit only one position
to the right.)

7.3.5 Signed Integer Division
Signed integer division is nearly identical to unsigned division, with one important difference:
The dividend must be sign-extended before the division takes place. Sign extension is the term
used for copying the highest bit of a number into all of the upper bits of its enclosing variable or
register. To show why this is necessary, let’s try leaving it out. The following code uses MOV to
assign �101 to AX, which is the lower half of EAX:

.data
wordVal SWORD -101 ; 009Bh
.code
mov eax,0 ; EAX = 00000000h
mov ax,wordVal ; EAX = 0000009Bh (+155)
mov bx,2 ; EBX is the divisor
idiv bx ; divide EAX by BX (signed operation)

Unfortunately, the 009Bh in EAX is not really equal to �101. It is equal to +155, so the quotient
produced by the division is +77, which is not what we wanted. Instead, the correct way to set up
the problem is to use the CWD instruction (convert word to doubleword), which sign-extends
AX into EAX before performing the division:

.data
wordVal SWORD -101 ; 009Bh
.code
mov eax,0 ; EAX = 00000000h
mov ax,wordVal ; EAX = 0000009Bh (+155)
cwd ; EAX = FFFFFF9Bh (-101)
mov bx,2 ; EBX is the divisor
idiv bx ; divide EAX by BX

We introduced the concept of sign extension in Chapter 4 along with the MOVSX instruction.
The x86 instruction set includes several instructions for sign extension. First, we will look at
these instructions, and then we will apply them to the signed integer division instruction,
IDIV.

Sign Extension Instructions (CBW, CWD, CDQ)
Intel provides three sign extension instructions: CBW, CWD, and CDQ. The CBW instruction
(convert byte to word) extends the sign bit of AL into AH, preserving the number’s sign. In the next
example, 9Bh (in AL) and FF9Bh (in AX) both equal −101 decimal:

.data
byteVal SBYTE -101 ; 9Bh
.code
mov al,byteVal ; AL = 9Bh
cbw ; AX = FF9Bh

7.3 Multiplication and Division Instructions 265

The CWD (convert word to doubleword) instruction extends the sign bit of AX into DX:

.data
wordVal SWORD -101 ; FF9Bh
.code
mov ax,wordVal ; AX = FF9Bh
cwd ; DX:AX = FFFFFF9Bh

The CDQ (convert doubleword to quadword) instruction extends the sign bit of EAX into EDX:

.data
dwordVal SDWORD -101 ; FFFFFF9Bh
.code
mov eax,dwordVal
cdq ; EDX:EAX = FFFFFFFFFFFFFF9Bh

The IDIV Instruction
The IDIV (signed divide) instruction performs signed integer division, using the same operands
as DIV. Before executing 8-bit division, the dividend (AX) must be completely sign-extended.
The remainder always has the same sign as the dividend.

Example 1 The following instructions divide �48 by 5. After IDIV executes, the quotient in
AL is �9 and the remainder in AH is �3:

.data
byteVal SBYTE -48 ; D0 hexadecimal
.code
mov al,byteVal ; lower half of dividend
cbw ; extend AL into AH
mov bl,+5 ; divisor
idiv bl ; AL = -9, AH = -3

The following illustration shows how AL is sign-extended into AX by the CBW instruction:

To understand why sign extension of the dividend is necessary, let’s repeat the previous example
without using sign extension. The following code initializes AH to zero so it has a known value,
and then divides without using CBW to prepare the dividend:

.data
byteVal SBYTE -48 ; D0 hexadecimal
.code
mov ah,0 ; upper half of dividend
mov al,byteVal ; lower half of dividend
mov bl,+5 ; divisor
idiv bl ; AL = 41, AH = 3

1 1 0 1 0 0 0 0

1 1 0 1 0 0 0 0

AL � �48 decimal

AX � �48 decimal1 1 1 1 1 1 1 1

(Copy 8 bits)

266 Chapter 7 • Integer Arithmetic

Before the division, AX = 00D0h (208 decimal). IDIV divides this by 5, producing a quotient of
41 decimal, and a remainder of 3. That is certainly not the correct answer.

Example 2 16-Bit division requires AX to be sign-extended into DX. The next example
divides �5000 by 256:

.data
wordVal SWORD -5000
.code
mov ax,wordVal ; dividend, low
cwd ; extend AX into DX
mov bx,+256 ; divisor
idiv bx ; quotient AX = -19, rem DX = -136

Example 3 32-Bit division requires EAX to be sign-extended into EDX. The next example
divides 50,000 by �256:

.data
dwordVal SDWORD +50000
.code
mov eax,dwordVal ; dividend, low
cdq ; extend EAX into EDX
mov ebx,-256 ; divisor
idiv ebx ; quotient EAX = -195, rem EDX = +80

Divide Overflow
If a division operand produces a quotient that will not fit into the destination operand, a divide
overflow condition results. This causes a processor exception and halts the current program. The fol-
lowing instructions, for example, generate a divide overflow because the quotient (100h) is too
large for the 8-bit AL destination register:

mov ax,1000h
mov bl,10h
div bl ; AL cannot hold 100h

When this code executes, Fig. 7-1 shows the resulting error dialog produced by Visual Studio. A
similar dialog window appears when you execute code that attempts to divide by zero.

Here’s a suggestion: use a 32-bit divisor and 64-bit dividend to reduce the probability of a
divide overflow condition. In the following code, the divisor is EBX, and the dividend is placed
in the 64-bit combined EDX and EAX registers:

mov eax,1000h
cdq
mov ebx,10h
div ebx ; EAX = 00000100h

All arithmetic status flag values are undefined after executing DIV and IDIV.

7.3 Multiplication and Division Instructions 267

Figure 7–1 Divide overflow error example.

To prevent division by zero, test the divisor before dividing:

mov ax,dividend
mov bl,divisor
cmp bl,0 ; check the divisor
je NoDivideZero ; zero? display error
div bl ; not zero: continue
.
.
NoDivideZero: ;(display "Attempt to divide by zero")

7.3.6 Implementing Arithmetic Expressions
Chapter 4 showed how to implement arithmetic expressions using addition and subtraction. We
can now include multiplication and division. Implementing arithmetic expressions at first seems
to be an activity best left for compiler writers, but there is much to be gained by hands-on study.
You can learn how compilers optimize code. Also, you can implement better error checking than
a typical compiler by checking the size of the product following multiplication operations. Most
high-level language compilers ignore the upper 32 bits of the product when multiplying two 32-
bit operands. In assembly language, however, you can use the Carry and Overflow flags to tell
you when the product does not fit into 32 bits. The use of these flags was explained in
Sections 7.4.1 and 7.4.2.

Example 1 Implement the following C++ statement in assembly language, using unsigned
32-bit integers:

var4 = (var1 + var2) * var3;

Tip: There are two easy ways to view assembly code generated by a C++ compiler: While debugging
in Visual Studio, right-click in the debug window and select Go to Disassembly. Alternatively, to gen-
erate a listing file, select Properties from the Project menu. Under Configuration Properties, select
Microsoft Macro Assembler. Then select Listing File. In the dialog window, set Generate
Preprocessed Source Listing to Yes, and set List All Available Information to Yes.

268 Chapter 7 • Integer Arithmetic

This is a straightforward problem because we can work from left to right (addition, then multi-
plication). After the second instruction, EAX contains the sum of var1 and var2. In the third
instruction, EAX is multiplied by var3 and the product is stored in EAX:

mov eax,var1
add eax,var2
mul var3 ; EAX = EAX * var3
jc tooBig ; unsigned overflow?
mov var4,eax
jmp next

tooBig: ; display error message

If the MUL instruction generates a product larger than 32 bits, the JC instruction jumps to a label
that handles the error.

Example 2 Implement the following C++ statement, using unsigned 32-bit integers:

var4 = (var1 * 5) / (var2 - 3);

In this example, there are two subexpressions within parentheses. The left side can be assigned
to EDX:EAX, so it is not necessary to check for overflow. The right side is assigned to EBX, and
the final division completes the expression:

mov eax,var1 ; left side
mov ebx,5
mul ebx ; EDX:EAX = product
mov ebx,var2 ; right side
sub ebx,3
div ebx ; final division
mov var4,eax

Example 3 Implement the following C++ statement, using signed 32-bit integers:

var4 = (var1 * -5) / (-var2 % var3);

This example is a little trickier than the previous ones. We can begin with the expression on the
right side and store its value in EBX. Because the operands are signed, it is important to sign-
extend the dividend into EDX and use the IDIV instruction:

mov eax,var2 ; begin right side
neg eax
cdq ; sign-extend dividend
idiv var3 ; EDX = remainder
mov ebx,edx ; EBX = right side

Next, we calculate the expression on the left side, storing the product in EDX:EAX:

mov eax,-5 ; begin left side
imul var1 ; EDX:EAX = left side

Finally, the left side (EDX:EAX) is divided by the right side (EBX):

idiv ebx ; final division
mov var4,eax ; quotient

7.4 Extended Addition and Subtraction 269

7.3.7 Section Review
1. Explain why overflow cannot occur when the MUL and one-operand IMUL instructions

execute.

2. How is the one-operand IMUL instruction different from MUL in the way it generates a
multiplication product?

3. What has to happen in order for the one-operand IMUL to set the Carry and Overflow flags?

4. When EBX is the operand in a DIV instruction, which register holds the quotient?

5. When BX is the operand in a DIV instruction, which register holds the quotient?

6. When BL is the operand in a MUL instruction, which registers hold the product?

7. Show an example of sign extension before calling the IDIV instruction with a 16-bit operand.

7.4 Extended Addition and Subtraction
Extended precision addition and subtraction is the technique of adding and subtracting numbers
having an almost unlimited size. In C++, for example, no standard operator permits you to add
two 1024-bit integers. But in assembly language, the ADC (add with carry) and SBB (subtract
with borrow) instructions are well suited to this type of operation.

7.4.1 ADC Instruction
The ADC (add with carry) instruction adds both a source operand and the contents of the Carry
flag to a destination operand. The instruction formats are the same as for the ADD instruction,
and the operands must be the same size:

ADC reg,reg
ADC mem,reg
ADC reg,mem
ADC mem,imm
ADC reg,imm

For example, the following instructions add two 8-bit integers (FFh + FFh), producing a 16-bit
sum in DL:AL, which is 01FEh:

mov dl,0
mov al,0FFh
add al,0FFh ; AL = FEh
adc dl,0 ; DL/AL = 01FEh

The following illustration shows the movement of data during the two addition steps. First,
FFh is added to AL, producing FEh in the AL register and setting the Carry flag. Next, both 0
and the contents of the Carry flag are added to the DL register:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

AL

1 1 1 1 1 1 1 1

Carry
flag

0 0 0 0 0 0 0 0

AL

DL

1

ADD AL,0FFh

ADC DL,0 0 0 0 0 0 0 0 0 ��

�

0 0 0 0 0 0 0 1

DL

270 Chapter 7 • Integer Arithmetic

Similarly, the following instructions add two 32-bit integers (FFFFFFFFh + FFFFFFFFh), pro-
ducing a 64-bit sum in EDX:EAX: 00000001FFFFFFFEh:

mov edx,0
mov eax,0FFFFFFFFh
add eax,0FFFFFFFFh
adc edx,0

7.4.2 Extended Addition Example
Next, we would like to demonstrate a procedure named Extended_Add that adds two extended
integers of the same size. Using a loop, it works its way through the two extended integers as if
they were parallel arrays. As it adds each matching pair of values in the arrays, it includes the
value of the carry from the addition that was performed during the previous iteration of the loop.
Our implementation assumes that the integers are stored as arrays of bytes, but the example
could easily be modified to add arrays of doublewords.

The procedure receives two pointers in ESI and EDI that point to the integers to be added.
The EBX register points to a buffer in which the bytes of the sum will be stored, with the precon-
dition that this buffer must be one byte longer than the two integers. Also, the procedure receives
the length of the longest integer in ECX. The numbers must be stored in little-endian order, with
the lowest order byte at each array’s starting offset. Here’s the code, with line numbers added so
we can discuss it in detail:

 1: ;--
 2: Extended_Add PROC
 3: ;
 4: ; Calculates the sum of two extended integers stored
 5: ; as arrays of bytes.
 6: ; Receives: ESI and EDI point to the two integers,
 7: ; EBX points to a variable that will hold the sum,
 8: ; and ECX indicates the number of bytes to be added.
 9: ; Storage for the sum must be one byte longer than the
10: ; input operands.
11: ; Returns: nothing
12: ;--
13: pushad
14: clc ; clear the Carry flag
15:
16: L1: mov al,[esi] ; get the first integer
17: adc al,[edi] ; add the second integer
18: pushfd ; save the Carry flag
19: mov [ebx],al ; store partial sum
20: add esi,1 ; advance all three pointers
21: add edi,1
22: add ebx,1
23: popfd ; restore the Carry flag
24: loop L1 ; repeat the loop
25:
26: mov byte ptr [ebx],0 ; clear high byte of sum

7.4 Extended Addition and Subtraction 271

27: adc byte ptr [ebx],0 ; add any leftover carry
28: popad
29: ret
30: Extended_Add ENDP

When lines 16 and 17 add the first two low-order bytes, the addition might set the Carry flag.
Therefore, it’s important to save the Carry flag by pushing it on the stack on line 18, because we
will need it when the loop repeats. Line 19 saves the first byte of the sum, and lines 20–22 advance
all three pointers (for the two operands and the sum array). Line 23 restores the Carry flag, and
line 24 continues the loop back to line 16. (The LOOP instruction never modifies the CPU status
flags.) As the loop repeats, line 17 adds the next pair of bytes, and includes the value of the Carry
flag. So if a Carry had been generated during the first pass through the loop, that Carry would be
included during the second pass through the loop. The loop continues this way until all bytes have
been added. Then, finally lines 26 and 27 look for any Carry that was generated when the two high-
est bytes of the operand were added, and adds this Carry to the extra byte in the sum operand.

The following sample code calls Extended_Add, passing it two 8-byte integers. We are care-
ful to allocate an extra byte for the sum:

.data
op1 BYTE 34h,12h,98h,74h,06h,0A4h,0B2h,0A2h
op2 BYTE 02h,45h,23h,00h,00h,87h,10h,80h
sum BYTE 9 dup(0)

.code
main PROC

mov esi,OFFSET op1 ; first operand
mov edi,OFFSET op2 ; second operand
mov ebx,OFFSET sum ; sum operand
mov ecx,LENGTHOF op1 ; number of bytes
call Extended_Add

; Display the sum.

mov esi,OFFSET sum
mov ecx,LENGTHOF sum
call Display_Sum
call Crlf

The following output is produced by the program. The addition produces a carry:

0122C32B0674BB5736

The Display_Sum procedure (from the same program) displays the sum in its proper order,
starting with the high-order byte, and working its way down to the low-order byte:

Display_Sum PROC
pushad
; point to the last array element
add esi,ecx
sub esi,TYPE BYTE
mov ebx,TYPE BYTE

272 Chapter 7 • Integer Arithmetic

L1: mov al,[esi] ; get an array byte
call WriteHexB ; display it
sub esi,TYPE BYTE ; point to previous byte
loop L1

popad
ret

Display_Sum ENDP

7.4.3 SBB Instruction
The SBB (subtract with borrow) instruction subtracts both a source operand and the value of
the Carry flag from a destination operand. The possible operands are the same as for the
ADC instruction. The following example code carries out 64-bit subtraction with 32-bit
operands. It sets EDX:EAX to 0000000700000001h and subtracts 2 from this value. The
lower 32 bits are subtracted first, setting the Carry flag. Then the upper 32 bits are sub-
tracted, including the Carry flag:

mov edx,7 ; upper half
mov eax,1 ; lower half
sub eax,2 ; subtract 2
sbb edx,0 ; subtract upper half

Figure 7-2 demonstrates the movement of data during the two subtraction steps. First, the value
2 is subtracted from EAX, producing FFFFFFFFh in EAX. The Carry flag is set because a bor-
row is required when subtracting a larger number from a smaller one. Next the SBB instruction
subtracts both 0 and the contents of the Carry flag from EDX.

Figure 7–2 Subtracting from a 64-bit integer using SBB.

7.4.4 Section Review
1. Describe the ADC instruction.

2. Describe the SBB instruction.

FFFFFFFF00000002

Carry
flag

�

� � 1

SUB EAX,2

SBB EDX,0 00000000

00000007

EDX

00000001

EAX

Before:

After:

00000001

EAX EAX

00000007

EDX

00000006

EDX

00000006

EDX

FFFFFFFF

EAX

7.5 ASCII and Unpacked Decimal Arithmetic 273

3. What will be the values of EDX:EAX after the following instructions execute?

mov edx,10h
mov eax,0A0000000h
add eax,20000000h
adc edx,0

4. What will be the values of EDX:EAX after the following instructions execute?

mov edx,100h
mov eax,80000000h
sub eax,90000000h
sbb edx,0

5. What will be the contents of DX after the following instructions execute (STC sets the
Carry flag)?

mov dx,5
stc ; set Carry flag
mov ax,10h
adc dx,ax

7.5 ASCII and Unpacked Decimal Arithmetic
(The instructions discussed in Section 7.5 apply only to programming in 32-bit mode.) The inte-
ger arithmetic shown so far in this book has dealt only with binary values. The CPU calculates in
binary, but is also able to perform arithmetic on ASCII decimal strings. The latter can be
conveniently entered by the user and displayed in the console window, without requiring them to
be converted to binary. Suppose a program is to input two numbers from the user and add them
together. The following is a sample of the output, in which the user has entered 3402 and 1256:

Enter first number: 3402
Enter second number: 1256
The sum is: 4658

We have two options when calculating and displaying the sum:

1. Convert both operands to binary, add the binary values, and convert the sum from binary to
ASCII digit strings.

2. Add the digit strings directly by successively adding each pair of ASCII digits (2 � 6, 0 � 5,
4 � 2, and 3 � 1). The sum is an ASCII digit string, so it can be directly displayed on the
screen.

The second option requires the use of specialized instructions that adjust the sum after adding
each pair of ASCII digits. Four instructions that deal with ASCII addition, subtraction, multipli-
cation, and division are as follows:

AAA (ASCII adjust after addition)

AAS (ASCII adjust after subtraction)

AAM (ASCII adjust after multiplication)

AAD (ASCII adjust before division)

274 Chapter 7 • Integer Arithmetic

ASCII Decimal and Unpacked Decimal The high 4 bits of an unpacked decimal integer are
always zeros, whereas the same bits in an ASCII decimal number are equal to 0011b. In any
case, both types of integers store one digit per byte. The following example shows how 3402
would be stored in both formats:

Although ASCII arithmetic executes more slowly than binary arithmetic, it has two distinct
advantages:

• Conversion from string format before performing arithmetic is not necessary.
• Using an assumed decimal point permits operations on real numbers without danger of the

roundoff errors that occur with floating-point numbers.

ASCII addition and subtraction permit operands to be in ASCII format or unpacked decimal for-
mat. Only unpacked decimal numbers can be used for multiplication and division.

7.5.1 AAA Instruction
In 32-bit Mode, the AAA (ASCII adjust after addition) instruction adjusts the binary result of an
ADD or ADC instruction. Assuming that AL contains a binary value produced by adding two
ASCII digits, AAA converts AL to two unpacked decimal digits and stores them in AH and AL.
Once in unpacked format, AH and AL can easily be converted to ASCII by ORing them with 30h.

The following example shows how to add the ASCII digits 8 and 2 correctly, using the AAA
instruction. You must clear AH to zero before performing the addition or it will influence the
result returned by AAA. The last instruction converts AH and AL to ASCII digits:

mov ah,0
mov al,'8' ; AX = 0038h
add al,'2' ; AX = 006Ah
aaa ; AX = 0100h (ASCII adjust result)
or ax,3030h ; AX = 3130h = '10' (convert to ASCII)

Multibyte Addition Using AAA
Let’s look at a procedure that adds ASCII decimal values with implied decimal points. The
implementation is a bit more complex than one would imagine because the carry from each digit
addition must be propagated to the next highest position. In the following pseudocode, the name
acc refers to an 8-bit accumulator register:

esi (index) = length of first_number - 1
edi (index) = length of first_number
ecx = length of first_number
set carry value to 0
Loop

acc = first_number[esi]
add previous carry to acc
save carry in carry1
acc += second_number[esi]

33 34 30 32ASCII format: Unpacked: 03 04 00 02

(All values are in hexadecimal)

7.5 ASCII and Unpacked Decimal Arithmetic 275

OR the carry with carry1
sum[edi] = acc
dec edi

Until ecx == 0
Store last carry digit in sum

The carry digit must always be converted to ASCII. When you add the carry digit to the first
operand, you must adjust the result with AAA. Here is the listing:

; ASCII Addition (ASCII_add.asm)

; Perform ASCII arithmetic on strings having
; an implied fixed decimal point.

INCLUDE Irvine32.inc

DECIMAL_OFFSET = 5 ; offset from right of string
.data
decimal_one BYTE "100123456789765" ; 1001234567.89765
decimal_two BYTE "900402076502015" ; 9004020765.02015
sum BYTE (SIZEOF decimal_one + 1) DUP(0),0

.code
main PROC
; Start at the last digit position.

mov esi,SIZEOF decimal_one - 1
mov edi,SIZEOF decimal_one
mov ecx,SIZEOF decimal_one
mov bh,0 ; set carry value to zero

L1: mov ah,0 ; clear AH before addition
mov al,decimal_one[esi] ; get the first digit
add al,bh ; add the previous carry
aaa ; adjust the sum (AH = carry)
mov bh,ah ; save the carry in carry1
or bh,30h ; convert it to ASCII
add al,decimal_two[esi] ; add the second digit
aaa ; adjust the sum (AH = carry)
or bh,ah ; OR the carry with carry1
or bh,30h ; convert it to ASCII
or al,30h ; convert AL back to ASCII
mov sum[edi],al ; save it in the sum
dec esi ; back up one digit
dec edi
loop L1
mov sum[edi],bh ; save last carry digit

; Display the sum as a string.
mov edx,OFFSET sum
call WriteString
call Crlf

exit
main ENDP
END main

276 Chapter 7 • Integer Arithmetic

Here is the program’s output, showing the sum without a decimal point:

7.5.2 AAS Instruction
In 32-bit Mode, the AAS (ASCII adjust after subtraction) instruction follows a SUB or SBB
instruction that has subtracted one unpacked decimal value from another and stored the result in
AL. It makes the result in AL consistent with ASCII digit representation. Adjustment is neces-
sary only when the subtraction generates a negative result. For example, the following state-
ments subtract ASCII 9 from 8:

.data
val1 BYTE '8'
val2 BYTE '9'
.code
mov ah,0
mov al,val1 ; AX = 0038h
sub al,val2 ; AX = 00FFh
aas ; AX = FF09h
pushf ; save the Carry flag
or al,30h ; AX = FF39h
popf ; restore the Carry flag

After the SUB instruction, AX equals 00FFh. The AAS instruction converts AL to 09h and sub-
tracts 1 from AH, setting it to FFh and setting the Carry flag.

7.5.3 AAM Instruction
In 32-bit Mode, the AAM (ASCII adjust after multiplication) instruction converts the binary
product produced by MUL to unpacked decimal. The multiplication can only use unpacked dec-
imals. In the following example, we multiply 5 by 6 and adjust the result in AX. After adjust-
ment, AX = 0300h, the unpacked decimal representation of 30:

.data
AscVal BYTE 05h,06h
.code
mov bl,ascVal ; first operand
mov al,[ascVal+1] ; second operand
mul bl ; AX = 001Eh
aam ; AX = 0300h

7.5.4 AAD Instruction
In 32-Bit Mode, the AAD (ASCII adjust before division) instruction converts an unpacked deci-
mal dividend in AX to binary in preparation for executing the DIV instruction. The following
example converts unpacked 0307h to binary, then divides it by 5. DIV produces a quotient of
07h in AL and a remainder of 02h in AH:

.data
quotient BYTE ?
remainder BYTE ?
.code

1000525533291780

7.6 Packed Decimal Arithmetic 277

mov ax,0307h ; dividend
aad ; AX = 0025h
mov bl,5 ; divisor
div bl ; AX = 0207h
mov quotient,al
mov remainder,ah

7.5.5 Section Review
1. Write a single instruction that converts a two-digit unpacked decimal integer in AX to

ASCII decimal.

2. Write a single instruction that converts a two-digit ASCII decimal integer in AX to
unpacked decimal format.

3. Write a two-instruction sequence that converts a two-digit ASCII decimal number in AX to
binary.

4. Write a single instruction that converts an unsigned binary integer in AX to unpacked
decimal.

7.6 Packed Decimal Arithmetic
(The instructions discussed in Section 7.6 apply only to programming in 32-bit mode.) Packed
decimal integers store two decimal digits per byte. Each digit is represented by 4 bits. If there is
an odd number of digits, the highest nybble is filled with a zero. Storage sizes may vary:

bcd1 QWORD 2345673928737285h ; 2,345,673,928,737,285 decimal
bcd2 DWORD 12345678h ; 12,345,678 decimal
bcd3 DWORD 08723654h ; 8,723,654 decimal
bcd4 WORD 9345h ; 9,345 decimal
bcd5 WORD 0237h ; 237 decimal
bcd6 BYTE 34h ; 34 decimal

Packed decimal storage has at least two strengths:

• The numbers can have almost any number of significant digits. This makes it possible to per-
form calculations with a great deal of accuracy.

• Conversion of packed decimal numbers to ASCII (and vice versa) is relatively simple.

Two instructions, DAA (decimal adjust after addition) and DAS (decimal adjust after subtrac-
tion), adjust the result of an addition or subtraction operation on packed decimals. Unfortu-
nately, no such instructions exist for multiplication and division. In those cases, the number must
be unpacked, multiplied or divided, and repacked.

7.6.1 DAA Instruction
In 32-bit Mode, the DAA (decimal adjust after addition) instruction converts a binary sum pro-
duced by ADD or ADC in AL to packed decimal format. For example, the following instructions
add packed decimals 35 and 48. The binary sum (7Dh) is adjusted to 83h, the packed decimal
sum of 35 and 48.

mov al,35h
add al,48h ; AL = 7Dh
daa ; AL = 83h (adjusted result)

278 Chapter 7 • Integer Arithmetic

The internal logic of DAA is documented in the Intel Instruction Set Reference Manual.

Example The following program adds two 16-bit packed decimal integers and stores the sum
in a packed doubleword. Addition requires the sum variable to contain space for one more digit
than the operands:

; Packed Decimal Example (AddPacked.asm)

; Demonstrate packed decimal addition.
INCLUDE Irvine32.inc

.data
packed_1 WORD 4536h
packed_2 WORD 7207h
sum DWORD ?

.code
main PROC
; Initialize sum and index.

mov sum,0
mov esi,0

; Add low bytes.
mov al,BYTE PTR packed_1[esi]
add al,BYTE PTR packed_2[esi]
daa
mov BYTE PTR sum[esi],al

; Add high bytes, include carry.
inc esi
mov al,BYTE PTR packed_1[esi]
adc al,BYTE PTR packed_2[esi]
daa
mov BYTE PTR sum[esi],al

; Add final carry, if any.
inc esi
mov al,0
adc al,0
mov BYTE PTR sum[esi],al

; Display the sum in hexadecimal.
mov eax,sum
call WriteHex
call Crlf
exit

main ENDP
END main

Needless to say, the program contains repetitive code that suggests using a loop. One of the
chapter exercises will ask you to create a procedure that adds packed decimal integers of
any size.

7.7 Chapter Summary 279

7.6.2 DAS Instruction
In 32-bit Mode, the DAS (decimal adjust after subtraction) instruction converts the binary result
of a SUB or SBB instruction in AL to packed decimal format. For example, the following state-
ments subtract packed decimal 48 from 85 and adjust the result:

mov bl,48h
mov al,85h
sub al,bl ; AL = 3Dh
das ; AL = 37h (adjusted result)

The internal logic of DAS is documented in the Intel Instruction Set Reference Manual.

7.6.3 Section Review
1. Under what circumstances does DAA instruction set the Carry flag? Give an example.

2. Under what circumstances does DAS instruction set the Carry flag? Give an example.

3. When adding two packed decimal integers of length n bytes, how many storage bytes must
be reserved for the sum?

7.7 Chapter Summary
Along with the bitwise instructions from the preceding chapter, shift instructions are among the
most characteristic of assembly language. To shift a number means to move its bits right or left.

The SHL (shift left) instruction shifts each bit in a destination operand to the left, filling the
lowest bit with 0. One of the best uses of SHL is for performing high-speed multiplication by
powers of 2. Shifting any operand left by n bits multiplies the operand by 2n. The SHR (shift right)
instruction shifts each bit to the right, replacing the highest bit with a 0. Shifting any operand right by
n bits divides the operand by 2n.

SAL (shift arithmetic left) and SAR (shift arithmetic right) are shift instructions specifically
designed for shifting signed numbers.

The ROL (rotate left) instruction shifts each bit to the left and copies the highest bit to both
the Carry flag and the lowest bit position. The ROR (rotate right) instruction shifts each bit to the
right and copies the lowest bit to both the Carry flag and the highest bit position.

The RCL (rotate carry left) instruction shifts each bit to the left and copies the highest bit into
the Carry flag, which is first copied into the lowest bit of the result. The RCR (rotate carry right)
instruction shifts each bit to the right and copies the lowest bit into the Carry flag. The Carry flag
is copied into the highest bit of the result.

The SHLD (shift left double) and SHRD (shift right double) instructions, available on x86
processors, are particularly effective for shifting bits in large integers.

In 32-bit mode, the MUL instruction multiplies an 8-, 16-, or 32-bit operand by AL, AX, or
EAX. In 64-bit mode, a value can also be multiplied by the RAX register. The IMUL instruction
performs signed integer multiplication. It has three formats: single operand, double operand, and
three operand.

280 Chapter 7 • Integer Arithmetic

In 32-bit mode, the DIV instruction performs 8-bit, 16-bit, and 32-bit division on unsigned
integers. In 64-bit mode, you can also perform 64-bit division. The IDIV instruction performs
signed integer division, using the same operands as the DIV instruction.

The CBW (convert byte to word) instruction extends the sign bit of AL into the AH register. The
CDQ (convert doubleword to quadword) instruction extends the sign bit of EAX into the EDX register.
The CWD (convert word to doubleword) instruction extends the sign bit of AX into the DX register.

Extended addition and subtraction refers to adding and subtracting integers of arbitrary size.
The ADC and SBB instructions can be used to implement such addition and subtraction. The
ADC (add with carry) instruction adds both a source operand and the contents of the Carry flag
to a destination operand. The SBB (subtract with borrow) instruction subtracts both a source
operand and the value of the Carry flag from a destination operand.

ASCII decimal integers store one digit per byte, encoded as an ASCII digit. The AAA (ASCII
adjust after addition) instruction converts the binary result of an ADD or ADC instruction to ASCII
decimal. The AAS (ASCII adjust after subtraction) instruction converts the binary result of a SUB
or SBB instruction to ASCII decimal. All of these instructions are available only in 32-bit mode.

Unpacked decimal integers store one decimal digit per byte, as a binary value. The AAM
(ASCII adjust after multiplication) instruction converts the binary product of a MUL instruction
to unpacked decimal. The AAD (ASCII adjust before division) instruction converts an unpacked
decimal dividend to binary in preparation for the DIV instruction. All of these instructions are
available only in 32-bit mode.

Packed decimal integers store two decimal digits per byte. The DAA (decimal adjust after addi-
tion) instruction converts the binary result of an ADD or ADC instruction to packed decimal. The
DAS (decimal adjust after subtraction) instruction converts the binary result of a SUB or SBB
instruction to packed decimal. All of these instructions are available only in 32-bit mode.

7.8 Key Terms

7.8.1 Terms

arithmetic shift

binary multiplication

bit rotation

bit shifting

bit strings

bitwise division

bitwise multiplication

bitwise rotation

divide overflow

little-endian order

logical shift

sign extension

signed division

signed multiplication

signed overflow

unsigned multiplication

7.8.2 Instructions, Operators, and Directives

AAA

AAD

AAM

AAS

ADC

CBQ

CBW

DAA

DAS

7.9 Review Questions and Exercises 281

DIV

IDIV

IMUL

MUL

RCL

RCR

ROL

ROR

SAL

SAR

SBB

SHL

SHLD

SHR

SHRD

