
313

CHAPTER OUTLINE

6–1 Half and Full Adders

6–2 Parallel Binary Adders

6–3 Ripple Carry and Look-Ahead Carry Adders

6–4 Comparators

6–5 Decoders

6–6 Encoders

6–7 Code Converters

6–8 Multiplexers (Data Selectors)

6–9 Demultiplexers

6–10 Parity Generators/Checkers

6–11 Troubleshooting

 Applied Logic

CHAPTER OBJECTIVES

■ Distinguish between half-adders and full-adders

■ Use full-adders to implement multibit parallel binary

adders

■ Explain the differences between ripple carry and

look-ahead carry parallel adders

■ Use the magnitude comparator to determine the

relationship between two binary numbers and use

cascaded comparators to handle the comparison of

larger numbers

■ Implement a basic binary decoder

■ Use BCD-to-7-segment decoders in display

systems

■ Apply a decimal-to-BCD priority encoder in a

simple keyboard application

■ Convert from binary to Gray code, and Gray code

to binary by using logic devices

■ Apply data selectors/multiplexers in multiplexed

displays and as a function generator

■ Use decoders as demultiplexers

■ Explain the meaning of parity

■ Use parity generators and checkers to detect bit

errors in digital systems

■ Describe a simple data communications system

■ Write VHDL programs for several logic functions

■ Identify glitches, common bugs in digital systems

KEY TERMS

Key terms are in order of appearance in the chapter.

Functions of
Combinational Logic

6

■ Half-adder

■ Full-adder

■ Cascading

■ Ripple carry

■ Look-ahead carry

■ Comparator

■ Decoder

■ Encoder

■ Priority encoder

■ Multiplexer (MUX)

■ Demultiplexer

(DEMUX)

■ Parity bit

■ Glitch

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

In this chapter, several types of combinational

logic functions are introduced including adders,

comparators, decoders, encoders, code converters,

multiplexers (data selectors), demultiplexers, and

parity generators/checkers. VHDL implementation

of each logic function is provided, and examples

of fixed-function IC devices are included. Each

 device introduced may also be available in other

logic families.

CHAPTER

314 Functions of Combinational Logic

6–1 Half and Full Adders

Adders are important in computers and also in other types of digital systems in which

numerical data are processed. An understanding of the basic adder operation is funda-

mental to the study of digital systems. In this section, the half-adder and the full-adder are

introduced.

After completing this section, you should be able to

u Describe the function of a half-adder

u Draw a half-adder logic diagram

u Describe the function of the full-adder

u Draw a full-adder logic diagram using half-adders

u Implement a full-adder using AND-OR logic

The Half-Adder

Recall the basic rules for binary addition as stated in Chapter 2.

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 10

The operations are performed by a logic circuit called a half-adder.

The half-adder accepts two binary digits on its inputs and produces two binary

digits on its outputs—a sum bit and a carry bit.

A half-adder is represented by the logic symbol in Figure 6–1.

A half-adder adds two bits and
produces a sum and an output carry.

Σ

A

B Cout

Σ Sum

Carry

OutputsInput bits

FIGURE 6–1 Logic symbol for a half-adder. Open file F06-01 to verify operation.

A Multisim tutorial is available on the website.

Half-Adder Logic

From the operation of the half-adder as stated in Table 6–1, expressions can be derived for

the sum and the output carry as functions of the inputs. Notice that the output carry (Cout)

is a 1 only when both A and B are 1s; therefore, Cout can be expressed as the AND of the

input variables.

 Cout � AB Equation 6–1

Now observe that the sum output (©) is a 1 only if the input variables, A and B, are not

equal. The sum can therefore be expressed as the exclusive-OR of the input variables.

 π � A ¢ B Equation 6–2

From Equations 6–1 and 6–2, the logic implementation required for the half-adder func-

tion can be developed. The output carry is produced with an AND gate with A and B on the

TABLE 6–1

Half-adder truth table.

A B Cout π

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

© = sum

Cout = output carry

A and B = input variables (operands)

 Half and Full Adders 315

inputs, and the sum output is generated with an exclusive-OR gate, as shown in Figure 6–2.

Remember that the exclusive-OR can be implemented with AND gates, an OR gate, and

inverters.

Cout = AB

Σ = A ⊕ B = AB + AB

A

B

FIGURE 6–2 Half-adder logic diagram.

The Full-Adder

The second category of adder is the full-adder.

The full-adder accepts two input bits and an input carry and generates a sum output

and an output carry.

The basic difference between a full-adder and a half-adder is that the full-adder accepts an

input carry. A logic symbol for a full-adder is shown in Figure 6–3, and the truth table in

Table 6–2 shows the operation of a full-adder.

A full-adder has an input carry while
the half-adder does not.

TABLE 6–2

Full-adder truth table.

A B Cin Cout π

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Cin = input carry, sometimes designated as CI

Cout = output carry, sometimes designated as CO

© = sum

A and B = input variables (operands)

Σ
A

Cin

Cout

Σ Sum

Output carry

Input
bits

B

Input carry

FIGURE 6–3 Logic symbol for a full-adder. Open file F06-03 to verify operation.

Full-Adder Logic

The full-adder must add the two input bits and the input carry. From the half-adder you

know that the sum of the input bits A and B is the exclusive-OR of those two variables,

A � B. For the input carry (Cin) to be added to the input bits, it must be exclusive-ORed

with A � B, yielding the equation for the sum output of the full-adder.

 π � (A ¢ B) ¢ Cin Equation 6–3

316 Functions of Combinational Logic

This means that to implement the full-adder sum function, two 2-input exclusive-OR gates

can be used. The first must generate the term A � B, and the second has as its inputs the

output of the first XOR gate and the input carry, as illustrated in Figure 6–4(a).

Cin

B

A

Σ = (A ⊕ B) ⊕ Cin

A ⊕ B

(a) Logic required to form the sum of three bits

Cin

B

A A ⊕ B

(A ⊕ B)Cin

AB

Cout = AB + (A ⊕ B)Cin

(b) Complete logic circuit for a full-adder (each half-adder is enclosed
by a shaded area)

Σ = (A ⊕ B) ⊕ Cin

FIGURE 6–4 Full-adder logic. Open file F06-04 to verify operation.

(b) Full-adder logic symbol

Input
carry, Cin

AB

(a) Arrangement of two half-adders to form a full-adder

A ⊕ B
Σ

A

B Cout

Σ
Sum
(A ⊕ B) ⊕ Cin

Output carry, Cout

Σ

A

B Cout

Σ

Half-adder Half-adder

AB + (A ⊕ B)Cin

(A ⊕ B)Cin
Σ

A

Cin

Cout

Σ

B

A

B

FIGURE 6–5 Full-adder implemented with half-adders.

The output carry is a 1 when both inputs to the first XOR gate are 1s or when both inputs

to the second XOR gate are 1s. You can verify this fact by studying Table 6–2. The output

carry of the full-adder is therefore produced by input A ANDed with input B and A � B

ANDed with Cin. These two terms are ORed, as expressed in Equation 6–4. This function

is implemented and combined with the sum logic to form a complete full-adder circuit, as

shown in Figure 6–4(b).

 Cout � AB � (A ¢ B)Cin Equation 6–4

Notice in Figure 6–4(b) there are two half-adders, connected as shown in the block

diagram of Figure 6–5(a), with their output carries ORed. The logic symbol shown in Fig-

ure 6–5(b) will normally be used to represent the full-adder.

EXAMPLE 6–1

For each of the three full-adders in Figure 6–6, determine the outputs for the inputs shown.

(a)

Σ
A

Cin

Cout

Σ

B

1

0

0

(b)

Σ
A

Cin

Cout

Σ

B

1

0

1

(c)

Σ
A

Cin

Cout

Σ

B

1

1

0

FIGURE 6–6

 Parallel Binary Adders 317

Solution

(a) The input bits are A = 1, B = 0, and Cin = 0.

1 + 0 + 0 = 1 with no carry

 Therefore, © = 1 and Cout = 0.

(b) The input bits are A = 1, B = 1, and Cin = 0.

1 + 1 + 0 = 0 with a carry of 1

 Therefore, © = 0 and Cout = 1.

(c) The input bits are A = 1, B = 0, and Cin = 1.

1 + 0 + 1 = 0 with a carry of 1

 Therefore, © = 0 and Cout = 1.

Related Problem*

What are the full-adder outputs for A = 1, B = 1, and Cin = 1?

*Answers are at the end of the chapter.

SECTION 6–1 CHECKUP

Answers are at the end of the chapter.

 1. Determine the sum (©) and the output carry (Cout) of a half-adder for each set of

input bits:

(a) 01 (b) 00 (c) 10 (d) 11

 2. A full-adder has Cin = 1. What are the sum (©) and the output carry (Cout) when

A = 1 and B = 1?

6–2 Parallel Binary Adders

Two or more full-adders are connected to form parallel binary adders. In this section,

you will learn the basic operation of this type of adder and its associated input and output

functions.

After completing this section, you should be able to

u Use full-adders to implement a parallel binary adder

u Explain the addition process in a parallel binary adder

u Use the truth table for a 4-bit parallel adder

u Apply two 74HC283s for the addition of two 8-bit numbers

u Expand the 4-bit adder to accommodate 8-bit or 16-bit addition

u Use VHDL to describe a 4-bit parallel adder

As you learned in Section 6–1, a single full-adder is capable of adding two 1-bit num-

bers and an input carry. To add binary numbers with more than one bit, you must use

additional full-adders. When one binary number is added to another, each column gener-

ates a sum bit and a 1 or 0 carry bit to the next column to the left, as illustrated here with

2-bit numbers.

InfoNote

Addition is performed by

processors on two numbers at a

time, called operands. The source

operand is a number that is to be

added to an existing number called

the destination operand, which is

held in an ALU register, such as

the accumulator. The sum of the

two numbers is then stored back

in the accumulator. Addition is

performed on integer numbers or

floating-point numbers using ADD

or FADD instructions respectively.

318 Functions of Combinational Logic

To add two binary numbers, a full-adder (FA) is required for each bit in the numbers. So

for 2-bit numbers, two adders are needed; for 4-bit numbers, four adders are used; and so

on. The carry output of each adder is connected to the carry input of the next higher-order

adder, as shown in Figure 6–7 for a 2-bit adder. Notice that either a half-adder can be used

for the least significant position or the carry input of a full-adder can be made 0 (grounded)

because there is no carry input to the least significant bit position.

1
1

1

+ 01

100
In this case, the

carry bit from

second column

becomes a sum bit.

Carry bit from right column

In Figure 6–7 the least significant bits (LSB) of the two numbers are represented by A1

and B1. The next higher-order bits are represented by A2 and B2. The three sum bits are

©1, ©2, and ©3. Notice that the output carry from the left-most full-adder becomes the

most significant bit (MSB) in the sum, ©3.

A2 B2 A1 B1

0

(MSB) Σ2Σ3 Σ1 (LSB)

FA1FA2

General format, addition
of two 2-bit numbers:

A2A1

+ B2B1

Σ3Σ2Σ1

A

Σ

BA

Σ

B Cin Cin

Cout Cout

FIGURE 6–7 Block diagram of a basic 2-bit parallel adder using two full-adders.

Open file F06-07 to verify operation.

EXAMPLE 6–2

Determine the sum generated by the 3-bit parallel adder in Figure 6–8 and show the

intermediate carries when the binary numbers 101 and 011 are being added.

1

Σ2 Σ1

0

1

0

Σ3Σ4

01

1001

11

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

FA1FA2FA3

FIGURE 6–8

 Parallel Binary Adders 319

Four-Bit Parallel Adders

A group of four bits is called a nibble. A basic 4-bit parallel adder is implemented with

four full-adder stages as shown in Figure 6–9. Again, the LSBs (A1 and B1) in each number

being added go into the right-most full-adder; the higher-order bits are applied as shown

to the successively higher-order adders, with the MSBs (A4 and B4) in each number being

applied to the left-most full-adder. The carry output of each adder is connected to the carry

input of the next higher-order adder as indicated. These are called internal carries.

Solution

The LSBs of the two numbers are added in the right-most full-adder. The sum bits and

the intermediate carries are indicated in blue in Figure 6–8.

Related Problem

What are the sum outputs when 111 and 101 are added by the 3-bit parallel adder?

A2 B2 A1 B1

Σ2 Σ1

(LSB)FA1FA2

A3 B3A4 B4

Σ3
Σ4

C4

(a) Block diagram

C0

C1C2C3

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4
Output
carry

Binary
number A

Input
carry

4-bit
sum

(b) Logic symbol

Binary
number B

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

(MSB) FA4 FA3

FIGURE 6–9 A 4-bit parallel adder.

In keeping with most manufacturers’ data sheets, the input labeled C0 is the input carry

to the least significant bit adder; C4, in the case of four bits, is the output carry of the most

significant bit adder; and ©1 (LSB) through ©4 (MSB) are the sum outputs. The logic

symbol is shown in Figure 6–9(b).

In terms of the method used to handle carries in a parallel adder, there are two types:

the ripple carry adder and the carry look-ahead adder. These are discussed in Section 6–3.

Truth Table for a 4-Bit Parallel Adder

Table 6–3 is the truth table for a 4-bit adder. On some data sheets, truth tables may be called

function tables or functional truth tables. The subscript n represents the adder bits and

can be 1, 2, 3, or 4 for the 4-bit adder. Cn-1 is the carry from the previous adder. Carries

C1, C2, and C3 are generated internally. C0 is an external carry input and C4 is an output.

Example 6–3 illustrates how to use Table 6–3.

TABLE 6–3

Truth table for each stage of
a 4-bit parallel adder.

Cn� 1 An Bn πn Cn

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

EXAMPLE 6–3

Use the 4-bit parallel adder truth table (Table 6–3) to find the sum and output carry for

the addition of the following two 4-bit numbers if the input carry (Cn-1) is 0:

A4A3A2A1 = 1100 and B4B3B2B1 = 1100

320 Functions of Combinational Logic

Solution

For n = 1: A1 = 0, B1 = 0, and Cn-1 = 0. From the 1st row of the table,

©1 = 0 and C1 = 0

For n = 2: A2 = 0, B2 = 0, and Cn-1 = 0. From the 1st row of the table,

©2 = 0 and C2 = 0

For n = 3: A3 = 1, B3 = 1, and Cn-1 = 0. From the 4th row of the table,

©3 = 0 and C3 = 1

For n = 4: A4 = 1, B4 = 1, and Cn-1 = 1. From the last row of the table,

©4 = 1 and C4 = 1

C4 becomes the output carry; the sum of 1100 and 1100 is 11000.

Related Problem

Use the truth table (Table 6–3) to find the result of adding the binary numbers 1011

and 1010.

IMPLEMENTATION: 4-BIT PARALLEL ADDER

Fixed-Function Device The 74HC283 and the 74LS283 are 4-bit parallel adders with

identical package pin configurations. The logic symbol and package pin configuration are

shown in Figure 6–10. Go to ti.com for data sheet information.

(5)

(3)

(14)

(12)

(6)

(2)

(15)

(11)

(4)

(1)

(13)

(10)

(7) (9)

VCC

(8)

GND

(b) Logic symbol

VCC16

Σ3

A3

B3

GND

B4

C4

B2

Σ2

A2

B1

C0

Σ1

Σ4

A1 A4

(a) Pin diagram

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4

Σ

(16)

FIGURE 6–10 The 74HC283/74LS283 4-bit parallel adder.

Programmable Logic Device (PLD) A 4-bit adder can be described using VHDL and

implemented in a PLD. First, the data flow approach is used to describe the full adder,

which is shown in Figure 6–4(b), for use as a component. (Blue text comments are not part

of the program.)

entity FullAdder is

 port (A, B, CIN: in bit; SUM, COUT: out bit);

end entity FullAdder;

Inputs and outputs declared

 Parallel Binary Adders 321

architecture LogicOperation of FullAdder is

begin

SUM 6= (A xor B) xor CIN;

COUT 6= ((A xor B) and CIN) or (A and B);

end architecture LogicOperation;

Next, the FullAdder program code is used as a component in a VHDL structural approach

to the 4-bit full-adder in Figure 6–9(a).

entity 4BitFullAdder is

 port (A1, A2, A3, A4, B1, B2, B3, B4, C0: in bit; S1, S2, S3, S4, C4: out bit);

end entity 4BitFullAdder;

architecture LogicOperation of 4BitFullAdder is

 component FullAdder is

 port (A, B, CIN: in bit; SUM, COUT: out bit);

 end component FullAdder;

 signal Cl, C2, C3: bit;

begin

FA1: FullAdder port map (A =7 A1, B =7 B1, CIN =7 C0, SUM =7 S1, COUT =7 Cl);

FA2: FullAdder port map (A =7 A2, B =7 B2, CIN =7 C1, SUM =7 S2, COUT =7 C2);

FA3: FullAdder port map (A =7 A3, B =7 B3, CIN =7 C2, SUM =7 S3, COUT =7 C3);

FA4: FullAdder port map (A =7 A4, B =7 B4, CIN =7 C3, SUM =7 S4, COUT =7 C4);

end architecture LogicOperation;

Boolean expressions for

the outputs¸
˝
˛

A1-A4: Inputs

B1-B4: Inputs

C0: Carry input

S1-S4: Sum outputs

C4: Carry output

¸
˚
˝
˚
˛

Full-adder component

 declaration

Instantiations for each of

the four full adders

¸
˚

˝
˚

˛

Adder Expansion

The 4-bit parallel adder can be expanded to handle the addition of two 8-bit numbers by

using two 4-bit adders. The carry input of the low-order adder (C0) is connected to ground

because there is no carry into the least significant bit position, and the carry output of the

low-order adder is connected to the carry input of the high-order adder, as shown in Fig-

ure 6–11. This process is known as cascading. Notice that, in this case, the output carry is

designated C8 because it is generated from the eighth bit position. The low-order adder is

Adders can be expanded to handle
more bits by cascading.

Σ8 Σ7 Σ6 Σ5

1234

C8

Cout

A8 A7 A6 A5

1234

B8 B7 B6 B5

1234 Cin

Σ4 Σ3 Σ2 Σ1

1234Cout

A4 A3 A2 A1

1234

B4 B3 B2 B1

1234 Cin

C0

AB

Σ

AB

Σ

FIGURE 6–11 Cascading of two 4-bit adders to form an 8-bit adder.

322 Functions of Combinational Logic

the one that adds the lower or less significant four bits in the numbers, and the high-order

adder is the one that adds the higher or more significant four bits in the 8-bit numbers.

Similarly, four 4-bit adders can be cascaded to handle two 16-bit numbers.

EXAMPLE 6–4

Show how two 74HC283 adders can be connected to form an 8-bit parallel adder. Show output bits for the following 8-bit

input numbers:

A8A7A6A5A4A3A2A1 = 10111001 and B8B7B6B5B4B3B2B1 = 10011110

Solution

Two 74HC283 4-bit parallel adders are used to implement the 8-bit adder. The only connection between the two 74HC283s

is the carry output (pin 9) of the low-order adder to the carry input (pin 7) of the high-order adder, as shown in Figure 6–12.

Pin 7 of the low-order adder is grounded (no carry input).

The sum of the two 8-bit numbers is

©9©8©7©6©5©4©3©2©1 = 101010111

Σ

A

1

2

3

4

1

0

0

1

B

1

2

3

4

0

1

1

1

C0

Σ

1

2

3

4

1

1

1

0

C40
1

Σ

A

1

2

3

4

1

1

0

1

B

1

2

3

4

1

0

0

1

C0

Σ

1

2

3

4

1

0

1

0

C4
1

Low-order adder High-order adder

(5)

(3)

(14)

(12)

(6)

(2)

(15)

(11)

(5)

(3)

(14)

(12)

(6)

(2)

(15)

(11)

(4)

(1)

(13)

(10)

(4)

(1)

(13)

(10)

(7)(9) (9)(7)

A1

A2

A3

A4

B1

B2

B3

B4

Σ1

Σ2

Σ3

Σ4

A5

A6

A7

A8

B5

B6

B7

B8

Σ5

Σ6

Σ7

Σ8

Σ9

FIGURE 6–12 Two 74HC283 adders connected as an 8-bit parallel adder (pin

numbers are in parentheses).

Related Problem

Use 74HC283 adders to implement a 12-bit parallel adder.

An Application

An example of full-adder and parallel adder application is a simple voting system that

can be used to simultaneously provide the number of “yes” votes and the number of “no”

votes. This type of system can be used where a group of people are assembled and there is

a need for immediately determining opinions (for or against), making decisions, or voting

on certain issues or other matters.

In its simplest form, the system includes a switch for “yes” or “no” selection at each

position in the assembly and a digital display for the number of yes votes and one for the

number of no votes. The basic system is shown in Figure 6–13 for a 6-position setup, but it

can be expanded to any number of positions with additional 6-position modules and addi-

tional parallel adder and display circuits.

 Parallel Binary Adders 323

In Figure 6–13 each full-adder can produce the sum of up to three votes. The sum

and output carry of each full-adder then goes to the two lower-order inputs of a parallel

binary adder. The two higher-order inputs of the parallel adder are connected to ground

(0) because there is never a case where the binary input exceeds 0011 (decimal 3). For

this basic 6-position system, the outputs of the parallel adder go to a BCD-to-7-segment

decoder that drives the 7-segment display. As mentioned, additional circuits must be

included when the system is expanded.

The resistors from the inputs of each full-adder to ground assure that each input is LOW

when the switch is in the neutral position (CMOS logic is used). When a switch is moved

to the “yes” or to the “no” position, a HIGH level (VCC) is applied to the associated full-

adder input.

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4

Parallel adder 1

Σ
A

Cin

Cout

Σ

B

Σ
A

Cin

Cout

Σ

B

Full-adder 1

Full-adder 2

BCD
to

7-segment
decoder

YES

NO

YES

NO

YES

NO

YES

NO

YES

NO

YES

NO

YES logic

Σ

A

1

2

3

4

B

1

2

3

4

C0

Σ

1

2

3

4

C4

Parallel adder 2

Σ

A

Cin

Cout

Σ

B

Σ
A

Cin

Cout

Σ

B

Full-adder 3

Full-adder 4

BCD
to

7-segment
decoder

330 Ω resistors (typical)

NO logic

1.0 k�

VCC

Six-Position Adder Module

Switches

NO

YES

100 kΩ resistors should be connected from the inputs of the

CMOS full-adders to ground.

FIGURE 6–13 A voting system using full-adders and parallel binary adders.

324 Functions of Combinational Logic

SECTION 6–2 CHECKUP

 1. Two 4-bit numbers (1101 and 1011) are applied to a 4-bit parallel adder. The input

carry is 1. Determine the sum (©) and the output carry.

 2. How many 74HC283 adders would be required to add two binary numbers each rep-

resenting decimal numbers up through 100010?

6–3 Ripple Carry and Look-Ahead Carry Adders

As mentioned in the last section, parallel adders can be placed into two categories based

on the way in which internal carries from stage to stage are handled. Those categories are

ripple carry and look-ahead carry. Externally, both types of adders are the same in terms of

inputs and outputs. The difference is the speed at which they can add numbers. The look-

ahead carry adder is much faster than the ripple carry adder.

After completing this section, you should be able to

u Discuss the difference between a ripple carry adder and a look-ahead carry adder

u State the advantage of look-ahead carry addition

u Define carry generation and carry propagation and explain the difference

u Develop look-ahead carry logic

u Explain why cascaded 74HC283s exhibit both ripple carry and look-ahead carry

properties

The Ripple Carry Adder

A ripple carry adder is one in which the carry output of each full-adder is connected to

the carry input of the next higher-order stage (a stage is one full-adder). The sum and the

output carry of any stage cannot be produced until the input carry occurs; this causes a time

delay in the addition process, as illustrated in Figure 6–14. The carry propagation delay

for each full-adder is the time from the application of the input carry until the output carry

occurs, assuming that the A and B inputs are already present.

1

1

1

1

1

1

MSB

010111

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

01

1

A

Σ

B Cin

Cout

LSB

1
1

8 ns8 ns8 ns8 ns

FA1FA2FA3FA4

32 ns

FIGURE 6–14 A 4-bit parallel ripple carry adder showing “worst-case” carry propagation

delays.

Full-adder 1 (FA1) cannot produce a potential output carry until an input carry is

applied. Full-adder 2 (FA2) cannot produce a potential output carry until FA1 produces

an output carry. Full-adder 3 (FA3) cannot produce a potential output carry until an output

 Ripple Carry and Look-Ahead Carry Adders 325

carry is produced by FA1 followed by an output carry from FA2, and so on. As you can

see in Figure 6–14, the input carry to the least significant stage has to ripple through all the

adders before a final sum is produced. The cumulative delay through all the adder stages is

a “worst-case” addition time. The total delay can vary, depending on the carry bit produced

by each full-adder. If two numbers are added such that no carries (0) occur between stages,

the addition time is simply the propagation time through a single full-adder from the appli-

cation of the data bits on the inputs to the occurrence of a sum output; however, worst-case

addition time must always be assumed.

The Look-Ahead Carry Adder

The speed with which an addition can be performed is limited by the time required for the

carries to propagate, or ripple, through all the stages of a parallel adder. One method of speed-

ing up the addition process by eliminating this ripple carry delay is called look-ahead carry

addition. The look-ahead carry adder anticipates the output carry of each stage, and based on

the inputs, produces the output carry by either carry generation or carry propagation.

Carry generation occurs when an output carry is produced (generated) internally by

the full-adder. A carry is generated only when both input bits are 1s. The generated carry,

Cg, is expressed as the AND function of the two input bits, A and B.

 Cg � AB Equation 6–5

Carry propagation occurs when the input carry is rippled to become the output carry.

An input carry may be propagated by the full-adder when either or both of the input bits are

1s. The propagated carry, Cp, is expressed as the OR function of the input bits.

 Cp � A � B Equation 6–6

The conditions for carry generation and carry propagation are illustrated in Figure 6–15.

The three arrowheads symbolize ripple (propagation).

0 1 1

1

Generated
carry

1

Propagated
carry

1

Propagated carry/
Generated carry

1011111

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

10

A

Σ

B Cin

Cout

1

Propagated
carry

FIGURE 6–15 Illustration of conditions for carry generation and carry propagation.

The output carry of a full-adder can be expressed in terms of both the generated carry

(Cg) and the propagated carry (Cp). The output carry (Cout) is a 1 if the generated carry is

a 1 OR if the propagated carry is a 1 AND the input carry (Cin) is a 1. In other words, we

get an output carry of 1 if it is generated by the full-adder (A = 1 AND B = 1) or if the

adder propagates the input carry (A = 1 OR B = 1) AND Cin = 1. This relationship is

expressed as

 Cout � Cg � CpCin Equation 6–7

Now let’s see how this concept can be applied to a parallel adder, whose individual

stages are shown in Figure 6–16 for a 4-bit example. For each full-adder, the output carry is

326 Functions of Combinational Logic

Based on this analysis, we can now develop expressions for the output carry, Cout, of

each full-adder stage for the 4-bit example.

Full-adder 1:

Cout1 = Cg1 + Cp1Cin1

Full-adder 2:

 Cin2 = Cout1

 Cout2 = Cg2 + Cp2Cin2 = Cg2 + Cp2Cout1 = Cg2 + Cp2(Cg1 + Cp1Cin1)

 = Cg2 + Cp2Cg1 + Cp2Cp1Cin1

Full-adder 3:

Cin3 = Cout2

 Cout3 = Cg3 + Cp3Cin3 = Cg3 + Cp3Cout2 = Cg3 + Cp3(Cg2 + Cp2Cg1 + Cp2Cp1Cin1)

= Cg3 + Cp3Cg2 + Cp3Cp2Cg1 + Cp3Cp2Cp1Cin1

Full-adder 4:

Cin4 = Cout3

Cout4 = Cg4 + Cp4Cin4 = Cg4 + Cp4Cout3

= Cg4 + Cp4(Cg3 + Cp3Cg2 + Cp3Cp2Cg1 + Cp3Cp2Cp1Cin1)

= Cg4 + Cp4Cg3 + Cp4Cp3Cg2 + Cp4Cp3Cp2Cg1 + Cp4Cp3Cp2Cp1Cin1

Notice that in each of these expressions, the output carry for each full-adder stage is

dependent only on the initial input carry (Cin1), the Cg and Cp functions of that stage, and

the Cg and Cp functions of the preceding stages. Since each of the Cg and Cp functions can

be expressed in terms of the A and B inputs to the full-adders, all the output carries are

immediately available (except for gate delays), and you do not have to wait for a carry to

ripple through all the stages before a final result is achieved. Thus, the look-ahead carry

technique speeds up the addition process.

The Cout equations are implemented with logic gates and connected to the full-adders to

create a 4-bit look-ahead carry adder, as shown in Figure 6–17.

A2 B2

Cin2

A

Σ

BA

Σ

B Cin Cin

Cout Cout

A

Σ

B Cin

Cout

A

Σ

B Cin

Cout

FA1FA2FA3FA4

Cout4

A4 B4

Cin4

A3 B3

Cin3

A1 B1

Cin1

Cout3 Cout2 Cout1

Full-adder 4

Cg4 = A4B4

Cp4 = A4 + B4

Full-adder 3

Cg3 = A3B3

Cp3 = A3 + B3

Full-adder 2

Cg2 = A2B2

Cp2 = A2 + B2

Full-adder 1

Cg1 = A1B1

Cp1 = A1 + B1

FIGURE 6–16 Carry generation and carry propagation in terms of the input bits to

a 4-bit adder.

dependent on the generated carry (Cg), the propagated carry (Cp), and its input carry (Cin).

The Cg and Cp functions for each stage are immediately available as soon as the input bits

A and B and the input carry to the LSB adder are applied because they are dependent only

on these bits. The input carry to each stage is the output carry of the previous stage.

 Comparators 327

Combination Look-Ahead and Ripple Carry Adders

As with most fixed-function IC adders, the 74HC283 4-bit adder that was introduced in

Section 6–2 is a look-ahead carry adder. When these adders are cascaded to expand their

capability to handle binary numbers with more than four bits, the output carry of one adder

is connected to the input carry of the next. This creates a ripple carry condition between

the 4-bit adders so that when two or more 74HC283s are cascaded, the resulting adder is

actually a combination look-ahead and ripple carry adder. The look-ahead carry operation

is internal to each MSI adder and the ripple carry feature comes into play when there is a

carry out of one of the adders to the next one.

A

Σ

B

Cin

A4 B4 A3 B3 A2 B2 A1 B1

Σ4(MSB) Σ1(LSB)

A

Σ

B

Cin

A

Σ

B

Cin

A

Σ

B

Cin Cin1

Cg4

Cp4

Cg3

Cp3

Cg2

Cp2

Cg1

Cp1

Cout3

Cout2

Cout1

Cout4

Σ3 Σ2

FIGURE 6–17 Logic diagram for a 4-stage look-ahead carry adder.

SECTION 6–3 CHECKUP

 1. The input bits to a full-adder are A = 1 and B = 0. Determine Cg and Cp.

 2. Determine the output carry of a full-adder when Cin = 1, Cg = 0, and Cp = 1.

6–4 Comparators

The basic function of a comparator is to compare the magnitudes of two binary quantities

to determine the relationship of those quantities. In its simplest form, a comparator circuit

determines whether two numbers are equal.

After completing this section, you should be able to

u Use the exclusive-NOR gate as a basic comparator

u Analyze the internal logic of a magnitude comparator that has both equality and

inequality outputs

u Apply the 74HC85 comparator to compare the magnitudes of two 4-bit numbers

u Cascade 74HC85s to expand a comparator to eight or more bits

u Use VHDL to describe a 4-bit magnitude comparator

328 Functions of Combinational Logic

In order to compare binary numbers containing two bits each, an additional exclusive-

NOR gate is necessary. The two least significant bits (LSBs) of the two numbers are com-

pared by gate G1, and the two most significant bits (MSBs) are compared by gate G2, as

shown in Figure 6–19. If the two numbers are equal, their corresponding bits are the same,

and the output of each exclusive-NOR gate is a 1. If the corresponding sets of bits are not

equal, a 0 occurs on that exclusive-NOR gate output.

Equality

As you learned in Chapter 3, the exclusive-NOR gate can be used as a basic comparator

because its output is a 0 if the two input bits are not equal and a 1 if the input bits are equal.

Figure 6–18 shows the exclusive-NOR gate as a 2-bit comparator.

0
1

0
The input bits are not equal.

1
1

1
The input bits are equal.

1
0

0
The input bits are equal.

0
0

1
The input bits are not equal.

FIGURE 6–18 Basic comparator operation.

General format: Binary number A → A1A0

Binary number B → B1B0

A0

B0

A1

B1

A = B
HIGH indicates equality.

G1

G2MSBs

LSBs

FIGURE 6–19 Logic diagram for equality comparison of two 2-bit numbers. Open

file F06-19 to verify operation.

In order to produce a single output indicating an equality or inequality of two numbers,

an AND gate can be combined with XNOR gates, as shown in Figure 6–19. The output of

each exclusive-NOR gate is applied to the AND gate input. When the two input bits for

each exclusive-NOR are equal, the corresponding bits of the numbers are equal, producing

a 1 on both inputs to the AND gate and thus a 1 on the output. When the two numbers are

not equal, one or both sets of corresponding bits are unequal, and a 0 appears on at least

one input to the AND gate to produce a 0 on its output. Thus, the output of the AND gate

indicates equality (1) or inequality (0) of the two numbers. Example 6–5 illustrates this

operation for two specific cases.

A comparator determines if two
 binary numbers are equal or
 unequal.

EXAMPLE 6–5

Apply each of the following sets of binary numbers to the comparator inputs in Figure 6–20, and determine the output by

following the logic levels through the circuit.

(a) 10 and 10 (b) 11 and 10

A0 = 1

B0 = 0

A1 = 1

B1 = 1

0 → not equal

0

1

(b)

A0 = 0

B0 = 0

A1 = 1

B1 = 1

1 → equal

1

1

(a)

FIGURE 6–20

 Comparators 329

As you know from Chapter 3, the basic comparator can be expanded to any number of

bits. The AND gate sets the condition that all corresponding bits of the two numbers must

be equal if the two numbers themselves are equal.

Inequality

In addition to the equality output, fixed-function comparators can provide additional out-

puts that indicate which of the two binary numbers being compared is the larger. That is,

there is an output that indicates when number A is greater than number B (A 7 B) and an

output that indicates when number A is less than number B (A 6 B), as shown in the logic

symbol for a 4-bit comparator in Figure 6–21.

To determine an inequality of binary numbers A and B, you first examine the highest-

order bit in each number. The following conditions are possible:

 1. If A3 = 1 and B3 = 0, number A is greater than number B.

 2. If A3 = 0 and B3 = 1, number A is less than number B.

 3. If A3 = B3, then you must examine the next lower bit position for an inequality.

These three operations are valid for each bit position in the numbers. The general pro-

cedure used in a comparator is to check for an inequality in a bit position, starting with

the highest-order bits (MSBs). When such an inequality is found, the relationship of the

two numbers is established, and any other inequalities in lower-order bit positions must be

ignored because it is possible for an opposite indication to occur; the highest-order indica-

tion must take precedence.

Solution

(a) The output is 1 for inputs 10 and 10, as shown in Figure 6–20(a).

(b) The output is 0 for inputs 11 and 10, as shown in Figure 6–20(b).

Related Problem

Repeat the process for binary inputs of 01 and 10.

InfoNote

In a computer, the cache is a very

fast intermediate memory between

the central processing unit (CPU)

and the slower main memory. The

CPU requests data by sending

out its address (unique location)

in memory. Part of this address

is called a tag. The tag address

comparator compares the tag from

the CPU with the tag from the

cache directory. If the two agree,

the addressed data is already in the

cache and is retrieved very quickly.

If the tags disagree, the data

must be retrieved from the main

memory at a much slower rate.

A0

A1

A2

A3

B0

B1

B2

B3

A

0

3

B

0

3

COMP

A > B

A = B

A < B

FIGURE 6–21 Logic symbol for

a 4-bit comparator with inequality

indication.

EXAMPLE 6–6

Determine the A = B, A 7 B, and A 6 B outputs for the input numbers shown on the

comparator in Figure 6–22.

A

0

3

B

0

3

COMP
0

1

1

0

1

1

0

0

A > B

A = B

A < B

FIGURE 6–22

Solution

The number on the A inputs is 0110 and the number on the B inputs is 0011. The A + B

output is HIGH and the other outputs are LOW.

Related Problem

What are the comparator outputs when A3A2A1A0 = 1001 and B3B2B1B0 = 1010?

330 Functions of Combinational Logic

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

(10)

(12)

(13)

(15)

(11)

(14)

(1)

(4)

(3)

(2)

(9)

(5)

(6)

(7)
Outputs

Cascading
inputs

VCC(16), GND(8)

B3

A < Bin

A = Bin

A > Bin

A > Bout

A = Bout

A < Bout

GND

VCC

A3

B2

A2

A1

B1

A0

B0

(a) Pin diagram (b) Logic symbol

A

0

3

B

0

3

COMP

A > B

A = B

A < B

A > B

A = B

A < B

FIGURE 6–23 The 74HC85/74LS85 4-bit magnitude comparator.

A1

B1

A0

B0

A2

B2

A3

B3

A = B

FIGURE 6–24

IMPLEMENTATION: 4-BIT MAGNITUDE COMPARATOR

Fixed-Function Device The 74HC85/74LS85 pin diagram and logic symbol are

shown in Figure 6–23. Notice that this device has all the inputs and outputs of the

generalized comparator previously discussed and, in addition, has three cascading

inputs: A 6 B, A = B, A . B. These inputs allow several comparators to be cascaded

for comparison of any number of bits greater than four. To expand the comparator,

the A 6 B, A = B, and A 7 B outputs of the lower-order comparator are connected

to the corresponding cascading inputs of the next higher-order comparator. The low-

est-order comparator must have a HIGH on the A = B input and LOWs on the A 6 B

and A 7 B inputs.

Programmable Logic Device (PLD) A 4-bit magnitude comparator can be described

using VHDL and implemented in a PLD. The following VHDL program uses the data flow

approach to implement a simplified comparator (A = B output only) in Figure 6–24. (The

blue comments are not part of the program.)

entity 4BitComparator is

 port (A0, A1, A2, A3, B0, B1, B2, B3: in bit; AequalB: out bit);

end entity 4BitComparator;

architecture LogicOperation of 4BitComparator is

begin

AequalB 6= (A0 xnor B0) and (A1 xnor B1) and

(A2 xnor B2) and (A3 xnor B);

end architecture LogicOperation;

Output in terms of a

Boolean expression¸
˝
˛

Inputs and outputs declared

 Decoders 331

EXAMPLE 6–7

Use 74HC85 comparators to compare the magnitudes of two 8-bit numbers. Show the

comparators with proper interconnections.

Solution

Two 74HC85s are required to compare two 8-bit numbers. They are connected as

shown in Figure 6–25 in a cascaded arrangement.

A

0

3

B

0

3

COMP

Outputs+5 V

A4

A5

A6

A7

B4

B5

B6

B7

A

0

3

B

0

3

COMP

A > B

A = B

A < B

A > B

A = B

A < B

A0

A1

A2

A3

B0

B1

B2

B3

LSBs MSBs

A > B

A = B

A < B

A > B

A = B

A < B

74HC8574HC85

FIGURE 6–25 An 8-bit magnitude comparator using two 74HC85s.

Related Problem

Expand the circuit in Figure 6–25 to a 16-bit comparator.

Most CMOS devices contain protection circuitry to guard against damage from high static voltages or
electric fields. However, precautions must be taken to avoid applications of any voltages higher than
maximum rated voltages. For proper operation, input and output voltages should be between ground
and VCC. Also, remember that unused inputs must always be connected to an appropriate logic level
(ground or VCC). Unused outputs may be left open.

SECTION 6–4 CHECKUP

 1. The binary numbers A = 1011 and B = 1010 are applied to the inputs of a 74HC85.

Determine the outputs.

 2. The binary numbers A = 11001011 and B = 11010100 are applied to the 8-bit

comparator in Figure 6–25. Determine the states of the outputs on each comparator.

6–5 Decoders

A decoder is a digital circuit that detects the presence of a specified combination of bits

(code) on its inputs and indicates the presence of that code by a specified output level. In

its general form, a decoder has n input lines to handle n bits and from one to 2n output lines

to indicate the presence of one or more n-bit combinations. In this section, three fixed-

function IC decoders are introduced. The basic principles can be extended to other types

of decoders.

332 Functions of Combinational Logic

After completing this section, you should be able to

u Define decoder

u Design a logic circuit to decode any combination of bits

u Describe the 74HC154 binary-to-decimal decoder

u Expand decoders to accommodate larger numbers of bits in a code

u Describe the 74HC42 BCD-to-decimal decoder

u Describe the 74HC47 BCD-to-7-segment decoder

u Discuss zero suppression in 7-segment displays

u Use VHDL to describe various types of decoders

u Apply decoders to specific applications

The Basic Binary Decoder

Suppose you need to determine when a binary 1001 occurs on the inputs of a digital cir-

cuit. An AND gate can be used as the basic decoding element because it produces a HIGH

output only when all of its inputs are HIGH. Therefore, you must make sure that all of the

inputs to the AND gate are HIGH when the binary number 1001 occurs; this can be done

by inverting the two middle bits (the 0s), as shown in Figure 6–26.

1

1

(a)

1

0

0

1

1

A1

A2

(b)

A0

A1

A2

A3

(LSB)

(MSB)

X = A3A2A1A0

FIGURE 6–26 Decoding logic for the binary code 1001 with an active-HIGH output.

InfoNote

An instruction tells the processor

what operation to perform.

Instructions are in machine

code (1s and 0s) and, in order

for the processor to carry out

an instruction, the instruction

must be decoded. Instruction

decoding is one of the steps in

instruction pipelining, which are as

follows: Instruction is read from

the memory (instruction fetch),

instruction is decoded, operand(s)

is (are) read from memory

(operand fetch), instruction is

executed, and result is written back

to memory. Basically, pipelining

allows the next instruction to begin

processing before the current one

is completed.

The logic equation for the decoder of Figure 6–26(a) is developed as illustrated in Figure

6–26(b). You should verify that the output is 0 except when A0 = 1, A1 = 0, A2 = 0, and

A3 = 1 are applied to the inputs. A0 is the LSB and A3 is the MSB. In the representation of

a binary number or other weighted code in this book, the LSB is the right-most bit in a hori-

zontal arrangement and the topmost bit in a vertical arrangement, unless specified otherwise.

If a NAND gate is used in place of the AND gate in Figure 6–26, a LOW output will

indicate the presence of the proper binary code, which is 1001 in this case.

EXAMPLE 6–8

Determine the logic required to decode the binary number 1011 by producing a HIGH

level on the output.

Solution

The decoding function can be formed by complementing only the variables that appear

as 0 in the desired binary number, as follows:

X = A3A2A1A0 (1011)

This function can be implemented by connecting the true (uncomplemented) variables

A0, A1, and A3 directly to the inputs of an AND gate, and inverting the variable A2

before applying it to the AND gate input. The decoding logic is shown in Figure 6–27.

 Decoders 333

The 4-Bit Decoder

In order to decode all possible combinations of four bits, sixteen decoding gates are

required (24
= 16). This type of decoder is commonly called either a 4-line-to-16-line

decoder because there are four inputs and sixteen outputs or a 1-of-16 decoder because for

any given code on the inputs, one of the sixteen outputs is activated. A list of the sixteen

binary codes and their corresponding decoding functions is given in Table 6–4.

Related Problem

Develop the logic required to detect the binary code 10010 and produce an active-LOW

output.

A2

A0

A1

A2

A3

X = A3A2A1A0

FIGURE 6–27 Decoding logic for producing a HIGH output when 1011 is on the

inputs.

TABLE 6–4

Decoding functions and truth table for a 4-line-to-16-line (1-of-16) decoder with active-LOW outputs.

Decimal

Digit

Binary Inputs Decoding

Function

Outputs

A3 A2 A1 A0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 0 0 0 0 A3A2A1A0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 0 0 0 1 A3A2A1A0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 2 0 0 1 0 A3A2A1A0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

 3 0 0 1 1 A3A2A1A0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

 4 0 1 0 0 A3A2A1A0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

 5 0 1 0 1 A3A2A1A0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

 6 0 1 1 0 A3A2A1A0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

 7 0 1 1 1 A3A2A1A0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

 8 1 0 0 0 A3A2A1A0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

 9 1 0 0 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

10 1 0 1 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

11 1 0 1 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

12 1 1 0 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

13 1 1 0 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

14 1 1 1 0 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

15 1 1 1 1 A3A2A1A0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

If an active-LOW output is required for each decoded number, the entire decoder can be

implemented with NAND gates and inverters. In order to decode each of the sixteen binary

codes, sixteen NAND gates are required (AND gates can be used to produce active-HIGH

outputs).

A logic symbol for a 4-line-to-16-line (1-of-16) decoder with active-LOW outputs is

shown in Figure 6–28. The BIN/DEC label indicates that a binary input makes the corre-

sponding decimal output active. The input labels 8, 4, 2, and 1 represent the binary weights

of the input bits (23222120).

334 Functions of Combinational Logic

BIN/DEC
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

4

8

FIGURE 6–28 Logic symbol for a 4-line-to-16-line (1-of-16) decoder. Open file F06-28 to

verify operation.

(a) Pin diagram (b) Logic symbol

(16)

(17)

(13)

(14)

(15)

(1)

(2)

(3)

(4)

(9)

(10)

(11)

(5)

(6)

(7)

(8)

OUT15

OUT12

OUT13

OUT14

OUT1

OUT2

OUT3

OUT4

OUT9

OUT10

OUT11

OUT5

OUT6

OUT7

OUT8

OUT0

EN

&
(18)

(21)

(20)

(23)

(22)

(19)
CS2

CS1

A0

A1

A2

A3

BIN/DEC

4

8

1

2

241OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT8

OUT9

OUT10

GND

VCC

A0

A1

A2

A3

CS2

CS1

OUT15

OUT14

OUT13

OUT12

OUT11

232

223

214

205

196

187

178

169

1510

1411

1312

FIGURE 6–29 The 74HC154 1-of-16 decoder.

IMPLEMENTATION: 1-OF-16 DECODER

Fixed-Function Device The 74HC154 is a good example of a fixed-function IC decoder.

The logic symbol is shown in Figure 6–29. There is an enable function (EN) provided on

this device, which is implemented with a NOR gate used as a negative-AND. A LOW level

on each chip select input, CS1 and CS2, is required in order to make the enable gate output

(EN) HIGH. The enable gate output is connected to an input of each NAND gate in the

decoder, so it must be HIGH for the NAND gates to be enabled. If the enable gate is not

activated by a LOW on both inputs, then all sixteen decoder outputs (OUT) will be HIGH

regardless of the states of the four input variables, A0, A1, A2, and A3.

 Decoders 335

Programmable Logic Device (PLD) The 1-of-16 decoder can be described using VHDL

and implemented as hardware in a PLD. The decoder consists of sixteen 5-input NAND

gates for decoding, a 2-input negative-AND for the enable function, and four inverters.

The following VHDL program code uses the data flow approach. (Blue text comments are

not part of the program.)

entity 1of16Decoder is

 port (A0, A1, A2, A3, CS1, CS2: in bit; OUT0, OUT1, OUT2,

 OUT3, OUT4, OUT5, OUT6, OUT7, OUT8, OUT9, OUT10,

 OUT11, OUT12, OUT13, OUT14, OUT15: out bit);

end entity 1of16Decoder;

architecture LogicOperation of 1of16Decoder is

signal EN: bit;

begin

 OUT0 6= not(not A0 and not A1 and not A2 and not A3 and EN);

 OUT1 6= not(A0 and not A1 and not A2 and not A3 and EN);

 OUT2 6= not(not A0 and A1 and not A2 and not A3 and EN);

 OUT3 6= not(A0 and A1 and not A2 and not A3 and EN);

 OUT4 6= not(not A0 and not A1 and A2 and not A3 and EN);

 OUT5 6= not(A0 and not A1 and A2 and not A3 and EN);

 OUT6 6= not(not A0 and A1 and A2 and not A3 and EN);

 OUT7 6= not(A0 and A1 and A2 and not A3 and EN);

 OUT8 6= not(not A0 and not A1 and not A2 and A3 and EN);

 OUT9 6= not(A0 and not A1 and not A2 and A3 and EN);

 OUT10 6= not(not A0 and A1 and not A2 and A3 and EN);

 OUT11 6= not(A0 and A1 and not A2 and A3 and EN);

 OUT12 6= not(not A0 and not A1 and A2 and A3 and EN);

 OUT13 6= not(A0 and not A1 and A2 and A3 and EN);

 OUT14 6= not(not A0 and A1 and A2 and A3 and EN);

 OUT15 6= not(A0 and A1 and A2 and A3 and EN);

 EN 6= not CS1 and not CS2;

end architecture LogicOperation;

Boolean

 expressions

for the sixteen

outputs

Inputs and outputs

declared

EXAMPLE 6–9

A certain application requires that a 5-bit number be decoded. Use 74HC154 decoders

to implement the logic. The binary number is represented by the format A4A3A2A1A0.

Solution

Since the 74HC154 can handle only four bits, two decoders must be used to form a

5-bit expansion. The fifth bit, A4, is connected to the chip select inputs, CS1 and CS2,

of one decoder, and A4 is connected to the CS1 and CS2 inputs of the other decoder, as

shown in Figure 6–30. When the decimal number is 15 or less, A4 = 0, the low-order

decoder is enabled, and the high-order decoder is disabled. When the decimal number

is greater than 15, A4 = 1 so A4 = 0, the high-order decoder is enabled, and the low-

order decoder is disabled.

¸

˚

˝

˚

˛

336 Functions of Combinational Logic

Related Problem

Determine the output in Figure 6–30 that is activated for the binary input 10110.

BIN/DEC

1

2

4

8

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

High-order
BIN/DEC

OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT8

OUT9

OUT10

OUT11

OUT12

OUT13

OUT14

OUT15

OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT8

OUT9

OUT10

OUT11

OUT12

OUT13

OUT14

OUT15

1

2

4

8

Low-order

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A0

A1

A2

A3

ENEN

A4

74HC154 74HC154

A4

& &
CS1

CS2

CS1

CS2

FIGURE 6–30 A 5-bit decoder using 74HC154s.

The BCD-to-Decimal Decoder

The BCD-to-decimal decoder converts each BCD code (8421 code) into one of ten possible deci-

mal digit indications. It is frequently referred as a 4-line-to-10-line decoder or a 1-of-10 decoder.

The method of implementation is the same as for the 1-of-16 decoder previously dis-

cussed, except that only ten decoding gates are required because the BCD code represents

only the ten decimal digits 0 through 9. A list of the ten BCD codes and their corresponding

decoding functions is given in Table 6–5. Each of these decoding functions is implemented

with NAND gates to provide active-LOW outputs. If an active-HIGH output is required,

AND gates are used for decoding. The logic is identical to that of the first ten decoding

gates in the 1-of-16 decoder (see Table 6–4).

TABLE 6–5

BCD decoding functions.

Decimal

Digit

BCD Code Decoding

FunctionA3 A2 A1 A0

0 0 0 0 0 A3A2A1A0

1 0 0 0 1 A3A2A1A0

2 0 0 1 0 A3A2A1A0

3 0 0 1 1 A3A2A1A0

4 0 1 0 0 A3A2A1A0

5 0 1 0 1 A3A2A1A0

6 0 1 1 0 A3A2A1A0

7 0 1 1 1 A3A2A1A0

8 1 0 0 0 A3A2A1A0

9 1 0 0 1 A3A2A1A0

 Decoders 337

IMPLEMENTATION: BCD-TO-DECIMAL DECODER

Fixed-Function Device The 74HC42 is a fixed-function IC decoder with four BCD in-

puts and ten active-LOW decimal outputs. The logic symbol is shown in Figure 6–31.

BCD/DEC
OUT0

OUT1

OUT2

OUT3

OUT4

OUT5

OUT6

OUT7

OUT8

OUT9

1

2

4

8

A0

A1

A2

A3

74HC42

(11)

(10)

(9)

(7)

(6)

(5)

(4)

(3)

(2)

(1)

(15)

(14)

(13)

(12)

FIGURE 6–31 The 74HC42 BCD-to-decimal decoder.

Programmable Logic Device (PLD) The logic of the BCD-to-decimal decoder is similar

to the 1-of-16 decoder except simpler. In this case, there are ten gates and four inverters

instead of sixteen gates and four inverters. This decoder does not have an enable function.

Using the data flow approach, the VHDL program code for the 1-of-16 decoder can be

simplified to implement the BCD-to-decimal decoder.

entity BCDdecoder is

 port (A0, A1, A2, A3: in bit; OUT0, OUT1, OUT2, OUT3,

 OUT4, OUT5, OUT6, OUT7, OUT8, OUT9: out bit);

end entity BCDdecoder;

architecture LogicOperation of BCDdecoder is

begin

 OUT0 6= not(not A0 and not A1 and not A2 and not A3);

 OUT1 6= not(A0 and not A1 and not A2 and not A3);

 OUT2 6= not(not A0 and A1 and not A2 and not A3);

 OUT3 6= not(A0 and A1 and not A2 and not A3);

 OUT4 6= not(not A0 and not A1 and A2 and not A3);

 OUT5 6= not(A0 and not A1 and A2 and not A3);

 OUT6 6= not(not A0 and A1 and A2 and not A3);

 OUT7 6= not(A0 and A1 and A2 and not A3);

 OUT8 6= not(not A0 and not A1 and not A2 and A3);

 OUT9 6= not(A0 and not A1 and not A2 and A3);

end architecture LogicOperation;

Boolean expressions

for the ten outputs

Inputs and outputs

declared

EXAMPLE 6–10

If the input waveforms in Figure 6–32(a) are applied to the inputs of the 74HC42, show

the output waveforms.

¸
˝
˛

338 Functions of Combinational Logic

The BCD-to-7-Segment Decoder

The BCD-to-7-segment decoder accepts the BCD code on its inputs and provides outputs

to drive 7-segment display devices to produce a decimal readout. The logic diagram for a

basic 7-segment decoder is shown in Figure 6–33.

 A0

 A1

 A2

t1 t2 t3 t4 t5 t6 t7 t8 t9

 A3

t10t0

0

1

2

3

4

5

6

7

8

9

Decimal
outputs

(a)

(b)

BCD
inputs

FIGURE 6–32

Solution

The output waveforms are shown in Figure 6–32(b). As you can see, the inputs are

sequenced through the BCD for digits 0 through 9. The output waveforms in the timing

diagram indicate that sequence on the decimal-value outputs.

Related Problem

Construct a timing diagram showing input and output waveforms for the case where

the BCD inputs sequence through the decimal numbers as follows: 0, 2, 4, 6, 8, 1, 3, 5,

and 9.

A0

A1

A2

A3

1

2

4

8

a

b

c

d

e

f

g

BCD/7-seg

Output lines
connect to
7-segment
display device

BCD
input

FIGURE 6–33 Logic symbol for a BCD-to-7-segment decoder/driver with active-LOW

outputs. Open file F06-33 to verify operation.

 Decoders 339

BI/RBO

VCC16

GND

C

B

LT

D

A

RBI

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

a

BI/RBO

b

c

d

e

f

g

BCD/7-seg

VCC

1

2

4

8

BCD
inputs

LT

RBI

LT

RBI

BI/RBO

GND

(16)

(4)

(13)

(12)

(11)

(10)

(9)

(15)

(14)

(1)

(2)

(6)

(7)

(3)

(5)

(8)

(b) Logic symbol

a

g

f

c

e

d

b

(a) Pin diagram

FIGURE 6–34 The 74HC47 BCD-to-7-segment decoder/driver.

IMPLEMENTATION: BCD-TO-7-SEGMENT DECODER/DRIVER

Fixed-Function Device The 74HC47 is an example of an IC device that decodes a BCD

input and drives a 7-segment display. In addition to its decoding and segment drive capabil-

ity, the 74HC47 has several additional features as indicated by the LT, RBI, BI /RBO func-

tions in the logic symbol of Figure 6–34. As indicated by the bubbles on the logic symbol,

all of the outputs (a through g) are active-LOW as are the LT (lamp test), RBI (ripple blank-

ing input), and BI / RBO (blanking input/ripple blanking output) functions. The outputs can

drive a common-anode 7-segment display directly. Recall that 7-segment displays were

discussed in Chapter 4. In addition to decoding a BCD input and producing the appropriate

7-segment outputs, the 74HC47 has lamp test and zero suppression capability.

Lamp Test When a LOW is applied to the LT input and the BI>RBO is HIGH, all of the

seven segments in the display are turned on. Lamp test is used to verify that no segments

are burned out.

Zero Suppression Zero suppression is a feature used for multidigit displays to blank

out unnecessary zeros. For example, in a 6-digit display the number 6.4 may be displayed

as 006.400 if the zeros are not blanked out. Blanking the zeros at the front of a number is

called leading zero suppression and blanking the zeros at the back of the number is called

trailing zero suppression. Keep in mind that only nonessential zeros are blanked. With zero

suppression, the number 030.080 will be displayed as 30.08 (the essential zeros remain).

Zero suppression in the 74HC47 is accomplished using the RBI and BI /RBO functions.

RBI is the ripple blanking input and RBO is the ripple blanking output on the 74HC47;

these are used for zero suppression. BI is the blanking input that shares the same pin with

RBO; in other words, the BI /RBO pin can be used as an input or an output. When used as

a BI (blanking input), all segment outputs are HIGH (nonactive) when BI is LOW, which

overrides all other inputs. The BI function is not part of the zero suppression capability of

the device.

All of the segment outputs of the decoder are nonactive (HIGH) if a zero code (0000) is

on its BCD inputs and if its RBI is LOW. This causes the display to be blank and produces

a LOW RBO.

Programmable Logic Device (PLD) The VHDL program code is the same as for the

74HC42 BCD-to-decimal decoder, except the 74HC47 has fewer outputs.

340 Functions of Combinational Logic

Zero Suppression for a 4-Digit Display

The logic diagram in Figure 6–35(a) illustrates leading zero suppression for a whole num-

ber. The highest-order digit position (left-most) is always blanked if a zero code is on its

BCD inputs because the RBI of the most-significant decoder is made LOW by connecting

it to ground. The RBO of each decoder is connected to the RBI of the next lowest-order

decoder so that all zeros to the left of the first nonzero digit are blanked. For example, in

part (a) of the figure the two highest-order digits are zeros and therefore are blanked. The

remaining two digits, 3 and 0 are displayed.

Zero suppression results in leading
or trailing zeros in a number not
showing on a display.

Blanked

(a) Illustration of leading zero suppression

Blanked

(b) Illustration of trailing zero suppression

Blanked Blankeddp

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

0

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

BCD-to-7-segment

decoder/driver

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

0

abcdefg BI/RBO

0 0 1 1

8 4 2 1RBI LT

0

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

1

abcdefg BI/RBO

0 1 0 1

8 4 2 1RBI LT

1

abcdefg BI/RBO

0 1 1 1

8 4 2 1RBI LT

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

0

abcdefg BI/RBO

0 0 0 0

8 4 2 1RBI LT

0

FIGURE 6–35 Examples of zero suppression using a BCD-to-7-segment decoder/driver.

The logic diagram in Figure 6–35(b) illustrates trailing zero suppression for a fractional

number. The lowest-order digit (right-most) is always blanked if a zero code is on its BCD

inputs because the RBI is connected to ground. The RBO of each decoder is connected to

the RBI of the next highest-order decoder so that all zeros to the right of the first nonzero

digit are blanked. In part (b) of the figure, the two lowest-order digits are zeros and there-

fore are blanked. The remaining two digits, 5 and 7 are displayed. To combine both leading

and trailing zero suppression in one display and to have decimal point capability, additional

logic is required.

 Encoders 341

SECTION 6–5 CHECKUP

 1. A 3-line-to-8-line decoder can be used for octal-to-decimal decoding. When a binary

101 is on the inputs, which output line is activated?

 2. How many 74HC154 1-of-16 decoders are necessary to decode a 6-bit binary

number?

 3. Would you select a decoder/driver with active-HIGH or active-LOW outputs to drive

a common-cathode 7-segment LED display?

6–6 Encoders

An encoder is a combinational logic circuit that essentially performs a “reverse” decoder

function. An encoder accepts an active level on one of its inputs representing a digit, such

as a decimal or octal digit, and converts it to a coded output, such as BCD or binary. Encod-

ers can also be devised to encode various symbols and alphabetic characters. The process

of converting from familiar symbols or numbers to a coded format is called encoding.

After completing this section, you should be able to

u Determine the logic for a decimal-to-BCD encoder

u Explain the purpose of the priority feature in encoders

u Describe the 74HC147 decimal-to-BCD priority encoder

u Use VHDL to describe a decimal-to-BCD encoder

u Apply the encoder to a specific application

The Decimal-to-BCD Encoder

This type of encoder has ten inputs—one for each decimal digit—and four outputs corre-

sponding to the BCD code, as shown in Figure 6–36. This is a basic 10-line-to-4-line encoder.

DEC/BCD

0

1

2

3

4

5

6

7

9

1

2

4

8

Decimal
input

BCD
output

8

FIGURE 6–36 Logic symbol for a decimal-to-BCD encoder.

The BCD (8421) code is listed in Table 6–6. From this table you can determine the

relationship between each BCD bit and the decimal digits in order to analyze the logic. For

instance, the most significant bit of the BCD code, A3, is always a 1 for decimal digit 8 or

9. An OR expression for bit A3 in terms of the decimal digits can therefore be written as

A3 = 8 + 9

342 Functions of Combinational Logic

Bit A2 is always a 1 for decimal digit 4, 5, 6 or 7 and can be expressed as an OR function

as follows:

A2 = 4 + 5 + 6 + 7

Bit A1 is always a 1 for decimal digit 2, 3, 6, or 7 and can be expressed as

A1 = 2 + 3 + 6 + 7

Finally, A0 is always a 1 for decimal digit 1, 3, 5, 7, or 9. The expression for A0 is

A0 = 1 + 3 + 5 + 7 + 9

Now let’s implement the logic circuitry required for encoding each decimal digit to a

BCD code by using the logic expressions just developed. It is simply a matter of ORing

the appropriate decimal digit input lines to form each BCD output. The basic encoder logic

resulting from these expressions is shown in Figure 6–37.

Decimal Digit

BCD Code

A3 A2 A1 A0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

TABLE 6–6

A0

1
(LSB)

A1

A2

A3 (MSB)

2

3

4
5
6
7

8

9

FIGURE 6–37 Basic logic diagram of a decimal-to-BCD encoder. A 0-digit input is not

needed because the BCD outputs are all LOW when there are no HIGH inputs.

InfoNote

An assembler can be thought of

as a software encoder because

it interprets the mnemonic

instructions with which a program

is written and carries out the

applicable encoding to convert

each mnemonic to a machine code

instruction (series of 1s and 0s)

that the processor can understand.

Examples of mnemonic

instructions for a processor are

ADD, MOV (move data), MUL

(multiply), XOR, JMP (jump), and

OUT (output to a port).

The basic operation of the circuit in Figure 6–37 is as follows: When a HIGH appears

on one of the decimal digit input lines, the appropriate levels occur on the four BCD output

lines. For instance, if input line 9 is HIGH (assuming all other input lines are LOW), this

condition will produce a HIGH on outputs A0 and A3 and LOWs on outputs A1 and A2,

which is the BCD code (1001) for decimal 9.

The Decimal-to-BCD Priority Encoder

This type of encoder performs the same basic encoding function as previously discussed.

A priority encoder also offers additional flexibility in that it can be used in applications

that require priority detection. The priority function means that the encoder will produce a

BCD output corresponding to the highest-order decimal digit input that is active and will

ignore any other lower-order active inputs. For instance, if the 6 and the 3 inputs are both

active, the BCD output is 0110 (which represents decimal 6).

 Encoders 343

16

GND

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

1

2

4

8

HPRI/BCD

VCC

GND

(16)

(11)

(12)

(13)

(1)

(2)

(4)

(3)

(5)

(9)

(7)

(6)

(14)

(8)

D1

D2

D3

D4

D5

D6

D7

D8
(10)

D9

A0

A1

A2

A3

D4

D5

D6

D7

D8

A2

A1

VCC

NC

A3

D3

D2

D1

D9

A0

(a) Pin diagram (b) Logic diagram

FIGURE 6–38 The 74HC147 decimal-to-BCD encoder (HPRI means highest value input

has priority.

IMPLEMENTATION: DECIMAL-TO-BCD ENCODER

Fixed-Function Device The 74HC147 is a priority encoder with active-LOW inputs (0)

for decimal digits 1 through 9 and active-LOW BCD outputs as indicated in the logic sym-

bol in Figure 6–38. A BCD zero output is represented when none of the inputs is active.

The device pin numbers are in parentheses.

Programmable Logic Device (PLD) The logic of the decimal-to-BCD encoder shown in

Figure 6–38 can be described in VHDL for implementation in a PLD. The data flow approach

is used in this case.

entity DecBCDencoder is

 port (D1, D2, D3, D4, D5, D6, D7, D8, D9:

 in bit; A0, A1, A2, A3: out bit);

end entity DecBCDencoder;

architecture LogicFunction of DecBCDencoder is

begin

 A0 6= (D1 or D3 or D5 or D7 or D9);

 A1 6= (D2 or D3 or D6 or D7);

 A2 6= (D4 or D5 or D6 or D7);

 A3 6= (D8 or D9);

end architecture LogicFunction;

Boolean expressions for the

four BCD outputs

¸
˚
˚
˝
˚
˚
˛

Inputs and outputs declared

EXAMPLE 6–11

If LOW levels appear on pins, 1, 4, and 13 of the 74HC147 shown in Figure 6–38, indi-

cate the state of the four outputs. All other inputs are HIGH.

Solution

Pin 4 is the highest-order decimal digit input having a LOW level and represents deci-

mal 7. Therefore, the output levels indicate the BCD code for decimal 7 where A0 is the

LSB and A3 is the MSB. Output A0 is LOW, A1 is LOW, A2 is LOW, and A3 is HIGH.

Related Problem

What are the outputs of the 74HC147 if all its inputs are LOW? If all its inputs are HIGH?

¸
˝
˛

344 Functions of Combinational Logic

An Application

The ten decimal digits on a numeric keypad must be encoded for processing by the logic

circuitry. In this example, when one of the keys is pressed, the decimal digit is encoded to

the corresponding BCD code. Figure 6–39 shows a simple keyboard encoder arrangement

using a priority encoder. The keys are represented by ten push-button switches, each with a

pull-up resistor to +V. The pull-up resistor ensures that the line is HIGH when a key is not

depressed. When a key is depressed, the line is connected to ground, and a LOW is applied

to the corresponding encoder input. The zero key is not connected because the BCD output

represents zero when none of the other keys is depressed.

The BCD complement output of the encoder goes into a storage device, and each suc-

cessive BCD code is stored until the entire number has been entered. Methods of storing

BCD numbers and binary data are covered in Chapter 11.

HPRI/BCD

1
2
3
4
5
6
7
8
9

1
2
4
8

A0

A1

A2

A3

987

+V

65

321

0

All BCD complement lines are HIGH indicating a 0.

No encoding is necessary; however, this line may be

connected to other circuits that detect the key press.

BCD complement

4

R7 R8 R9

R4 R5 R6

R1 R2 R3

R0

Priority encoder

FIGURE 6–39 A simplified keyboard encoder.

SECTION 6–6 CHECKUP

 1. Suppose the HIGH levels are applied to the 2 input and the 9 input of the circuit in

Figure 6–37.

(a) What are the states of the output lines?

(b) Does this represent a valid BCD code?

(c) What is the restriction on the encoder logic in Figure 6–37?

 2. (a) What is the A3 A2 A1 A0 output when LOWs are applied to pins 1 and 5 of the

74HC147 in Figure 6–38?

(b) What does this output represent?

 Code Converters 345

6–7 Code Converters

In this section, we will examine some methods of using combinational logic circuits to

convert from one code to another.

After completing this section, you should be able to

u Explain the process for converting BCD to binary

u Use exclusive-OR gates for conversions between binary and Gray codes

BCD-to-Binary Conversion

One method of BCD-to-binary code conversion uses adder circuits. The basic conversion

process is as follows:

 1. The value, or weight, of each bit in the BCD number is represented by a binary

number.

 2. All of the binary representations of the weights of bits that are 1s in the BCD number

are added.

 3. The result of this addition is the binary equivalent of the BCD number.

A more concise statement of this operation is

The binary numbers representing the weights of the BCD bits are summed to produce

the total binary number.

Let’s examine an 8-bit BCD code (one that represents a 2-digit decimal number) to

understand the relationship between BCD and binary. For instance, you already know that

the decimal number 87 can be expressed in BCD as

1000 0111
()* ()*

 8 7

The left-most 4-bit group represents 80, and the right-most 4-bit group represents 7. That

is, the left-most group has a weight of 10, and the right-most group has a weight of 1.

Within each group, the binary weight of each bit is as follows:

Tens Digit Units Digit

Weight: 80 40 20 10 8 4 2 1

Bit designation: B3 B2 B1 B0 A3 A2 A1 A0

The binary equivalent of each BCD bit is a binary number representing the weight of

that bit within the total BCD number. This representation is given in Table 6–7.

TABLE 6–7

Binary representations of BCD bit weights.

BCD Bit BCD Weight

(MSB) Binary Representation (LSB)

64 32 16 8 4 2 1

A0 1 0 0 0 0 0 0 1

A1 2 0 0 0 0 0 1 0

A2 4 0 0 0 0 1 0 0

A3 8 0 0 0 1 0 0 0

B0 10 0 0 0 1 0 1 0

B1 20 0 0 1 0 1 0 0

B2 40 0 1 0 1 0 0 0

B3 80 1 0 1 0 0 0 0

346 Functions of Combinational Logic

If the binary representations for the weights of all the 1s in the BCD number are added,

the result is the binary number that corresponds to the BCD number. Example 6–12 illus-

trates this.

EXAMPLE 6–12

Convert the BCD numbers 00100111 (decimal 27) and 10011000 (decimal 98) to

binary.

Solution

Write the binary representations of the weights of all 1s appearing in the numbers, and

then add them together.

80 40 20 10 8 4 2 1

0 0 1 0 0 1 1 1

0000001

0000010

0000100

+ 0010100

0011011

1

2

4

20

Binary number for decimal 27

80 40 20 10 8 4 2 1

1 0 0 1 1 0 0 0

0001000

0001010

+ 1010000

1100010

8

10

80

Binary number for decimal 98

Related Problem

Show the process of converting 01000001 in BCD to binary.

Open file EX06-12 and run the simulation to observe the operation of a

BCD-to-binary logic circuit.

Binary-to-Gray and Gray-to-Binary Conversion

The basic process for Gray-binary conversions was covered in Chapter 2. Exclusive-OR

gates can be used for these conversions. Programmable logic devices (PLDs) can also be

programmed for these code conversions. Figure 6–40 shows a 4-bit binary-to-Gray code

converter, and Figure 6–41 illustrates a 4-bit Gray-to-binary converter.

B0

B1

B2

B3

G0

G1

G2

G3

(LSB)

(MSB)

Binary Gray

FIGURE 6–40 Four-bit binary-to-

Gray conversion logic. Open file

F06-40 to verify operation.

G0

G1

G2

G3

(LSB)

(MSB)

Gray

B0

B1

B2

B3

Binary

FIGURE 6–41 Four-bit Gray-to-

binary conversion logic. Open file

F06-41 to verify operation.

 Multiplexers (Data Selectors) 347

EXAMPLE 6–13

(a) Convert the binary number 0101 to Gray code with exclusive-OR gates.

(b) Convert the Gray code 1011 to binary with exclusive-OR gates.

Solution

(a) 01012 is 0111 Gray. See Figure 6–42(a).

(b) 1011 Gray is 11012. See Figure 6–42(b).

(a)

1

0

1

0

1

1

1

0

Binary Gray

(b)

1

1

0

1

1

0

1

1

BinaryGray

FIGURE 6–42

Related Problem

How many exclusive-OR gates are required to convert 8-bit binary to Gray?

SECTION 6–7 CHECKUP

 1. Convert the BCD number 10000101 to binary.

 2. Draw the logic diagram for converting an 8-bit binary number to Gray code.

6–8 Multiplexers (Data Selectors)

A multiplexer (MUX) is a device that allows digital information from several sources to

be routed onto a single line for transmission over that line to a common destination. The

basic multiplexer has several data-input lines and a single output line. It also has data-select

inputs, which permit digital data on any one of the inputs to be switched to the output line.

Multiplexers are also known as data selectors.

After completing this section, you should be able to

u Explain the basic operation of a multiplexer

u Describe the 74HC153 and the 74HC151 multiplexers

u Expand a multiplexer to handle more data inputs

u Use the multiplexer as a logic function generator

u Use VHDL to describe 4-input and 8-input multiplexers

A logic symbol for a 4-input multiplexer (MUX) is shown in Figure 6–43. Notice that

there are two data-select lines because with two select bits, any one of the four data-input

lines can be selected.

In a multiplexer, data are switched
from several lines to one line.

348 Functions of Combinational Logic

In Figure 6–43, a 2-bit code on the data-select (S) inputs will allow the data on the

selected data input to pass through to the data output. If a binary 0 (S1 = 0 and S0 = 0)

is applied to the data-select lines, the data on input D0 appear on the data-output line.

If a binary 1 (S1 = 0 and S0 = 1) is applied to the data-select lines, the data on input

D1 appear on the data output. If a binary 2 (S1 = 1 and S0 = 0) is applied, the data

on D2 appear on the output. If a binary 3 (S1 = 1 and S0 = 1) is applied, the data on

D3 are switched to the output line. A summary of this operation is given in Table 6–8.

Data
output

YD0

D1

D2

MUX

1

2

0

D3 3

S1

Data
select

Data
inputs

1

S0 0

FIGURE 6–43 Logic symbol for a 1-of-4 data selector/multiplexer.

TABLE 6–8

Data selection for a 1-of-4-multiplexer.

Data-Select Inputs

Input SelectedS1 S0

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Now let’s look at the logic circuitry required to perform this multiplexing operation. The

data output is equal to the state of the selected data input. You can therefore, derive a logic

expression for the output in terms of the data input and the select inputs.

The data output is equal to D0 only if S1 = 0 and S0 = 0: Y = D0S1S0.

The data output is equal to D1 only if S1 = 0 and S0 = 1: Y = D1S1S0.

The data output is equal to D2 only if S1 = 1 and S0 = 0: Y = D2S1S0.

The data output is equal to D3 only if S1 = 1 and S0 = 1: Y = D3S1S0.

When these terms are ORed, the total expression for the data output is

Y = D0S1S0 + D1S1S0 + D2S1S0 + D3S1S0

The implementation of this equation requires four 3-input AND gates, a 4-input OR gate,

and two inverters to generate the complements of S1 and S0, as shown in Figure 6–44.

Because data can be selected from any one of the input lines, this circuit is also referred to

as a data selector.

InfoNote

A bus is a multiple conductor

pathway along which electrical

signals are sent from one part

of a computer to another. In

computer networks, a shared

bus is one that is connected to

all the microprocessors in the

system in order to exchange

data. A shared bus may contain

memory and input/output devices

that can be accessed by all the

microprocessors in the system.

Access to the shared bus is

controlled by a bus arbiter (a

multiplexer of sorts) that allows

only one microprocessor at a time

to use the system’s shared bus.

 Multiplexers (Data Selectors) 349

S0

S1

D0

D1

D2

D3

Y

S0

S1

FIGURE 6–44 Logic diagram for a 4-input multiplexer. Open file F06-44 to

verify operation.

EXAMPLE 6–14

The data-input and data-select waveforms in Figure 6–45(a) are applied to the multi-

plexer in Figure 6–44. Determine the output waveform in relation to the inputs.

0

0

1

0

0

1

1

1

0

0

1

0

0

1

1

1

D0

(a)

(b)

D1

D2

D3

S0

S1

Y

D0 D1 D2 D3 D0 D1 D2 D3

FIGURE 6–45

Solution

The binary state of the data-select inputs during each interval determines which data

input is selected. Notice that the data-select inputs go through a repetitive binary

sequence 00, 01, 10, 11, 00, 01, 10, 11, and so on. The resulting output waveform is

shown in Figure 6–45(b).

Related Problem

Construct a timing diagram showing all inputs and the output if the S0 and S1 wave-

forms in Figure 6–45 are interchanged.

350 Functions of Combinational Logic

IMPLEMENTATION: DATA SELECTOR/MULTIPLEXER

Fixed-Function Device The 74HC153 is a dual four-input data selector/multiplexer.

The pin diagram is shown in Figure 6–46(a). The inputs to one of the multiplexers are

1I0 through 1I3 and the inputs to the second multiplexer are 2I0 through 2I3. The data

select inputs are S0 and S1 and the active-LOW enable inputs are 1E and 2E. Each of

the multiplexers has an active-LOW enable input.

The ANSI/IEEE logic symbol with dependency notation is shown in Figure 6–46(b).

The two multiplexers are indicated by the partitioned outline, and the inputs common to

both multiplexers are inputs to the notched block (common control block) at the top. The

G0
3 dependency notation indicates an AND relationship between the two select inputs (A

and B) and the inputs to each multiplexer block.

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

1Y
(7)

2Y
(9)

1G
(1)

1I0
(6)

1I1

1I2

(5)

(4)

MUXEN

0

1

2

1I3
(3)

3

0
(14)

(2)
1

A

B

(b) Logic symbol(a) Pin diagram

S1

1I3

1I2

1I1

1I0

1Y

GND

VCC

2E

S0

2I3

2I2

2I1

2I0

2Y

2G
(15)

2I0
(10)

2I1

2I2

(11)

(12)

2I3
(13)

1E
G 0–

3

FIGURE 6–46 The 74HC153 dual four-input data selector/multiplexer.

Programmable Logic Device (PLD) The logic for a four-input multiplexer like the one

shown in the logic diagram of Figure 6–44 can be described with VHDL. The data flow

approach is used for this particular circuit. Keep in mind that once you have written the

VHDL program for a given logic, the code is then downloaded into a PLD device and

 becomes actual hardware just as fixed-function devices are hardware.

entity FourInputMultiplexer is

 port (S0, S1, D0, D1, D2, D3; in bit; Y: out bit);

end entity FourInputMultiplexer;

architecture LogicFunction of FourInputMultiplexer is

begin

 Y 6= (D0 and not S0 and not S1) or (Dl and S0 and not S1)

or (D2 and not S0 and S1) or (D3 and S0 and S1);

end architecture LogicFunction;

Boolean expression

for the output¸
˝
˛

Inputs and outputs declared

 Multiplexers (Data Selectors) 351

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8GND

(a) Pin diagram (b) Logic symbol

(5)

(6)

(11)

(10)

(7)

S0

S1

MUX

0

(4)

(3)

(9)
S2

D0

D1

0

1

2

(1)

(15)

(2)
D2

D3

D4

3

4

2

(13)

(12)

(14)
D5

D6

D7

6

7

5

ENEnable

Y

Y

G 0

–

7

D3

D2

D1

D0

Y

Y

ENABLE

VCC

D4

D5

D6

D7

S0

S1

S2

FIGURE 6–47 The 74HC151 eight-input data selector/multiplexer.

IMPLEMENTATION: EIGHT-INPUT DATA SELECTOR/MULTIPLEXER

Fixed-Function Device The 74HC151 has eight data inputs (D0–D7) and, therefore,

three data-select or address input lines (S0–S2). Three bits are required to select any one

of the eight data inputs (23
= 8). A LOW on the Enable input allows the selected input

data to pass through to the output. Notice that the data output and its complement are both

available. The pin diagram is shown in Figure 6–47(a), and the ANSI/IEEE logic symbol

is shown in part (b). In this case there is no need for a common control block on the logic

symbol because there is only one multiplexer to be controlled, not two as in the 74HC153.

The G

0
7 label within the logic symbol indicates the AND relationship between the data-

select inputs and each of the data inputs 0 through 7.

Programmable Logic Device (PLD) The logic for the eight-input multiplexer is imple-

mented by first writing the VHDL code. For the 74HC151, eight 5-input AND gates, one

8-input OR gate, and four inverters are required.

entity EightInputMUX is

 port (S0, S1, S2, D0, D1, D2, D3, D4, D5, D6, D7,

 EN: in bit; Y: inout bit; YI: out bit);

end entity EightInputMUX;

architecture LogicOperation of EightInputMUX is

 signal AND0, AND1, AND2, AND3, AND4, AND5, AND6, AND7: bit;

 begin

 AND0 6= not S0 and not S1 and not S2 and D0 and not EN;

 AND1 6= S0 and not S1 and not S2 and D1 and not EN;

 AND2 6= not S0 and S1 and not S2 and D2 and not EN;

 AND3 6= S0 and S1 and not S2 and D3 and not EN;

 AND4 6= not S0 and not S1 and S2 and D4 and not EN;

 AND5 6= S0 and not S1 and S2 and D5 and not EN;

 AND6 6= not S0 and S1 and S2 and D6 and not EN;

 AND7 6= S0 and S1 and S2 and D7 and not EN;

 Y 6= AND0 or AND1 or AND2 or AND3 or AND4 or AND5 or AND6 or AND7;

 YI 6= not Y;

end architecture LogicOperation;

Boolean

expressions for

internal AND

gate outputs

¸̋
˛Boolean expressions for

fixed outputs

Inputs and outputs declared

Internal signals (outputs of

AND gates) declared

¸
˚
˚
˚
˚
˚
˚
˝
˚
˚
˚
˚
˚
˚
˚
˛

¸
˝
˛

352 Functions of Combinational Logic

Related Problem

Determine the codes on the select inputs required to select each of the following data

inputs: D0, D4, D8, and D13.

EXAMPLE 6–15

Use 74HC151s and any other logic necessary to multiplex 16 data lines onto a single

data-output line.

Solution

An expansion of two 74HC151s is shown in Figure 6–48. Four bits are required to select

one of 16 data inputs (24
= 16). In this application the Enable input is used as the most

significant data-select bit. When the MSB in the data-select code is LOW, the left 74HC151

is enabled, and one of the data inputs (D0 through D7) is selected by the other three data-

select bits. When the data-select MSB is HIGH, the right 74HC151 is enabled, and one of

the data inputs (D8 through D15) is selected. The selected input data are then passed through

to the negative-OR gate and onto the single output line.

1/6 74HC04

74HC151

Y

1/4 74HC00

MUX
EN

0

2

0

1

2

3

4

5

6

7

G

74HC151

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

S
0

S
1

S
2

S
3

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

MUX
EN

0

0

1

2

3

4

5

6

7

0––
7

2

G
0––
7

Y
Y

FIGURE 6–48 A 16-input multiplexer.

Applications

A 7-Segment Display Multiplexer

Figure 6–49 shows a simplified method of multiplexing BCD numbers to a 7-segment dis-

play. In this example, 2-digit numbers are displayed on the 7-segment readout by the use

of a single BCD-to-7-segment decoder. This basic method of display multiplexing can be

extended to displays with any number of digits. The 74HC157 is a quad 2-input multiplexer.

The basic operation is as follows. Two BCD digits (A3A2A1A0 and B3B2B1B0) are applied

to the multiplexer inputs. A square wave is applied to the data-select line, and when it is

LOW, the A bits (A3A2A1A0) are passed through to the inputs of the 74HC47 BCD-to-7-

segment decoder. The LOW on the data-select also puts a LOW on the A1 input of the

74HC139 2-line-to-4-line decoder, thus activating its 0 output and enabling the A-digit

display by effectively connecting its common terminal to ground. The A digit is now on

and the B digit is off.

 Multiplexers (Data Selectors) 353

When the data-select line goes HIGH, the B bits (B3B2B1B0) are passed through to the

inputs of the BCD-to-7-segment decoder. Also, the 74HC139 decoder’s 1 output is acti-

vated, thus enabling the B-digit display. The B digit is now on and the A digit is off. The

cycle repeats at the frequency of the data-select square wave. This frequency must be high

enough to prevent visual flicker as the digit displays are multiplexed.

A Logic Function Generator

A useful application of the data selector/multiplexer is in the generation of combinational logic

functions in sum-of-products form. When used in this way, the device can replace discrete

gates, can often greatly reduce the number of ICs, and can make design changes much easier.

To illustrate, a 74HC151 8-input data selector/multiplexer can be used to implement any

specified 3-variable logic function if the variables are connected to the data-select inputs

and each data input is set to the logic level required in the truth table for that function.

For example, if the function is a 1 when the variable combination is A2A1A0, the 2 input

(selected by 010) is connected to a HIGH. This HIGH is passed through to the output when

this particular combination of variables occurs on the data-select lines. Example 6–16 will

help clarify this application.

Data
select

EN

G1

A
0

B
0

A
1

B
1

A
2

B
2

MUX1

1

A
3

B
3

BCD/7-seg

74HC157 74HC47

c

d

f

a

e

g

b

Common-cathode
displays

B digit
(MSD)

A digit
(LSD)

G1 (EN)

1Y0

*Additional buffer drive
 circuitry may be required.

*

B1

*

A1

LOW enables LSD
HIGH enables MSD

LOWs enable common-anode
7-seg display.

74HC139

A

B

C

D

Decoder

1–
2

LOW selects A3 A2 A1 A0

1Y1

1Y3

1Y4

HIGH selects B3 B2 B1 B0

LSD BCD: A3 A2 A1 A0

MSD BCD: B3 B2 B1 B0

FIGURE 6–49 Simplified 7-segment display multiplexing logic.

354 Functions of Combinational Logic

The implementation of this function with logic gates would require four 3-input

AND gates, one 4-input OR gate, and three inverters unless the expression can be

simplified.

Related Problem

Use the 74HC151 to implement the following expression:

Y = A2A1A0 + A2A1A0 + A2A1A0

EXAMPLE 6–16

Implement the logic function specified in Table 6–9 by using a 74HC151 8-input data

selector/multiplexer. Compare this method with a discrete logic gate implementation.

Inputs Output

A2 A1 A0 Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

TABLE 6–9

Solution

Notice from the truth table that Y is a 1 for the following input variable combinations:

001, 011, 101, and 110. For all other combinations, Y is 0. For this function to be imple-

mented with the data selector, the data input selected by each of the above-mentioned

combinations must be connected to a HIGH (5 V). All the other data inputs must be

connected to a LOW (ground), as shown in Figure 6–50.

A0

A1

A2

Input
variables

MUX

0

0

1

2

3

4

2

6

7

5

EN

Y = A2A1A0 + A2A1A0 + A2A1A0 + A2A1A0

74HC151

G 0–
7

+5 V

FIGURE 6–50 Data selector/multiplexer connected as a 3-variable logic function

generator.

 Multiplexers (Data Selectors) 355

Example 6–16 illustrated how the 8-input data selector can be used as a logic function

generator for three variables. Actually, this device can be also used as a 4-variable logic

function generator by the utilization of one of the bits (A0) in conjunction with the data

inputs.

A 4-variable truth table has sixteen combinations of input variables. When an 8-bit data

selector is used, each input is selected twice: the first time when A0 is 0 and the second time

when A0 is 1. With this in mind, the following rules can be applied (Y is the output, and A0

is the least significant bit):

 1. If Y = 0 both times a given data input is selected by a certain combination of the

input variables, A3A2A1, connect that data input to ground (0).

 2. If Y = 1 both times a given data input is selected by a certain combination of the

input variables, A3A2A1, connect the data input to +V (1).

 3. If Y is different the two times a given data input is selected by a certain combination

of the input variables, A3A2A1, and if Y = A0, connect that data input to A0.

 4. If Y is different the two times a given data input is selected by a certain combination

of the input variables, A3A2A1, and if Y = A0, connect that data input to A0.

EXAMPLE 6–17

Implement the logic function in Table 6–10 by using a 74HC151 8-input data selector/

multiplexer. Compare this method with a discrete logic gate implementation.

Decimal

Digit

Inputs Output

A3 A2 A1 A0 Y

 0 0 0 0 0 0

 1 0 0 0 1 1

 2 0 0 1 0 1

 3 0 0 1 1 0

 4 0 1 0 0 0

 5 0 1 0 1 1

 6 0 1 1 0 1

 7 0 1 1 1 1

 8 1 0 0 0 1

 9 1 0 0 1 0

10 1 0 1 0 1

11 1 0 1 1 0

12 1 1 0 0 1

13 1 1 0 1 1

14 1 1 1 0 0

15 1 1 1 1 1

TABLE 6–10

Solution

The data-select inputs are A3A2A1. In the first row of the table, A3A2A1 = 000 and Y = A0.

In the second row, where A3A2A1 again is 000, Y = A0. Thus, A0 is connected to the 0

input. In the third row of the table, A3A2A1 = 001 and Y = A0. Also, in the fourth row,

when A3A2A1 again is 001, Y = A0. Thus, A0 is inverted and connected to the 1 input.

This analysis is continued until each input is properly connected according to the speci-

fied rules. The implementation is shown in Figure 6–51.

If implemented with logic gates, the function would require as many as ten 4-input

AND gates, one 10-input OR gate, and four inverters, although possible simplification

would reduce this requirement.

356 Functions of Combinational Logic

Related Problem

In Table 6–10, if Y = 0 when the inputs are all zeros and is alternately a 1 and a 0 for the

remaining rows in the table, use a 74HC151 to implement the resulting logic function.

A1

A2

MUX

0

A3

0

1

2

3

4

2

6

7

5

EN

Y = A3A2A1A0 + A3A2A1A0 + A3A2A1A0

G 0–
7

74HC151

A0

+ A3A2A1A0 + A3A2A1A0 + A3A2A1A0

+ A3A2A1A0 + A3A2A1A0 + A3A2A1A0

+ A3A2A1A0

+5 V

FIGURE 6–51 Data selector/multiplexer connected as a 4-variable logic function

generator.

SECTION 6–8 CHECKUP

 1. In Figure 6–44, D0 = 1, D1 = 0, D2 = 1, D3 = 0, S0 = 1, and S1 = 0. What is

the output?

 2. Identify each device.

(a) 74HC153 (b) 74HC151

 3. A 74HC151 has alternating LOW and HIGH levels on its data inputs beginning with

D0 = 0. The data-select lines are sequenced through a binary count (000, 001, 010,

and so on) at a frequency of 1 kHz. The enable input is LOW. Describe the data out-

put waveform.

 4. Briefly describe the purpose of each of the following devices in Figure 6–49:

(a) 74HC157 (b) 74HC47 (c) 74HC139

6–9 Demultiplexers

A demultiplexer (DEMUX) basically reverses the multiplexing function. It takes digital

information from one line and distributes it to a given number of output lines. For this rea-

son, the demultiplexer is also known as a data distributor. As you will learn, decoders can

also be used as demultiplexers.

After completing this section, you should be able to

u Explain the basic operation of a demultiplexer

u Describe how a 4-line-to-16-line decoder can be used as a demultiplexer

u Develop the timing diagram for a demultiplexer with specified data and data

 selection inputs

 Demultiplexers 357

Figure 6–52 shows a 1-line-to-4-line demultiplexer (DEMUX) circuit. The data-input

line goes to all of the AND gates. The two data-select lines enable only one gate at a time,

and the data appearing on the data-input line will pass through the selected gate to the

associated data-output line.

S0

S1

D0

D1

D2

D3

Data
output
linesSelect

lines

Data
input

FIGURE 6–52 A 1-line-to-4-line demultiplexer.

In a demultiplexer, data are switched
from one line to several lines.

EXAMPLE 6–18

The serial data-input waveform (Data in) and data-select inputs (S0 and S1) are shown in

Figure 6–53. Determine the data-output waveforms on D0 through D3 for the demulti-

plexer in Figure 6–52.

S0

S1

D0

D1

D2

D3

Data
in

1

1

0

0

10

11

FIGURE 6–53

Solution

Notice that the select lines go through a binary sequence so that each successive input

bit is routed to D0, D1, D2, and D3 in sequence, as shown by the output waveforms in

Figure 6–53.

Related Problem

Develop the timing diagram for the demultiplexer if the S0 and S1 waveforms are both

inverted.

4-Line-to-16-Line Decoder as a Demultiplexer

We have already discussed a 4-line-to-16-line decoder (Section 6–5). This device and other

decoders can also be used in demultiplexing applications. The logic symbol for this device

when used as a demultiplexer is shown in Figure 6–54. In demultiplexer applications, the

input lines are used as the data-select lines. One of the chip select inputs is used as the data-

input line, with the other chip select input held LOW to enable the internal negative-AND

gate at the bottom of the diagram.

358 Functions of Combinational Logic

Data
in

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

(17)

(16)

(15)

(14)

(13)

(11)

(10)

(9)

(8)

(7)

(6)

(5)

(4)

(3)

(2)

(1)DEMUX

0

3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0––
15

G

(20)

(21)

(22)
S

0

(23)

S
1

S
2

S
3

Data
select
lines

&

(19)

(18)

EN

FIGURE 6–54 The decoder used as a demultiplexer.

SECTION 6–9 CHECKUP

 1. Generally, how can a decoder be used as a demultiplexer?

 2. The demultiplexer in Figure 6–54 has a binary code of 1010 on the data-select lines,

and the data-input line is LOW. What are the states of the output lines?

6–10 Parity Generators/Checkers

Errors can occur as digital codes are being transferred from one point to another within

a digital system or while codes are being transmitted from one system to another. The

errors take the form of undesired changes in the bits that make up the coded informa-

tion; that is, a 1 can change to a 0, or a 0 to a 1, because of component malfunctions or

electrical noise. In most digital systems, the probability that even a single bit error will

occur is very small, and the likelihood that more than one will occur is even smaller.

Nevertheless, when an error occurs undetected, it can cause serious problems in a digital

system.

After completing this section, you should be able to

u Explain the concept of parity

u Implement a basic parity circuit with exclusive-OR gates

u Describe the operation of basic parity generating and checking logic

u Discuss the 74HC280 9-bit parity generator/checker

u Use VHDL to describe a 9-bit parity generator/checker

u Discuss how error detection can be implemented in a data transmission system

The parity method of error detection in which a parity bit is attached to a group of

information bits in order to make the total number of 1s either even or odd (depending on

the system) was covered in Chapter 2. In addition to parity bits, several specific codes also

provide inherent error detection.

 Parity Generators/Checkers 359

Basic Parity Logic

In order to check for or to generate the proper parity in a given code, a basic principle can

be used:

The sum (disregarding carries) of an even number of 1s is always 0, and the sum of

an odd number of 1s is always 1.

Therefore, to determine if a given code has even parity or odd parity, all the bits in that

code are summed. As you know, the modulo-2 sum of two bits can be generated by an

exclusive-OR gate, as shown in Figure 6–55(a); the modulo-2 sum of four bits can be

formed by three exclusive-OR gates connected as shown in Figure 6–55(b); and so on.

When the number of 1s on the inputs is even, the output X is 0 (LOW). When the number

of 1s is odd, the output X is 1 (HIGH).

A parity bit indicates if the number
of 1s in a code is even or odd for the
purpose of error detection.

X
A1

A0

(b) Summing of four bits

A1

A0
X

(a) Summing of two bits

A3

A2

FIGURE 6–55

IMPLEMENTATION: 9-BIT PARITY GENERATOR/CHECKER

Fixed-Function Device The logic symbol and function table for a 74HC280 are shown

in Figure 6–56. This particular device can be used to check for odd or even parity on a

9-bit code (eight data bits and one parity bit), or it can be used to generate a parity bit for a

binary code with up to nine bits. The inputs are A through I; when there is an even number

of 1s on the inputs, the © Even output is HIGH and the © Odd output is LOW.

(5)

(6)
(13)

(1)

(11)

(12)

(a) Traditional logic symbol

(2)

Data
input

(10)

(9)

(8)

Σ Odd

Σ Even

F

G

D

E

H

C

B

A

(b) Function table

(4)
I

Number of Inputs
A–I that Are High

Outputs

L

H

H

L

0, 2, 4, 6, 8

1, 3, 5, 7, 9

S OddS Even

FIGURE 6–56 The 74HC280 9-bit parity generator/checker.

Parity Checker When this device is used as an even parity checker, the number of input

bits should always be even; and when a parity error occurs, the © Even output goes LOW

and the © Odd output goes HIGH. When it is used as an odd parity checker, the number

of input bits should always be odd; and when a parity error occurs, the © Odd output goes

LOW and the © Even output goes HIGH.

360 Functions of Combinational Logic

A Data Transmission System with Error Detection

A simplified data transmission system is shown in Figure 6–58 to illustrate an application

of parity generators/checkers, as well as multiplexers and demultiplexers, and to illustrate

the need for data storage in some applications.

In this application, digital data from seven sources are multiplexed onto a single line

for transmission to a distant point. The seven data bits (D0 through D6) are applied to the

multiplexer data inputs and, at the same time, to the even parity generator inputs. The ©

Odd output of the parity generator is used as the even parity bit. This bit is 0 if the number

of 1s on the inputs A through I is even and is a 1 if the number of 1s on A through I is odd.

This bit is D7 of the transmitted code.

The data-select inputs are repeatedly cycled through a binary sequence, and each data

bit, beginning with D0, is serially passed through and onto the transmission line (Y). In

this example, the transmission line consists of four conductors: one carries the serial data

and three carry the timing signals (data selects). There are more sophisticated ways of

sending the timing information, but we are using this direct method to illustrate a basic

principle.

entity ParityCheck is

 port (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9: in bit;

 X: out bit);

end entity ParityCheck;

architecture LogicOperation of ParityCheck is

begin

 X 6= ((A0 xor A1) xor (A2 xor A3)) xor ((A4 xor A5) xor

 (A6 xor A7)) xor (A8 xor A9);

end architecture LogicOperation;

A0

A1

A2

A3

A4

A5

A6

A7

A8

A

X

9

FIGURE 6–57

Parity Generator If this device is used as an even parity generator, the parity bit is

taken at the © Odd output because this output is a 0 if there is an even number of input

bits and it is a 1 if there is an odd number. When used as an odd parity generator, the

parity bit is taken at the © Even output because it is a 0 when the number of inputs bits

is odd.

Programmable Logic Device (PLD) The 9-bit parity generator/checker can be described

using VHDL and implemented in a PLD. We will expand the 4-bit logic circuit in Figure

6–55(b) as shown in Figure 6–57. The data flow approach is used.

Inputs and output declared

Output defined by

Boolean expression

¸
˝
˛

¸
˝
˛

 Parity Generators/Checkers 361

At the demultiplexer end of the system, the data-select signals and the serial data stream

are applied to the demultiplexer. The data bits are distributed by the demultiplexer onto

the output lines in the order in which they occurred on the multiplexer inputs. That is, D0

comes out on the D0 output, D1 comes out on the D1 output, and so on. The parity bit comes

out on the D7 output. These eight bits are temporarily stored and applied to the even parity

checker. Not all of the bits are present on the parity checker inputs until the parity bit D7

comes out and is stored. At this time, the error gate is enabled by the data-select code 111.

If the parity is correct, a 0 appears on the © Even output, keeping the Error output at 0. If

the parity is incorrect, all 1s appear on the error gate inputs, and a 1 on the Error output

results.

This particular application has demonstrated the need for data storage. Storage devices

will be introduced in Chapter 7 and covered in Chapter 11.

The timing diagram in Figure 6–59 illustrates a specific case in which two 8-bit words

are transmitted, one with correct parity and one with an error.

EVEN parity
generator

Σ Odd

Y

Even parity bit

D7

0

EVEN parity
checker

Storage

Error = 1

Error gate

Four-conductor transmission line

&

5

6

3

4

7

2

1

2

0

EN

0

G

MUX

0–
7

F

G

D

E

H

C

B

A

5

6

3

4

7

2

1
2

0
DEMUX

G0–
7

D0

D1

D2

D3

D4

D5

D6

D7

F

G

D

E

H

C

B

A

Σ Even

D0

D1

D2

D3

D4

D5

D6

S2

S1

S0

II

(Even parity bit)

FIGURE 6–58 Simplified data transmission system with error detection.

InfoNote

Microprocessors perform internal

parity checks as well as parity checks

of the external data and address

buses. In a read operation, the

external system can transfer the parity

information together with the data

bytes. The microprocessor checks

whether the resulting parity is even

and sends out the corresponding

signal. When it sends out an address

code, the microprocessor does not

perform an address parity check, but

it does generate an even parity bit for

the address.

362 Functions of Combinational Logic

 S0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 D0 D1 D2 D3 D4 D5 D6 P D0 D1 D2 D3 D4 D5 D6 P

 S1

 S2

Data stream at
DEMUX input

Error

Bit received
incorrectly
(0 was transmitted)

FIGURE 6–59 Example of data transmission with and without error for the system

in Figure 6–58.

SECTION 6–10 CHECKUP

1. Add an even parity bit to each of the following codes:

(a) 110100 (b) 01100011

2. Add an odd parity bit to each of the following codes:

(a) 1010101 (b) 1000001

3. Check each of the even parity codes for an error.

(a) 100010101 (b) 1110111001

