
189

6
Conditional Processing

6.1 Conditional Branching
6.2 Boolean and Comparison Instructions

6.2.1 The CPU Status Flags
6.2.2 AND Instruction
6.2.3 OR Instruction
6.2.4 Bit-Mapped Sets
6.2.5 XOR Instruction
6.2.6 NOT Instruction
6.2.7 TEST Instruction
6.2.8 CMP Instruction
6.2.9 Setting and Clearing Individual CPU Flags
6.2.10 Boolean Instructions in 64-Bit Mode
6.2.11 Section Review

6.3 Conditional Jumps
6.3.1 Conditional Structures
6.3.2 Jcond Instruction
6.3.3 Types of Conditional Jump Instructions
6.3.4 Conditional Jump Applications
6.3.5 Section Review

6.4 Conditional Loop Instructions
6.4.1 LOOPZ and LOOPE Instructions
6.4.2 LOOPNZ and LOOPNE Instructions
6.4.3 Section Review

6.5 Conditional Structures
6.5.1 Block-Structured IF Statements
6.5.2 Compound Expressions

6.5.3 WHILE Loops
6.5.4 Table-Driven Selection
6.5.5 Section Review

6.6 Application: Finite-State Machines
6.6.1 Validating an Input String
6.6.2 Validating a Signed Integer
6.6.3 Section Review

6.7 Conditional Control Flow Directives
6.7.1 Creating IF Statements
6.7.2 Signed and Unsigned Comparisons
6.7.3 Compound Expressions
6.7.4 Creating Loops with .REPEAT

and .WHILE

6.8 Chapter Summary
6.9 Key Terms

6.9.1 Terms
6.9.2 Instructions, Operators, and Directives

6.10 Review Questions and Exercises
6.10.1 Short Answer
6.10.2 Algorithm Workbench

6.11 Programming Exercises
6.11.1 Suggestions for Testing Your Code
6.11.2 Exercise Descriptions

190 Chapter 6 • Conditional Processing

This chapter introduces a major item to your assembly language toolchest, giving your programs
the ability to make decisions. Nearly every program needs this capability. First, we start by
introducing you to the Boolean operations that are the core of all decision statements because
they affect the CPU status flags. Then we show how to use conditional jump and loop instruc-
tions that interpret CPU status flags. Next, we show how to use the tools from this chapter to
implement one of the most fundamental structures in theoretical computer science: the Finite-
State Machine. We finish the chapter by demonstrating MASM's built-in logic structures for
32-bit programming.

6.1 Conditional Branching
A programming language that permits decision making lets you alter the flow of control, using a
technique known as conditional branching. Every IF statement, switch statement, or conditional
loop found in high-level languages has built-in branching logic. Assembly language, as primitive
as it is, provides all the tools you need for decision-making logic. In this chapter, we will see
how the translation works, from high-level conditional statements to low-level implementation
code.

Programs that deal with hardware devices must be able to manipulate individual bits in
numbers. Individual bits must be tested, cleared, and set. Data encryption and compression
also rely on bit manipulation. We will show how to perform these operations in assembly
language.

This chapter should answer some basic questions:

• How can I use the boolean operations introduced in Chapter 1 (AND, OR, NOT)?
• How do I write an IF statement in assembly language?
• How are nested-IF statements translated by compilers into machine language?
• How can I set and clear individual bits in a binary number?
• How can I perform simple binary data encryption?
• How are signed numbers differentiated from unsigned numbers in boolean expressions?

This chapter follows a bottom-up approach, starting with the binary foundations behind pro-
gramming logic. Next, you will see how the CPU compares instruction operands, using the CMP
instruction and the processor status flags. Finally, we put it all together and show how to use
assembly language to implement logic structures characteristic of high-level languages.

6.2 Boolean and Comparison Instructions
In Chapter 1, we introduced the four basic operations of boolean algebra: AND, OR, XOR,
and NOT. These operations can be carried out at the binary bit level, using assembly language
instructions. These operations are also important at the boolean expression level, in IF state-
ments, for example. First, we will look at the bitwise instructions. The techniques used here
could be used to manipulate control bits for hardware devices, implement communication pro-
tocols, or encrypt data, just to name a few applications. The Intel instruction set contains the
AND, OR, XOR, and NOT instructions, which directly implement boolean operations on
binary bits, shown in Table 6-1. In addition, the TEST instruction is a nondestructive AND
operation.

6.2 Boolean and Comparison Instructions 191

6.2.1 The CPU Status Flags
Boolean instructions affect the Zero, Carry, Sign, Overflow, and Parity flags. Here’s a quick
review of their meanings:

• The Zero flag is set when the result of an operation equals zero.
• The Carry flag is set when an operation generates a carry out of the highest bit of the destina-

tion operand.
• The Sign flag is a copy of the high bit of the destination operand, indicating that it is negative

if set and positive if clear. (Zero is assumed to be positive.)
• The Overflow flag is set when an instruction generates a result that is outside the signed range

of the destination operand.
• The Parity flag is set when an instruction generates an even number of 1 bits in the low byte

of the destination operand.

6.2.2 AND Instruction
The AND instruction performs a boolean (bitwise) AND operation between each pair of match-
ing bits in two operands and places the result in the destination operand:

AND destination,source

The following operand combinations are permitted, although immediate opperands can be no larger
than 32 bits:

AND reg,reg
AND reg,mem
AND reg,imm
AND mem,reg
AND mem,imm

The operands can be 8, 16, 32, or 64 bits, and they must be the same size. For each matching
bit in the two operands, the following rule applies: If both bits equal 1, the result bit is 1; other-
wise, it is 0. The following truth table from Chapter 1 labels the input bits x and y. The third col-
umn shows the value of the expression x ∧ y:

Table 6-1 Selected Boolean Instructions.

Operation Description

AND Boolean AND operation between a source operand and a destination operand.

OR Boolean OR operation between a source operand and a destination operand.

XOR Boolean exclusive-OR operation between a source operand and a destination operand.

NOT Boolean NOT operation on a destination operand.

TEST Implied boolean AND operation between a source and destination operand, setting the
CPU flags appropriately.

x y x ∧ y
0 0 0

0 1 0

1 0 0

1 1 1

192 Chapter 6 • Conditional Processing

The AND instruction lets you clear 1 or more bits in an operand without affecting other bits.
The technique is called bit masking, much as you might use masking tape when painting a
house to cover areas (such as windows) that should not be painted. Suppose, for example, that
a control byte is about to be copied from the AL register to a hardware device. Further, we
will assume that the device resets itself when bits 0 and 3 are cleared in the control byte.
Assuming that we want to reset the device without modifying any other bits in AL, we can write
the following:

and AL,11110110b ; clear bits 0 and 3, leave others unchanged

For example, suppose AL is initially set to 10101110 binary. After ANDing it with 11110110,
AL equals 10100110:

mov al,10101110b
and al,11110110b ; result in AL = 10100110

Flags The AND instruction always clears the Overflow and Carry flags. It modifies the
Sign, Zero, and Parity flags in a way that is consistent with the value assigned to the destina-
tion operand. For example, suppose the following instruction results in a value of Zero in the
EAX register. In that case, the Zero flag will be set:

and eax,1Fh

Converting Characters to Upper case
The AND instruction provides an easy way to translate a letter from lowercase to uppercase.
If we compare the ASCII codes of capital A and lowercase a, it becomes clear that only bit 5 is
different:

0 1 1 0 0 0 0 1 = 61h ('a')
0 1 0 0 0 0 0 1 = 41h ('A')

The rest of the alphabetic characters have the same relationship. If we AND any character
with 11011111 binary, all bits are unchanged except for bit 5, which is cleared. In the following
example, all characters in an array are converted to uppercase:

.data
array BYTE 50 DUP(?)
.code

mov ecx,LENGTHOF array
mov esi,OFFSET array

L1: and BYTE PTR [esi],11011111b ; clear bit 5
inc esi
loop L1

6.2.3 OR Instruction
The OR instruction performs a boolean OR operation between each pair of matching bits in two
operands and places the result in the destination operand:

OR destination,source

6.2 Boolean and Comparison Instructions 193

The OR instruction uses the same operand combinations as the AND instruction:

OR reg,reg
OR reg,mem
OR reg,imm
OR mem,reg
OR mem,imm

The operands can be 8, 16, 32, or 64 bits, and they must be the same size. For each matching
bit in the two operands, the output bit is 1 when at least one of the input bits is 1. The following
truth table (from Chapter 1) describes the boolean expression x ∨ y:

The OR instruction is particularly useful when you need to set 1 or more bits in an operand
without affecting any other bits. Suppose, for example, that your computer is attached to a servo
motor, which is activated by setting bit 2 in its control byte. Assuming that the AL register con-
tains a control byte in which each bit contains some important information, the following code
only sets the bit in position 2:

or AL,00000100b ; set bit 2, leave others unchanged

For example, if AL is initially equal to 11100011 binary and then we OR it with 00000100, the
result equals 11100111:

mov al,11100011b
or al,00000100b ; result in AL = 11100111

Flags The OR instruction always clears the Carry and Overflow flags. It modifies the Sign,
Zero, and Parity flags in a way that is consistent with the value assigned to the destination oper-
and. For example, you can OR a number with itself (or zero) to obtain certain information about
its value:

or al,al

The values of the Zero and Sign flags indicate the following about the contents of AL:

x y x ∨ y

0 0 0

0 1 1

1 0 1

1 1 1

Zero Flag Sign Flag Value in AL Is . . .

Clear Clear Greater than zero

Set Clear Equal to zero

Clear Set Less than zero

194 Chapter 6 • Conditional Processing

6.2.4 Bit-Mapped Sets
Some applications manipulate sets of items selected from a limited-sized universal set. Exam-
ples might be employees within a company, or environmental readings from a weather monitor-
ing station. In such cases, binary bits can indicate set membership. Rather than holding pointers
or references to objects in a container such as a Java HashSet, an application can use a bit vector
(or bit map) to map the bits in a binary number to an array of objects.

For example, the following binary number uses bit positions numbered from 0 on the right to 31
on the left to indicate that array elements 0, 1, 2, and 31 are members of the set named SetX:

SetX = 10000000 00000000 00000000 00000111

(The bytes have been separated to improve readability.) We can easily check for set membership
by ANDing a particular member’s bit position with a 1:

mov eax,SetX
and eax,10000b ; is element[4] a member of SetX?

If the AND instruction in this example clears the Zero flag, we know that element [4] is a
member of SetX.

Set Complement
The complement of a set can be generated using the NOT instruction, which reverses all bits.
Therefore, the complement of the SetX that we introduced is generated in EAX using the
following instructions:

mov eax,SetX
not eax ; complement of SetX

Set Intersection
The AND instruction produces a bit vector that represents the intersection of two sets. The fol-
lowing code generates and stores the intersection of SetX and SetY in EAX:

mov eax,SetX
and eax,SetY

This is how the intersection of SetX and SetY is produced:

1000000000000000000000000000111 (SetX)
AND 1000001010100000000011101100011 (SetY)
--

1000000000000000000000000000011 (intersection)

It is hard to imagine any faster way to generate a set intersection. A larger domain would require
more bits than could be held in a single register, making it necessary to use a loop to AND all of
the bits together.

Set Union
The OR instruction produces a bit map that represents the union of two sets. The following code
generates the union of SetX and SetY in EAX:

mov eax,SetX
or eax,SetY

6.2 Boolean and Comparison Instructions 195

This is how the union of SetX and SetY is generated by the OR instruction:

 1000000000000000000000000000111 (SetX)
OR 1000001010100000000011101100011 (SetY)
--

 1000001010100000000011101100111 (union)

6.2.5 XOR Instruction
The XOR instruction performs a boolean exclusive-OR operation between each pair of matching
bits in two operands and stores the result in the destination operand:

XOR destination,source

The XOR instruction uses the same operand combinations and sizes as the AND and OR
instructions. For each matching bit in the two operands, the following applies: If both bits are the
same (both 0 or both 1), the result is 0; otherwise, the result is 1. The following truth table
describes the boolean expression x ⊕ y:

A bit exclusive-ORed with 0 retains its value, and a bit exclusive-ORed with 1 is toggled
(complemented). XOR reverses itself when applied twice to the same operand. The following
truth table shows that when bit x is exclusive-ORed with bit y twice, it reverts to its original
value:

As you will find out in Section 6.3.4, this “reversible” property of XOR makes it an ideal tool for
a simple form of symmetric encryption.

Flags The XOR instruction always clears the Overflow and Carry flags. XOR modifies the
Sign, Zero, and Parity flags in a way that is consistent with the value assigned to the destination
operand.

Checking the Parity Flag Parity checking is a function performed on a binary number that
counts the number of 1 bits contained in the number; if the resulting count is even, we say that
the data has even parity; if the count is odd, the data has odd parity. In x86 processors, the Parity

x y x ⊕ y
0 0 0

0 1 1

1 0 1

1 1 0

x y x ⊕ y (x ⊕ y) ⊕ y
0 0 0 0

0 1 1 0

1 0 1 1

1 1 0 1

196 Chapter 6 • Conditional Processing

flag is set when the lowest byte of the destination operand of a bitwise or arithmetic operation
has even parity. Conversely, when the operand has odd parity, the flag is cleared. An effective
way to check the parity of a number without changing its value is to exclusive-OR the number
with zero:

mov al,10110101b ; 5 bits = odd parity
xor al,0 ; Parity flag clear (odd)
mov al,11001100b ; 4 bits = even parity
xor al,0 ; Parity flag set (even)

Visual Studio uses PE � 1 to indicate even parity, and PE � 0 to indicate odd parity.

16-Bit Parity You can check the parity of a 16-bit integer by performing an exclusive-OR
between the upper and lower bytes:

mov ax,64C1h ; 0110 0100 1100 0001
xor ah,al ; Parity flag set (even)

Imagine the set bits (bits equal to 1) in each register as being members of an 8-bit set. The XOR
instruction zeroes all bits belonging to the intersection of the sets. XOR also forms the union
between the remaining bits. The parity of this union will be the same as the parity of the entire
16-bit integer.

What about 32-bit values? If we number the bytes from B0 through B3, we can calculate the
parity as B0 XOR B1 XOR B2 XOR B3.

6.2.6 NOT Instruction
The NOT instruction toggles (inverts) all bits in an operand. The result is called the one’s com-
plement. The following operand types are permitted:

NOT reg
NOT mem

For example, the one’s complement of F0h is 0Fh:

mov al,11110000b
not al ; AL = 00001111b

Flags No flags are affected by the NOT instruction.

6.2.7 TEST Instruction
The TEST instruction performs an implied AND operation between each pair of matching bits in
two operands and sets the Sign, Zero, and Parity flags based on the value assigned to the destina-
tion operand. The only difference between TEST and AND is that TEST does not modify the
destination operand. The TEST instruction permits the same operand combinations as the AND
instruction. TEST is particularly valuable for finding out whether individual bits in an operand
are set.

6.2 Boolean and Comparison Instructions 197

Example: Testing Multiple Bits The TEST instruction can check several bits at once. Sup-
pose we want to know whether bit 0 or bit 3 is set in the AL register. We can use the following
instruction to find this out:

test al,00001001b; test bits 0 and 3

(The value 00001001 in this example is called a bit mask.) From the following example data
sets, we can infer that the Zero flag is set only when all tested bits are clear:

0 0 1 0 0 1 0 1 <- input value
0 0 0 0 1 0 0 1 <- test value
0 0 0 0 0 0 0 1 <- result: ZF = 0

0 0 1 0 0 1 0 0 <- input value
0 0 0 0 1 0 0 1 <- test value
0 0 0 0 0 0 0 0 <- result: ZF = 1

Flags The TEST instruction always clears the Overflow and Carry flags. It modifies the Sign,
Zero, and Parity flags in the same way as the AND instruction.

6.2.8 CMP Instruction
Having examined all of the bitwise instructions, let’s now turn to instructions used in logical
(boolean) expressions. The most common boolean expressions involve some type of compari-
son. The following pseudocode snippets support this idea:

if A > B ...
while X > 0 and X < 200 ...
if check_for_error(N) = true

In x86 assembly language we use the CMP instruction to compare integers. Character codes are
also integers, so they work with CMP as well. Floating-point values require specialized compar-
ison instructions, which we cover in Chapter 12.

The CMP (compare) instruction performs an implied subtraction of a source operand from a
destination operand. Neither operand is modified:

CMP destination,source

CMP uses the same operand combinations as the AND instruction.

Flags The CMP instruction changes the Overflow, Sign, Zero, Carry, Auxiliary Carry, and
Parity flags according to the value the destination operand would have had if actual subtraction
had taken place. When two unsigned operands are compared, the Zero and Carry flags indicate
the following relations between operands:

CMP Results ZF CF

Destination < source 0 1

Destination > source 0 0

Destination = source 1 0

198 Chapter 6 • Conditional Processing

When two signed operands are compared, the Sign, Zero, and Overflow flags indicate the fol-
lowing relations between operands:

CMP is a valuable tool for creating conditional logic structures. When you follow CMP with a
conditional jump instruction, the result is the assembly language equivalent of an IF statement.

Examples Let’s look at three code fragments showing how flags are affected by the CMP
instruction. When AX equals 5 and is compared to 10, the Carry flag is set because subtracting
10 from 5 requires a borrow:

mov ax,5
cmp ax,10 ; ZF = 0 and CF = 1

Comparing 1000 to 1000 sets the Zero flag because subtracting the source from the destination
produces zero:

mov ax,1000
mov cx,1000
cmp cx,ax ; ZF = 1 and CF = 0

Comparing 105 to 0 clears both the Zero and Carry flags because subtracting 0 from 105 gener-
ates a positive, nonzero value.

mov si,105
cmp si,0 ; ZF = 0 and CF = 0

6.2.9 Setting and Clearing Individual CPU Flags
How can you easily set or clear the Zero, Sign, Carry, and Overflow flags? There are several
ways, some of which require modifying the destination operand. To set the Zero flag, TEST or
AND an operand with Zero; to clear the Zero flag, OR an operand with 1:

test al,0 ; set Zero flag
and al,0 ; set Zero flag
or al,1 ; clear Zero flag

TEST does not modify the operand, whereas AND does. To set the Sign flag, OR the highest bit
of an operand with 1. To clear the Sign flag, AND the highest bit with 0:

or al,80h ; set Sign flag
and al,7Fh ; clear Sign flag

To set the Carry flag, use the STC instruction; to clear the Carry flag, use CLC:

stc ; set Carry flag
clc ; clear Carry flag

To set the Overflow flag, add two positive values that produce a negative sum. To clear the Over-
flow flag, OR an operand with 0:

CMP Results Flags

Destination < source SF ≠ OF

Destination > source SF = OF

Destination = source ZF = 1

6.3 Conditional Jumps 199

mov al,7Fh ; AL = +127
inc al ; AL = 80h (-128), OF=1
or eax,0 ; clear Overflow flag

6.2.10 Boolean Instructions in 64-Bit Mode
For the most part, 64-bit instructions work exactly the same in 64-Bit mode as they do in 32-bit
mode. For example, if the source operand is a constant whose size is less than 32 bits and the desti-
nation is a 64-bit register or memory operand, all bits in the destination operand are affected:

.data
allones QWORD 0FFFFFFFFFFFFFFFFh
.code

mov rax,allones ; RAX = FFFFFFFFFFFFFFFF
and rax,80h ; RAX = 0000000000000080
mov rax,allones ; RAX = FFFFFFFFFFFFFFFF
and rax,8080h ; RAX = 0000000000008080
mov rax,allones ; RAX = FFFFFFFFFFFFFFFF
and rax,808080h ; RAX = 0000000000808080

But when the source operand is a 32-bit constant or register, only the lower 32 bits of the des-
tination operand are affected. In the following example, only the lower 32 bits of RAX are
modified:

mov rax,allones ; RAX = FFFFFFFFFFFFFFFF
and rax,80808080h ; RAX = FFFFFFFF80808080

The same results are true when the destination operand is a memory operand. Clearly, 32-bit
operands are a special case that you must consider separately from other operand sizes.

6.2.11 Section Review
1. Write a single instruction using 16-bit operands that clears the high 8 bits of AX and does

not change the low 8 bits.

2. Write a single instruction using 16-bit operands that sets the high 8 bits of AX and does not
change the low 8 bits.

3. Write a single instruction (other than NOT) that reverses all the bits in EAX.

4. Write instructions that set the Zero flag if the 32-bit value in EAX is even and clear the Zero
flag if EAX is odd.

5. Write a single instruction that converts an uppercase character in AL to lowercase but does
not modify AL if it already contains a lowercase letter.

6.3 Conditional Jumps

6.3.1 Conditional Structures
There are no explicit high-level logic structures in the x86 instruction set, but you can implement
them using a combination of comparisons and jumps. Two steps are involved in executing a
conditional statement: First, an operation such as CMP, AND, or SUB modifies the CPU status
flags. Second, a conditional jump instruction tests the flags and causes a branch to a new
address. Let’s look at a couple of examples.

200 Chapter 6 • Conditional Processing

Example 1 The CMP instruction in the following example compares EAX to Zero. The JZ
(Jump if zero) instruction jumps to label L1 if the Zero flag was set by the CMP instruction:

cmp eax,0
jz L1 ; jump if ZF = 1
.
.

L1:

Example 2 The AND instruction in the following example performs a bitwise AND on the
DL register, affecting the Zero flag. The JNZ (jump if not Zero) instruction jumps if the Zero
flag is clear:

and dl,10110000b
jnz L2 ; jump if ZF = 0
.
.

L2:

6.3.2 Jcond Instruction
A conditional jump instruction branches to a destination label when a status flag condition is
true. Otherwise, if the flag condition is false, the instruction immediately following the condi-
tional jump is executed. The syntax is as follows:

Jcond destination

cond refers to a flag condition identifying the state of one or more flags. The following examples
are based on the Carry and Zero flags:

CPU status flags are most commonly set by arithmetic, comparison, and boolean instructions.
Conditional jump instructions evaluate the flag states, using them to determine whether or not
jumps should be taken.

Using the CMP Instruction Suppose you want to jump to label L1 when EAX equals 5. In
the next example, if EAX equals 5, the CMP instruction sets the Zero flag; then, the JE instruc-
tion jumps to L1 because the Zero flag is set:

cmp eax,5
je L1 ; jump if equal

(The JE instruction always jumps based on the value of the Zero flag.) If EAX were not equal to
5, CMP would clear the Zero flag, and the JE instruction would not jump.

JC Jump if carry (Carry flag set)

JNC Jump if not carry (Carry flag clear)

JZ Jump if zero (Zero flag set)

JNZ Jump if not zero (Zero flag clear)

6.3 Conditional Jumps 201

In the following example, the JL instruction jumps to label L1 because AX is less than 6:

mov ax,5
cmp ax,6
jl L1 ; jump if less

In the following example, the jump is taken because AX is greater than 4:

mov ax,5
cmp ax,4
jg L1 ; jump if greater

6.3.3 Types of Conditional Jump Instructions
The x86 instruction set has a large number of conditional jump instructions. They are able to
compare signed and unsigned integers and perform actions based on the values of individual
CPU flags. The conditional jump instructions can be divided into four groups:

• Jumps based on specific flag values
• Jumps based on equality between operands or the value of (E)CX
• Jumps based on comparisons of unsigned operands
• Jumps based on comparisons of signed operands

Table 6-2 shows a list of jumps based on the Zero, Carry, Overflow, Parity, and Sign flags.

Equality Comparisons
Table 6-3 lists jump instructions based on evaluating equality. In some cases, two operands are
compared; in other cases, a jump is taken based on the value of CX, ECX, or RCX. In the table,
the notations leftOp and rightOp refer to the left (destination) and right (source) operands in a
CMP instruction:

CMP leftOp,rightOp

The operand names reflect the ordering of operands for relational operators in algebra. For
example, in the expression X < Y, X is called leftOp and Y is called rightOp.

Table 6-2 Jumps Based on Specific Flag Values.

Mnemonic Description Flags / Registers

JZ Jump if zero ZF = 1

JNZ Jump if not zero ZF = 0

JC Jump if carry CF = 1

JNC Jump if not carry CF = 0

JO Jump if overflow OF = 1

JNO Jump if not overflow OF = 0

JS Jump if signed SF = 1

JNS Jump if not signed SF = 0

JP Jump if parity (even) PF = 1

JNP Jump if not parity (odd) PF = 0

202 Chapter 6 • Conditional Processing

Although the JE instruction is equivalent to JZ (jump if Zero) and JNE is equivalent to JNZ
(jump if not Zero), it’s best to select the mnemonic (JE or JZ) that best indicates your intention
to either compare two operands or examine a specific status flag.

Following are code examples that use the JE, JNE, JCXZ, and JECXZ instructions. Examine the
comments carefully to be sure that you understand why the conditional jumps were (or were not) taken.

Example 1:

mov edx,0A523h
cmp edx,0A523h
jne L5 ; jump not taken
je L1 ; jump is taken

Example 2:

mov bx,1234h
sub bx,1234h
jne L5 ; jump not taken
je L1 ; jump is taken

Example 3:

mov cx,0FFFFh
inc cx
jcxz L2 ; jump is taken

Example 4:

xor ecx,ecx
jecxz L2 ; jump is taken

Unsigned Comparisons
Jumps based on comparisons of unsigned numbers are shown in Table 6-4. The operand names
reflect the order of operands, as in the expression (leftOp < rightOp). The jumps in Table 6-4 are
only meaningful when comparing unsigned values. Signed operands use a different set of jumps.

Signed Comparisons
Table 6-5 displays a list of jumps based on signed comparisons. The following instruction
sequence demonstrates the comparison of two signed values:

mov al,+127 ; hexadecimal value is 7Fh
cmp al,-128 ; hexadecimal value is 80h
ja IsAbove ; jump not taken, because 7Fh < 80h
jg IsGreater ; jump taken, because +127 > -128

Table 6-3 Jumps Based on Equality.

Mnemonic Description

JE Jump if equal (leftOp � rightOp)

JNE Jump if not equal (leftOp � rightOp)

JCXZ Jump if CX � 0

JECXZ Jump if ECX � 0

JRCXZ Jump if RCX � 0 (64-bit mode)

6.3 Conditional Jumps 203

The JA instruction, which is designed for unsigned comparisons, does not jump because
unsigned 7Fh is smaller than unsigned 80h. The JG instruction, on the other hand, is designed
for signed comparisons—it jumps because +127 is greater than �128.

In the following code examples, examine the comments to be sure you understand why the
jumps were (or were not) taken:

Example 1

mov edx,-1
cmp edx,0
jnl L5 ; jump not taken (-1 >= 0 is false)
jnle L5 ; jump not taken (-1 > 0 is false)
jl L1 ; jump is taken (-1 < 0 is true)

Example 2

mov bx,+32
cmp bx,-35
jng L5 ; jump not taken (+32 <= -35 is false)
jnge L5 ; jump not taken (+32 < -35 is false)
jge L1 ; jump is taken (+32 >= -35 is true)

Table 6-4 Jumps Based on Unsigned Comparisons.

Mnemonic Description

JA Jump if above (if leftOp � rightOp)

JNBE Jump if not below or equal (same as JA)

JAE Jump if above or equal (if leftOp 	 rightOp)

JNB Jump if not below (same as JAE)

JB Jump if below (if leftOp
 rightOp)

JNAE Jump if not above or equal (same as JB)

JBE Jump if below or equal (if leftOp � rightOp)

JNA Jump if not above (same as JBE)

Table 6-5 Jumps Based on Signed Comparisons.

Mnemonic Description

JG Jump if greater (if leftOp � rightOp)

JNLE Jump if not less than or equal (same as JG)

JGE Jump if greater than or equal (if leftOp 	 rightOp)

JNL Jump if not less (same as JGE)

JL Jump if less (if leftOp
 rightOp)

JNGE Jump if not greater than or equal (same as JL)

JLE Jump if less than or equal (if leftOp � rightOp)

JNG Jump if not greater (same as JLE)

204 Chapter 6 • Conditional Processing

Example 3

mov ecx,0
cmp ecx,0
jg L5 ; jump not taken (0 > 0 is false)
jnl L1 ; jump is taken (0 >= 0 is true)

Example 4

mov ecx,0
cmp ecx,0
jl L5 ; jump not taken (0 < 0 is false)
jng L1 ; jump is taken (0 <= 0 is true)

6.3.4 Conditional Jump Applications

Testing Status Bits One of the things assembly language does best is bit testing. Often, we
do not want to change the values of the bits we’re testing, but we do want to modify the values
of CPU status flags. Conditional jump instructions often use these status flags to determine
whether or not to transfer control to code labels. Suppose, for example, that an 8-bit memory
operand named status contains status information about an external device attached to the
computer. The following instructions jump to a label if bit 5 is set, indicating that the device is
offline:

mov al,status
test al,00100000b ; test bit 5
jnz DeviceOffline

The following statements jump to a label if any of the bits 0, 1, or 4 are set:

mov al,status
test al,00010011b ; test bits 0,1,4
jnz InputDataByte

Jumping to a label if bits 2, 3, and 7 are all set requires both the AND and CMP instructions:

mov al,status
and al,10001100b ; mask bits 2,3,7
cmp al,10001100b ; all bits set?
je ResetMachine ; yes: jump to label

Larger of Two Integers The following code compares the unsigned integers in EAX and
EBX and moves the larger of the two to EDX:

mov edx,eax ; assume EAX is larger
cmp eax,ebx ; if EAX is >= EBX
jae L1 ; jump to L1
mov edx,ebx ; else move EBX to EDX

L1: ; EDX contains the larger integer

Smallest of Three Integers The following instructions compare the unsigned 16-bit values in
the variables V1, V2, and V3 and move the smallest of the three to AX:

6.3 Conditional Jumps 205

.data
V1 WORD ?
V2 WORD ?
V3 WORD ?
.code

mov ax,V1 ; assume V1 is smallest
cmp ax,V2 ; if AX <= V2
jbe L1 ; jump to L1
mov ax,V2 ; else move V2 to AX

L1: cmp ax,V3 ; if AX <= V3
jbe L2 ; jump to L2
mov ax,V3 ; else move V3 to AX

L2:

Loop until Key Pressed In the following 32-bit code, a loop runs continuously until the user
presses a standard alphanumeric key. The ReadKey method from the Irvine32 library sets the
Zero flag if no key is present in the input buffer:

.data
char BYTE ?
.code
L1: mov eax,10 ; create 10 ms delay

call Delay
call ReadKey ; check for key
jz L1 ; repeat if no key
mov char,AL ; save the character

The foregoing code inserts a 10-millisecond delay in the loop to give MS-Windows time to process
event messages. If you omit the delay, keystrokes may be ignored.

Application: Sequential Search of an Array
A common programming task is to search for values in an array that meet some criteria. For
example, the following program looks for the first nonzero value in an array of 16-bit integers.
If it finds one, it displays the value; otherwise, it displays a message stating that a nonzero value
was not found:

; Scanning an Array (ArrayScan.asm)
; Scan an array for the first nonzero value.

INCLUDE Irvine32.inc

.data
intArray SWORD 0,0,0,0,1,20,35,-12,66,4,0
;intArray SWORD 1,0,0,0 ; alternate test data
;intArray SWORD 0,0,0,0 ; alternate test data
;intArray SWORD 0,0,0,1 ; alternate test data
noneMsg BYTE "A non-zero value was not found",0

This program contains alternate test data that are currently commented out. Uncomment each of
these lines to test the program with different data configurations.

206 Chapter 6 • Conditional Processing

.code
main PROC

mov ebx,OFFSET intArray ; point to the array
mov ecx,LENGTHOF intArray ; loop counter

L1: cmp WORD PTR [ebx],0 ; compare value to zero
jnz found ; found a value
add ebx,2 ; point to next
loop L1 ; continue the loop
jmp notFound ; none found

found: ; display the value
movsx eax,WORD PTR[ebx] ; sign-extend into EAX
call WriteInt
jmp quit

notFound: ; display "not found" message
mov edx,OFFSET noneMsg
call WriteString

quit:
call Crlf
exit

main ENDP
END main

Application: Simple String Encryption
The XOR instruction has an interesting property. If an integer X is XORed with Y and the result-
ing value is XORed with Y again, the value produced is X:

This reversible property of XOR provides an easy way to perform a simple form of data encryp-
tion: A plain text message is transformed into an encrypted string called cipher text by XORing
each of its characters with a character from a third string called a key. The intended viewer can
use the key to decrypt the cipher text and produce the original plain text.

Example Program We will demonstrate a simple program that uses symmetric encryption,
a process by which the same key is used for both encryption and decryption. The following steps
occur in order at runtime:

1. The user enters the plain text.
2. The program uses a single-character key to encrypt the plain text, producing the cipher text,

which is displayed on the screen.
3. The program decrypts the cipher text, producing and displaying the original plain text.

Here is sample output from the program:

X Y⊗() Y⊗() X=

6.3 Conditional Jumps 207

Program Listing Here is a complete program listing:

; Encryption Program (Encrypt.asm)

INCLUDE Irvine32.inc
KEY = 239 ; any value between 1-255
BUFMAX = 128 ; maximum buffer size

.data
sPrompt BYTE "Enter the plain text:",0
sEncrypt BYTE "Cipher text: ",0
sDecrypt BYTE "Decrypted: ",0
buffer BYTE BUFMAX+1 DUP(0)
bufSize DWORD ?

.code
main PROC

call InputTheString ; input the plain text
call TranslateBuffer ; encrypt the buffer
mov edx,OFFSET sEncrypt ; display encrypted message
call DisplayMessage
call TranslateBuffer ; decrypt the buffer
mov edx,OFFSET sDecrypt ; display decrypted message
call DisplayMessage
exit

main ENDP

;---
InputTheString PROC
;
; Prompts user for a plaintext string. Saves the string
; and its length.
; Receives: nothing
; Returns: nothing
;---

pushad ; save 32-bit registers
mov edx,OFFSET sPrompt ; display a prompt
call WriteString
mov ecx,BUFMAX ; maximum character count
mov edx,OFFSET buffer ; point to the buffer
call ReadString ; input the string
mov bufSize,eax ; save the length
call Crlf
popad
ret

InputTheString ENDP

;---
DisplayMessage PROC
;
; Displays the encrypted or decrypted message.
; Receives: EDX points to the message
; Returns: nothing
;---

208 Chapter 6 • Conditional Processing

pushad
call WriteString
mov edx,OFFSET buffer ; display the buffer
call WriteString
call Crlf
call Crlf
popad
ret

DisplayMessage ENDP

;---
TranslateBuffer PROC
;
; Translates the string by exclusive-ORing each
; byte with the encryption key byte.
; Receives: nothing
; Returns: nothing
;---

pushad
mov ecx,bufSize ; loop counter
mov esi,0 ; index 0 in buffer

L1:
xor buffer[esi],KEY ; translate a byte
inc esi ; point to next byte
loop L1
popad
ret

TranslateBuffer ENDP
END main

You should never encrypt important data with a single-character encryption key, because it can
be too easily decoded. Instead, the chapter exercises suggest that you use an encryption key con-
taining multiple characters to encrypt and decrypt the plain text.

6.3.5 Section Review
1. Which jump instructions follow unsigned integer comparisons?

2. Which jump instructions follow signed integer comparisons?

3. Which conditional jump instruction is equivalent to JNAE?

4. Which conditional jump instruction is equivalent to the JNA instruction?

5. Which conditional jump instruction is equivalent to the JNGE instruction?

6. (Yes/No): Will the following code jump to the label named Target?

mov ax,8109h
cmp ax,26h
jg Target

6.4 Conditional Loop Instructions 209

6.4 Conditional Loop Instructions

6.4.1 LOOPZ and LOOPE Instructions
The LOOPZ (loop if zero) instruction works just like the LOOP instruction except that it has one
additional condition: the Zero flag must be set in order for control to transfer to the destination
label. The syntax is

LOOPZ destination

The LOOPE (loop if equal) instruction is equivalent to LOOPZ, and they share the same
opcode. They perform the following tasks:

ECX = ECX - 1
if ECX > 0 and ZF = 1, jump to destination

Otherwise, no jump occurs, and control passes to the next instruction. LOOPZ and LOOPE
do not affect any of the status flags. In 32-bit mode, ECX is the loop counter register, and in
64-bit mode, RCX is the counter.

6.4.2 LOOPNZ and LOOPNE Instructions
The LOOPNZ (loop if not zero) instruction is the counterpart of LOOPZ. The loop continues
while the unsigned value of ECX is greater than zero (after being decremented) and the Zero flag
is clear. The syntax is

LOOPNZ destination

The LOOPNE (loop if not equal) instruction is equivalent to LOOPNZ, and they share the
same opcode. They perform the following tasks:

ECX = ECX - 1
if ECX > 0 and ZF = 0, jump to destination

Otherwise, nothing happens, and control passes to the next instruction.

Example The following code excerpt (from Loopnz.asm) scans each number in an array until
a nonnegative number is found (when the sign bit is clear). Notice that we push the flags on the
stack before the ADD instruction because ADD will modify the flags. Then the flags are restored
by POPFD just before the LOOPNZ instruction executes:

.data
array SWORD -3,-6,-1,-10,10,30,40,4
sentinel SWORD 0
.code

mov esi,OFFSET array
mov ecx,LENGTHOF array

L1: test WORD PTR [esi],8000h ; test sign bit
pushfd ; push flags on stack
add esi,TYPE array ; move to next position
popfd ; pop flags from stack
loopnz L1 ; continue loop

210 Chapter 6 • Conditional Processing

jnz quit ; none found
sub esi,TYPE array ; ESI points to value

quit:

If a nonnegative value is found, ESI is left pointing at it. If the loop fails to find a positive
number, it stops when ECX equals zero. In that case, the JNZ instruction jumps to label quit,
and ESI points to the sentinel value (0), located in memory immediately following the array.

6.4.3 Section Review
1. (True/False): The LOOPE instruction jumps to a label when (and only when) the Zero flag

is clear.

2. (True/False): In 32-bit mode, the LOOPNZ instruction jumps to a label when ECX is
greater than zero and the Zero flag is clear.

3. (True/False): The destination label of a LOOPZ instruction must be no farther than �128 or
�127 bytes from the instruction immediately following LOOPZ.

4. Modify the LOOPNZ example in Section 6.4.2 so that it scans for the first negative value in
the array. Change the array initializers so they begin with positive values.

5. Challenge: The LOOPNZ example in Section 6.4.2 relies on a sentinel value to handle the possi-
bility that a positive value might not be found. What might happen if you removed the sentinel?

6.5 Conditional Structures
We define a conditional structure to be one or more conditional expressions that trigger a choice
between different logical branches. Each branch causes a different sequence of instructions to
execute. No doubt you have already used conditional structures in a high-level programming
language. But you may not know how language compilers translate conditional structures into
low-level machine code. Let’s find out how that is done.

6.5.1 Block-Structured IF Statements
An IF structure impli that a boolean expression is followed by two lists of statements; one per-
formed when the expression is true, and another performed when the expression is false:

if(boolean-expression)
statement-list-1

else
statement-list-2

The else portion of the statement is optional. In assembly language, we code this structure in
steps. First, we evaluate the boolean expression in such a way that one of the CPU status flags is
affected. Second, we construct a series of jumps that transfer control to the two lists of state-
ments, based on the value of the relevant CPU status flag.

Example 1 In the following C++ code, two assignment statements are executed if op1 is
equal to op2:

if(op1 == op2)
{

X = 1;
Y = 2;

}

6.5 Conditional Structures 211

We translate this IF statement into assembly language with a CMP instruction followed by
conditional jumps. Because op1 and op2 are memory operands (variables), one of them must be
moved to a register before executing CMP. The following code implements the IF statement as
efficiently as possible by allowing the code to “fall through” to the two MOV instructions that
we want to execute when the boolean condition is true:

mov eax,op1
cmp eax,op2 ; op1 == op2?
jne L1 ; no: skip next
mov X,1 ; yes: assign X and Y
mov Y,2

L1:

If we implemented the �� operator using JE, the resulting code would be slightly less com-
pact (six instructions rather than five):

mov eax,op1
cmp eax,op2 ; op1 == op2?
je L1 ; yes: jump to L1
jmp L2 ; no: skip assignments

L1: mov X,1 ; assign X and Y
mov Y,2

L2:

Example 2 In the NTFS file storage system, the size of a disk cluster depends on the disk vol-
ume’s overall capacity. In the following pseudocode, we set the cluster size to 4,096 if the
volume size (in the variable named terrabytes) is less than 16 TBytes. Otherwise, we set the
cluster size to 8,192:

clusterSize = 8192;
if terrabytes < 16
 clusterSize = 4096;

Here’s a way to implement the pseudocode in assembly language:

mov clusterSize,8192 ; assume larger cluster
cmp terrabytes, 16 ; smaller than 16 TB?
jae next
mov clusterSize,4096 ; switch to smaller cluster

next:

Example 3 The following pseudocode statement has two branches:

if op1 > op2
call Routine1

else
call Routine2

end if

As you see from the foregoing example, the same conditional structure can be translated into
assembly language in multiple ways. When examples of compiled code are shown in this chapter,
they represent only what a hypothetical compiler might produce.

212 Chapter 6 • Conditional Processing

In the following assembly language translation of the pseudocode, we assume that op1
and op2 are signed doubleword variables. When comparing variables, one must be moved to a
register:

mov eax,op1 ; move op1 to a register
cmp eax,op2 ; op1 > op2?
jg A1 ; yes: call Routine1
call Routine2 ; no: call Routine2
jmp A2 ; exit the IF statement

A1: call Routine1
A2:

White Box Testing
Complex conditional statements may have multiple execution paths, making them hard to
debug by inspection (looking at the code). Programmers often implement a technique known as
white box testing, which verifies a subroutine’s inputs and corresponding outputs. White box
testing requires you to have a copy of the source code. You assign a variety of values to the input
variables. For each combination of inputs, you manually trace through the source code and
verify the execution path and outputs produced by the subroutine. Let’s see how this is done in
assembly language by implementing the following nested-IF statement:

if op1 == op2
 if X > Y

call Routine1
 else

call Routine2
 end if
else
 call Routine3
end if

Following is a possible translation to assembly language, with line numbers added for reference.
It reverses the initial condition (op1 �� op2) and immediately jumps to the ELSE portion. All
that is left to translate is the inner IF-ELSE statement:

1: mov eax,op1
2: cmp eax,op2 ; op1 == op2?
3: jne L2 ; no: call Routine3

; process the inner IF-ELSE statement.
4: mov eax,X
5: cmp eax,Y ; X > Y?
6: jg L1 ; yes: call Routine1
7: call Routine2 ; no: call Routine2
8: jmp L3 ; and exit
9: L1: call Routine1 ; call Routine1
10: jmp L3 ; and exit
11: L2: call Routine3
12: L3:

6.5 Conditional Structures 213

Table 6-6 shows the results of white box testing of the sample code. In the first four columns,
test values have been assigned to op1, op2, X, and Y. The resulting execution paths are verified
in columns 5 and 6.

6.5.2 Compound Expressions

Logical AND Operator
Assembly language easily implements compound boolean expressions containing AND oper-
ators. Consider the following pseudocode, in which the values being compared are assumed to
be unsigned integers:

if (al > bl) AND (bl > cl)
X = 1

end if

Short-Circuit Evaluation The following is a straightforward implementation using short-
circuit evaluation, in which the second expression is not evaluated if the first expression is false.
This is the norm for high-level languages:

cmp al,bl ; first expression...
ja L1
jmp next

L1: cmp bl,cl ; second expression...
ja L2
jmp next

L2: mov X,1 ; both true: set X to 1
next:

We can reduce the code to five instructions by changing the initial JA instruction to JBE:

cmp al,bl ; first expression...
jbe next ; quit if false
cmp bl,cl ; second expression
jbe next ; quit if false
mov X,1 ; both are true

next:

The 29% reduction in code size (seven instructions down to five) results from letting the CPU
fall through to the second CMP instruction if the first JBE is not taken.

Table 6-6 Testing the Nested IF Statement.

op1 op2 X Y Line Execution Sequence Calls

10 20 30 40 1, 2, 3, 11, 12 Routine3

10 20 40 30 1, 2, 3, 11, 12 Routine3

10 10 30 40 1, 2, 3, 4, 5, 6, 7, 8, 12 Routine2

10 10 40 30 1, 2, 3, 4, 5, 6, 9, 10, 12 Routine1

214 Chapter 6 • Conditional Processing

Logical OR Operator
When a compound expression contains subexpressions joined by the OR operator, the overall expres-
sion is true if any of the subexpressions is true. Let’s use the following pseudocode as an example:

if (al > bl) OR (bl > cl)
 X = 1

In the following implementation, the code branches to L1 if the first expression is true; other-
wise, it falls through to the second CMP instruction. The second expression reverses the > oper-
ator and uses JBE instead:

cmp al,bl ; 1: compare AL to BL
ja L1 ; if true, skip second expression
cmp bl,cl ; 2: compare BL to CL
jbe next ; false: skip next statement

L1: mov X,1 ; true: set X = 1
next:

For a given compound expression, there are multiple ways the expression can be imple-
mented in assembly language.

6.5.3 WHILE Loops
A WHILE loop tests a condition first before performing a block of statements. As long as the
loop condition remains true, the statements are repeated. The following loop is written in C++:

while(val1 < val2)
{

val1++;
val2--;

}

When implementing this structure in assembly language, it is convenient to reverse the loop condi-
tion and jump to endwhile if a condition becomes true. Assuming that val1 and val2 are variables, we
must copy one of them to a register at the beginning and restore the variable’s value at the end:

mov eax,val1 ; copy variable to EAX
beginwhile:

cmp eax,val2 ; if not (val1 < val2)
jnl endwhile ; exit the loop
inc eax ; val1++;
dec val2 ; val2--;
jmp beginwhile ; repeat the loop

endwhile:
mov val1,eax ; save new value for val1

EAX is a proxy (substitute) for val1 inside the loop. References to val1 must be through EAX.
JNL is used, implying that val1 and val2 are signed integers.

Example: IF statement Nested in a Loop
High-level languages are particularly good at representing nested control structures. In the fol-
lowing C++ code, an IF statement is nested inside a WHILE loop. It calculates the sum of all
array elements greater than the value in sample:

6.5 Conditional Structures 215

int array[] = {10,60,20,33,72,89,45,65,72,18};
int sample = 50;
int ArraySize = sizeof array / sizeof sample;
int index = 0;
int sum = 0;
while(index < ArraySize)
{

if(array[index] > sample)
{
 sum += array[index];

}
index++;

}

Before coding this loop in assembly language, let’s use the flowchart in Fig. 6-1
to describe the logic. To simplify the translation and speed up execution by reducing the
number of memory accesses, registers have been substituted for variables. EDX � sample,
EAX � sum, ESI � index, and ECX � ArraySize (a constant). Label names have been added
to the shapes.

Assembly Code The easiest way to generate assembly code from a flowchart is to implement
separate code for each flowchart shape. Note the direct correlation between the flowchart labels
and labels used in the following source code (see Flowchart.asm):

.data
sum DWORD 0
sample DWORD 50
array DWORD 10,60,20,33,72,89,45,65,72,18
ArraySize = ($ - Array) / TYPE array

.code
main PROC

mov eax,0 ; sum
mov edx,sample
mov esi,0 ; index
mov ecx,ArraySize

L1: cmp esi,ecx ; if esi < ecx
jl L2
jmp L5

L2: cmp array[esi*4], edx ; if array[esi] > edx
jg L3
jmp L4

L3: add eax,array[esi*4]

L4: inc esi
jmp L1

L5: mov sum,eax

A review question at the end of Section 6.5 will give you a chance to improve this code.

216 Chapter 6 • Conditional Processing

Figure 6–1 Loop containing IF statement.

6.5.4 Table-Driven Selection
Table-driven selection is a way of using a table lookup to replace a multiway selection structure.
To use it, you must create a table containing lookup values and the offsets of labels or proce-
dures, and then you must use a loop to search the table. This works best when a large number of
comparisons are made.

For example, the following is part of a table containing single-character lookup values and
addresses of procedures:

eax �� array[esi]

sum � eax

Begin

end

eax � sum
edx � sample
 esi � index
ecx � ArraySize

esi < ecx?

TRUE

TRUE

L1:

L3:

L2:

L5:

L4:

FALSE

FALSEarray[esi] > edx?

inc esi

6.5 Conditional Structures 217

.data
CaseTable BYTE 'A' ; lookup value
 DWORD Process_A ; address of procedure
 BYTE 'B'
 DWORD Process_B

(etc.)

Let’s assume Process_A, Process_B, Process_C, and Process_D are located at addresses
120h, 130h, 140h, and 150h, respectively. The table would be arranged in memory as shown in
Fig. 6–2.

Figure 6–2 Table of procedure offsets.

Example Program In the following example program (ProcTable.asm), the user inputs a
character from the keyboard. Using a loop, the character is compared to each entry in a lookup
table. The first match found in the table causes a call to the procedure offset stored immediately
after the lookup value. Each procedure loads EDX with the offset of a different string, which is
displayed during the loop:

; Table of Procedure Offsets (ProcTable.asm)

; This program contains a table with offsets of procedures.
; It uses the table to execute indirect procedure calls.

INCLUDE Irvine32.inc
.data
CaseTable BYTE 'A' ; lookup value

DWORD Process_A ; address of procedure
EntrySize = ($ - CaseTable)

BYTE 'B'
 DWORD Process_B
 BYTE 'C'
 DWORD Process_C
 BYTE 'D'
 DWORD Process_D
NumberOfEntries = ($ - CaseTable) / EntrySize
prompt BYTE "Press capital A,B,C,or D: ",0

msgA BYTE "Process_A",0
msgB BYTE "Process_B",0
msgC BYTE "Process_C",0
msgD BYTE "Process_D",0

Define a separate message string for each procedure:

'A' 'B' 'C' 'D'00000120 00000130 00000140 00000150

Address of Process_B

Lookup value

218 Chapter 6 • Conditional Processing

.code
main PROC

mov edx,OFFSET prompt ; ask user for input
call WriteString
call ReadChar ; read character into AL
mov ebx,OFFSET CaseTable ; point EBX to the table
mov ecx,NumberOfEntries ; loop counter

L1:
cmp al,[ebx] ; match found?
jne L2 ; no: continue
call NEAR PTR [ebx + 1] ; yes: call the procedure

call WriteString ; display message
call Crlf
jmp L3 ; exit the search

L2:
add ebx,EntrySize ; point to the next entry
loop L1 ; repeat until ECX = 0

L3:
exit

main ENDP

Process_A PROC
mov edx,OFFSET msgA
ret

Process_A ENDP

Process_B PROC
mov edx,OFFSET msgB
ret

Process_B ENDP

Process_C PROC
mov edx,OFFSET msgC
ret

Process_C ENDP

Process_D PROC
mov edx,OFFSET msgD
ret

Process_D ENDP
END main

The table-driven selection method involves some initial overhead, but it can reduce the
amount of code you write. A table can handle a large number of comparisons, and it can be more

This CALL instruction calls the procedure whose address is stored in the memory location refer-
enced by EBX+1. An indirect call such as this requires the NEAR PTR operator.

Each of the following procedures moves a different string offset to EDX:

6.6 Application: Finite-State Machines 219

easily modified than a long series of compare, jump, and CALL instructions. A table can even be
reconfigured at runtime.

6.5.5 Section Review
Notes: In all compound expressions, use short-circuit evaluation. Assume that val1 and X are 32-bit

variables.

1. Implement the following pseudocode in assembly language:

if ebx > ecx
 X = 1

2. Implement the following pseudocode in assembly language:

if edx <= ecx
 X = 1

else
 X = 2

3. In the program from Section 6.5.4, why is it better to let the assembler calculate
NumberOfEntries rather than assigning a constant such as NumberOfEntries � 4?

4. Challenge: Rewrite the code from Section 6.5.3 so it is functionally equivalent, but uses
fewer instructions.

6.6 Application: Finite-State Machines
A finite-state machine (FSM) is a machine or program that changes state based on some input. It
is fairly simple to use a graph to represent an FSM, which contains squares (or circles) called
nodes and lines with arrows between the circles called edges (or arcs).

A simple example is shown in Figure 6-3. Each node represents a program state, and each
edge represents a transition from one state to another. One node is designated as the initial state,
shown in our diagram with an incoming arrow. The remaining states can be labeled with num-
bers or letters. One or more states are designated as terminal states, shown by a thick border
around the square. A terminal state represents a state in which the program might stop without
producing an error. A FSM is a specific instance of a more general type of structure called a
directed graph. The latter is a set of nodes connected by edges having specific directions.

Figure 6–3 Simple finite-state machine.

6.6.1 Validating an Input String
Programs that read input streams often must validate their input by performing a certain amount
of error checking. A programming language compiler, for instance, can use a FSM to scan
source programs and convert words and symbols into tokens, which are usually keywords, arith-
metic operators, and identifiers.

Start A B

C

220 Chapter 6 • Conditional Processing

When using a FSM to check the validity of an input string, you usually read the input charac-
ter by character. Each character is represented by an edge (transition) in the diagram. A FSM
detects illegal input sequences in one of two ways:

• The next input character does not correspond to any transitions from the current state.
• The end of input is reached and the current state is a nonterminal state.

Character String Example Let’s check the validity of an input string according to the
following two rules:

• The string must begin with the letter “x” and end with the letter “z.”
• Between the first and last characters, there can be zero or more letters within the range

{‘a’...‘y’}.

The FSM diagram in Fig. 6-4 describes this syntax. Each transition is identified with a partic-
ular type of input. For example, the transition from state A to state B can only be accomplished
if the letter x is read from the input stream. A transition from state B to itself is accomplished by
the input of any letter of the alphabet except z. A transition from state B to state C occurs only
when the letter z is read from the input stream.

Figure 6–4 FSM for string.

If the end of the input stream is reached while the program is in state A or B, an error condi-
tion results because only state C is marked as a terminal state. The following input strings would
be recognized by this FSM:

xaabcdefgz
xz
xyyqqrrstuvz

6.6.2 Validating a Signed Integer
A FSM for parsing a signed integer is shown in Fig. 6-5. Input consists of an optional leading
sign followed by a sequence of digits. There is no maximum number of digits implied by the
diagram.

Figure 6–5 Signed decimal integer FSM.

Start 'x'

'a'...'y'

'z'

A B

C

Start

Digit

�,�

Digit Digit

A B

C

6.6 Application: Finite-State Machines 221

Finite-state machines are easily translated into assembly language code. Each state in the
diagram (A, B, C, . . .) is represented in the program by a label. The following actions are
performed at each label:

1. A call to an input procedure reads the next character from input.
2. If the state is a terminal state, check to see whether the user has pressed the Enter key to end

the input.
3. One or more compare instructions check for each possible transition leading away from the

state. Each comparison is followed by a conditional jump instruction.

For example, at state A, the following code reads the next input character and checks for a possi-
ble transition to state B:

StateA:
call Getnext ; read next char into AL
cmp al,'+' ; leading + sign?
je StateB ; go to State B
cmp al,'-' ; leading - sign?
je StateB ; go to State B
call IsDigit ; ZF = 1 if AL contains a digit
jz StateC ; go to State C
call DisplayErrorMsg ; invalid input found
jmp Quit

Let’s examine this code in more detail. First, it calls Getnext to read the next character from the con-
sole input into the AL register. The code will check for a leading + or – sign. It begins by comparing
the value in AL to a “+” character. If the character matches, a jump is taken to the label named StateB:

StateA:
call Getnext ; read next char into AL
cmp al,'+' ; leading + sign?
je StateB ; go to State B

At this point, we should look again at Fig. 6-5, and see that the transition from state A to state B
can only be made if a + or – character is read from input. Therefore, the code must also check for
the minus sign:

cmp al,'-' ; leading - sign?
je StateB ; go to State B

If a transition to state B is not possible, we can check the AL register for a digit, which would
cause a transition to state C. The call to the IsDigit procedure (from the book’s link library) sets
the Zero flag if AL contains a digit:

call IsDigit ; ZF = 1 if AL contains a digit
jz StateC ; go to State C

Finally, there are no other possible transitions away from state A. If the character in AL has not
been found to be a leading sign or digit, the program calls DisplayErrorMsg (which displays an
error message on the console) and then jumps to the label named Quit:

call DisplayErrorMsg ; invalid input found
jmp Quit

222 Chapter 6 • Conditional Processing

The label Quit marks the exit point of the program, at the end of the main procedure:

Quit:
call Crlf
exit

main ENDP

Complete Finite-State Machine Program The following program implements the signed
integer FSM from Fig. 6-5:

; Finite State Machine (Finite.asm)

INCLUDE Irvine32.inc

ENTER_KEY = 13
.data
InvalidInputMsg BYTE "Invalid input",13,10,0

.code
main PROC

call Clrscr

StateA:
call Getnext ; read next char into AL
cmp al,'+' ; leading + sign?
je StateB ; go to State B
cmp al,'-' ; leading - sign?
je StateB ; go to State B
call IsDigit ; ZF = 1 if AL contains a digit
jz StateC ; go to State C
call DisplayErrorMsg ; invalid input found
jmp Quit

StateB:
call Getnext ; read next char into AL
call IsDigit ; ZF = 1 if AL contains a digit
jz StateC
call DisplayErrorMsg ; invalid input found
jmp Quit

StateC:
call Getnext ; read next char into AL
call IsDigit ; ZF = 1 if AL contains a digit
jz StateC
cmp al,ENTER_KEY ; Enter key pressed?
je Quit ; yes: quit
call DisplayErrorMsg ; no: invalid input found
jmp Quit

Quit:
call Crlf
exit

main ENDP

;---

6.6 Application: Finite-State Machines 223

Getnext PROC
;
; Reads a character from standard input.
; Receives: nothing
; Returns: AL contains the character
;---

call ReadChar ; input from keyboard
call WriteChar ; echo on screen
ret

Getnext ENDP

;---
DisplayErrorMsg PROC
;
; Displays an error message indicating that
; the input stream contains illegal input.
; Receives: nothing.
; Returns: nothing
;---

push edx
mov edx,OFFSET InvalidInputMsg
call WriteString
pop edx
ret

DisplayErrorMsg ENDP
END main

IsDigit Procedure The Finite-State Machine sample program calls the IsDigit procedure,
which belongs to the book’s link library. Let’s look at the source code for IsDigit. It receives the
AL register as input, and the value it returns is the setting of the Zero flag:

;---
IsDigit PROC
;
; Determines whether the character in AL is a valid decimal digit.
; Receives: AL = character
; Returns: ZF = 1 if AL contains a valid decimal digit; otherwise, ZF = 0.
;---

cmp al,'0'
jb ID1 ; ZF = 0 when jump taken
cmp al,'9'
ja ID1 ; ZF = 0 when jump taken
test ax,0 ; set ZF = 1

ID1: ret
IsDigit ENDP

Before examining the code in IsDigit, we can review the set of hexadecimal ASCII codes for
decimal digits, shown in the following table. Because the values are contiguous, we need only to
check for the starting and ending range values:

Character '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'

ASCII code (hex) 30 31 32 33 34 35 36 37 38 39

224 Chapter 6 • Conditional Processing

In the IsDigit procedure, the first two instructions compare the character in the AL register to the
ASCII code for the digit 0. If the numeric ASCII code of the character is less than the ASCII
code for 0, the program jumps to the label ID1:

cmp al,'0'
jb ID1 ; ZF = 0 when jump taken

But one may ask, if JB transfers control to the label named ID1, how do we know the state of the
Zero flag? The answer lies in the way CMP works—it carries out an implied subtraction of the
ASCII code for Zero (30h) from the character in the AL register. If the value in AL is smaller,
the Carry flag is set, and the Zero flag is clear. (You may want to step through this code with a
debugger to verify this fact.) The JB instruction is designed to transfer control to a label when
CF = 1 and ZF = 0.

Next, the code in the IsDigit procedure compares AL to the ASCII code for the digit 9. If the
value is greater, the code jumps to the same label:

cmp al,'9'
ja ID1 ; ZF = 0 when jump taken

If the ASCII code for the character in AL is larger than the ASCII code of the digit 9 (39h), the
Carry flag and Zero flag are cleared. That is exactly the flag combination that causes the JA
instruction to transfer control to its target label.

If neither jump is taken (JA or JB), we assume that the character in AL is indeed a digit.
Therefore, we insert an instruction that is guaranteed to set the Zero flag. To test any value with
zero means to perform an implied AND with all zero bits. The result must be zero:

test ax,0 ; set ZF = 1

The JB and JA instructions we looked at earlier in IsDigit jumped to a label that was just beyond
the TEST instruction. So if those jumps are taken, the Zero flag will be clear. Here is the com-
plete procedure one more time:

Isdigit PROC
cmp al,'0'
jb ID1 ; ZF = 0 when jump taken
cmp al,'9'
ja ID1 ; ZF = 0 when jump taken
test ax,0 ; set ZF = 1

ID1: ret
Isdigit ENDP

In real-time or high-performance applications, programmers often take advantage of hardware
characteristics to fully optimize their code. The IsDigit procedure is an example of this approach
because it uses the flag settings of JB, JA, and TEST to return what is essentially a Boolean result.

6.6.3 Section Review
1. A finite-state machine is a specific application of what type of data structure?

2. In a finite-state machine diagram, what do the nodes represent?

3. In a finite-state machine diagram, what do the edges represent?

6.7 Conditional Control Flow Directives 225

4. In the signed integer finite-state machine (Section 6.6.2), which state is reached when the
input consists of “�5”?

5. In the signed integer finite-state machine (Section 6.6.2), how many digits can occur after a
minus sign?

6. What happens in a finite-state machine when no more input is available and the current state
is a nonterminal state?

7. Would the following simplification of a signed decimal integer finite-state machine work
just as well as the one shown in Section 6.6.2? If not, why not?

6.7 Conditional Control Flow Directives
In 32-bit mode, MASM includes a number of high-level conditional control flow directives
that help to simplify the coding of conditional statements. Unfortunately, they cannot be used in
64-bit mode. Before assembling your code, the assembler performs a preprocessing step. In this
step, it recognizes directives such as .CODE, .DATA, as well as directives that can be used for
conditional control flow. Table 6-7 lists the directives.

Table 6-7 Conditional Control Flow Directives.

Directive Description

.BREAK Generates code to terminate a .WHILE or .REPEAT block

.CONTINUE Generates code to jump to the top of a .WHILE or .REPEAT block

.ELSE Begins block of statements to execute when the .IF condition is false

.ELSEIF condition Generates code that tests condition and executes statements that follow, until an .ENDIF
directive or another .ELSEIF directive is found

.ENDIF Terminates a block of statements following an .IF, .ELSE, or .ELSEIF directive

.ENDW Terminates a block of statements following a .WHILE directive

.IF condition Generates code that executes the block of statements if condition is true.

.REPEAT Generates code that repeats execution of the block of statements until condition becomes
true

.UNTIL condition Generates code that repeats the block of statements between .REPEAT and .UNTIL until
condition becomes true

.UNTILCXZ Generates code that repeats the block of statements between .REPEAT and .UNTILCXZ
until CX equals zero

.WHILE condition Generates code that executes the block of statements between .WHILE and .ENDW as
long as condition is true

Start

Digit
Digit

A B
�,�

226 Chapter 6 • Conditional Processing

6.7.1 Creating IF Statements
The .IF, .ELSE, .ELSEIF, and .ENDIF directives make it easy for you to code multiway branch-
ing logic. They cause the assembler to generate CMP and conditional jump instructions in the
background, which appear in the output listing file (progname.lst). This is the syntax:

.IF condition1
statements

[.ELSEIF condition2
statements]

[.ELSE
statements]

.ENDIF

The square brackets show that .ELSEIF and .ELSE are optional, whereas .IF and .ENDIF are
required. A condition is a boolean expression involving the same operators used in C++ and Java
(such as
, �, ��, and !�). The expression is evaluated at runtime. The following are exam-
ples of valid conditions, using 32-bit registers and variables:

eax > 10000h
val1 <= 100
val2 == eax
val3 != ebx

The following are examples of compound conditions:

(eax > 0) && (eax > 10000h)
(val1 <= 100) || (val2 <= 100)
(val2 != ebx) && !CARRY?

A complete list of relational and logical operators is shown in Table 6-8.

Table 6-8 Runtime Relational and Logical Operators.

Operator Description

expr1 �� expr2 Returns true when expr1 is equal to expr2.

expr1 !� expr2 Returns true when expr1 is not equal to expr2.

expr1 � expr2 Returns true when expr1 is greater than expr2.

expr1 � expr2 Returns true when expr1 is greater than or equal to expr2.

expr1
 expr2 Returns true when expr1 is less than expr2.

expr1
 expr2 Returns true when expr1 is less than or equal to expr2.

! expr Returns true when expr is false.

expr1 && expr2 Performs logical AND between expr1 and expr2.

expr1 || expr2 Performs logical OR between expr1 and expr2.

expr1 & expr2 Performs bitwise AND between expr1 and expr2.

CARRY? Returns true if the Carry flag is set.

OVERFLOW? Returns true if the Overflow flag is set.

PARITY? Returns true if the Parity flag is set.

SIGN? Returns true if the Sign flag is set.

ZERO? Returns true if the Zero flag is set.

6.7 Conditional Control Flow Directives 227

Generating ASM Code When you use high-level directives such as .IF and .ELSE, the
assembler writes code for you. For example, let’s write an .IF directive that compares EAX to
the variable val1:

mov eax,6
.IF eax > val1
 mov result,1
.ENDIF

val1 and result are assumed to be 32-bit unsigned integers. When the assembler reads the fore-
going lines, it expands them into the following assembly language instructions, which you can view
if you run the program in the Visual Studio debugger, right-click, and select Go to Disassembly.

mov eax,6
cmp eax,val1
jbe @C0001 ; jump on unsigned comparison
mov result,1

@C0001:

The label name @C0001 was created by the assembler. This is done in a way that guarantees
that all labels within same procedure are unique.

6.7.2 Signed and Unsigned Comparisons
When you use the .IF directive to compare values, you must be aware of how MASM generates
conditional jumps. If the comparison involves an unsigned variable, an unsigned conditional
jump instruction is inserted in the generated code. This is a repeat of a previous example that
compares EAX to val1, an unsigned doubleword:

.data
val1 DWORD 5
result DWORD ?
.code

mov eax,6
.IF eax > val1
 mov result,1
.ENDIF

The assembler expands this using the JBE (unsigned jump) instruction:

mov eax,6
cmp eax,val1

Before using MASM conditional directives, be sure you thoroughly understand how to implement
conditional branching instructions in pure assembly language. In addition, when a program con-
taining decision directives is assembled, inspect the listing file to make sure the code generated by
MASM is what you intended.

To control whether or not MASM-generated code appears in the source listing file, you can con-
figure the Project properties in Visual Studio. Here’s how: from the Project menu, select Project
Properties, select Microsoft Macro Assembler, select Listing File, and set Enable Assembly Gen-
erated Code Listing to Yes.

228 Chapter 6 • Conditional Processing

jbe @C0001 ; jump on unsigned comparison
mov result,1

@C0001:

Comparing a Signed Integer If an .IF directive compares a signed variable, however, a
signed conditional jump instruction is inserted into the generated code. For example, val2, is a
signed doubleword:

.data
val2 SDWORD -1
result DWORD ?
.code

mov eax,6
.IF eax > val2
 mov result,1
.ENDIF

Consequently, the assembler generates code using the JLE instruction, a jump based on signed
comparisons:

mov eax,6
cmp eax,val2
jle @C0001 ; jump on signed comparison
mov result,1

@C0001:

Comparing Registers The question we might then ask is, what happens if two registers are
compared? Clearly, the assembler cannot determine whether the values are signed or unsigned:

mov eax,6
mov ebx,val2
.IF eax > ebx
 mov result,1
.ENDIF

The following code is generated, showing that the assembler defaults to an unsigned comparison
(note the use of the JBE instruction):

mov eax,6
mov ebx,val2
cmp eax, ebx
jbe @C0001
mov result,1

@C0001:

6.7.3 Compound Expressions
Many compound boolean expressions use the logical OR and AND operators. When using the
.IF directive, the || symbol is the logical OR operator:

.IF expression1 || expression2
statements

.ENDIF

6.7 Conditional Control Flow Directives 229

Similarly, the && symbol is the logical AND operator:

.IF expression1 && expression2
statements

.ENDIF

The logical OR operator will be used in the next program example.

SetCursorPosition Example
The SetCursorPosition procedure, shown in the next example, performs range checking on its
two input parameters, DH and DL (see SetCur.asm). The Y-coordinate (DH) must be between 0
and 24. The X-coordinate (DL) must be between 0 and 79. If either is found to be out of range,
an error message is displayed:

SetCursorPosition PROC
; Sets the cursor position.
; Receives: DL = X-coordinate, DH = Y-coordinate.
; Checks the ranges of DL and DH.
; Returns: nothing
;--
.data
BadXCoordMsg BYTE "X-Coordinate out of range!",0Dh,0Ah,0
BadYCoordMsg BYTE "Y-Coordinate out of range!",0Dh,0Ah,0

.code
.IF (dl < 0) || (dl > 79)

mov edx,OFFSET BadXCoordMsg
 call WriteString
 jmp quit

.ENDIF

.IF (dh < 0) || (dh > 24)

mov edx,OFFSET BadYCoordMsg
 call WriteString
 jmp quit

.ENDIF

call Gotoxy
quit:
 ret
SetCursorPosition ENDP

The following code is generated by MASM when it preprocesses SetCursorPosition:

.code
; .IF (dl < 0) || (dl > 79)

cmp dl, 000h
jb @C0002
cmp dl, 04Fh
jbe @C0001

230 Chapter 6 • Conditional Processing

@C0002:
mov edx,OFFSET BadXCoordMsg

 call WriteString
 jmp quit

; .ENDIF

@C0001:
; .IF (dh < 0) || (dh > 24)

cmp dh, 000h
jb @C0005
cmp dh, 018h
jbe @C0004

@C0005:
mov edx,OFFSET BadYCoordMsg
call WriteString
jmp quit

; .ENDIF

@C0004:
call Gotoxy

quit:
ret

College Registration Example
Suppose a college student wants to register for courses. We will use two criteria to determine
whether or not the student can register: The first is the person’s grade average, based on a 0 to
400 scale, where 400 is the highest possible grade. The second is the number of credits the
person wants to take. A multiway branch structure can be used, involving .IF, .ELSEIF, and
.ENDIF. The following shows an example (see Regist.asm):

.data
TRUE = 1
FALSE = 0
gradeAverage WORD 275 ; test value
credits WORD 12 ; test value
OkToRegister BYTE ?
.code

mov OkToRegister,FALSE
.IF gradeAverage > 350
 mov OkToRegister,TRUE
.ELSEIF (gradeAverage > 250) && (credits <= 16)
 mov OkToRegister,TRUE
.ELSEIF (credits <= 12)
 mov OkToRegister,TRUE
.ENDIF

Table 6-9 lists the corresponding code generated by the assembler, which you can view by
looking at the Dissassembly window of the Microsoft Visual Studio debugger. (It has been
cleaned up here a bit to make it easier to read.) MASM-generated code will appear in the source
listing file if you use the /Sg command-line option when assembling programs. The size of a

6.7 Conditional Control Flow Directives 231

defined constants (such as TRUE or FALSE in the current code example) is 32-bits. Therefore,
when a constant is moved to a BYTE address, MASM inserts the BYTE PTR operator.

6.7.4 Creating Loops with .REPEAT and .WHILE
The .REPEAT and .WHILE directives offer alternatives to writing your own loops with CMP
and conditional jump instructions. They permit the conditional expressions listed earlier in
Table 6-8. The .REPEAT directive executes the loop body before testing the runtime condition
following the .UNTIL directive:

.REPEAT
statements

.UNTIL condition

The .WHILE directive tests the condition before executing the loop:

.WHILE condition
statements

.ENDW

Examples: The following statements display the values 1 through 10 using the .WHILE directive.
The counter register (EAX) is initialized to zero before the loop. Then, in the first statement inside the
loop, EAX is incremented. The .WHILE directive branches out of the loop when EAX equals 10.

mov eax,0
.WHILE eax < 10

inc eax
call WriteDec
call Crlf

.ENDW

Table 6-9 Registration Example, MASM-Generated Code.

mov byte ptr OkToRegister,FALSE
cmp word ptr gradeAverage,350
jbe @C0006
mov byte ptr OkToRegister,TRUE
jmp @C0008

@C0006:
cmp word ptr gradeAverage,250
jbe @C0009
cmp word ptr credits,16
ja @C0009
mov byte ptr OkToRegister,TRUE
jmp @C0008

@C0009:
cmp word ptr credits,12
ja @C0008
mov byte ptr OkToRegister,TRUE

@C0008:

232 Chapter 6 • Conditional Processing

The following statements display the values 1 through 10 using the .REPEAT directive:

mov eax,0
.REPEAT

inc eax
call WriteDec
call Crlf

.UNTIL eax == 10

Example: Loop Containing an IF Statement
Earlier in this chapter, in Section 6.5.3, we showed how to write assembly language code for an IF
statement nested inside a WHILE loop. Here is the pseudocode:

while(op1 < op2)
{

op1++;
if(op1 == op3)
 X = 2;
else
 X = 3;

}

The following is an implementation of the pseudocode using the .WHILE and .IF directives.
Because op1, op2, and op3 are variables, they are moved to registers to avoid having two mem-
ory operands in any one instruction:

.data
X DWORD 0
op1 DWORD 2 ; test data
op2 DWORD 4 ; test data
op3 DWORD 5 ; test data
.code

mov eax,op1
mov ebx,op2
mov ecx,op3
.WHILE eax < ebx
 inc eax
 .IF eax == ecx
 mov X,2
 .ELSE
 mov X,3
 .ENDIF
.ENDW

6.8 Chapter Summary
The AND, OR, XOR, NOT, and TEST instructions are called bitwise instructions because they
work at the bit level. Each bit in a source operand is matched to a bit in the same position of the
destination operand:

• The AND instruction produces 1 when both input bits are 1.
• The OR instruction produces 1 when at least one of the input bits is 1.
• The XOR instruction produces 1 only when the input bits are different.

6.9 Key Terms 233

• The TEST instruction performs an implied AND operation on the destination operand, setting
the flags appropriately. The destination operand is not changed.

• The NOT instruction reverses all bits in a destination operand.

The CMP instruction compares a destination operand to a source operand. It performs an implied
subtraction of the source from the destination and modifies the CPU status flags accordingly. CMP
is usually followed by a conditional jump instruction that transfers control to a code label.

Four types of conditional jump instructions are shown in this chapter:

• Table 6-2 contains examples of jumps based on specific flag values, such as JC (jump carry),
JZ (jump zero), and JO (jump overflow).

• Table 6-3 contains examples of jumps based on equality, such as JE (jump equal), JNE
(jump not equal), and JECXZ (jump if ECX = 0), and JRCXZ (jump if RCX = 0).

• Table 6-4 contains examples of conditional jumps based on comparisons of unsigned inte-
gers, such as JA (jump if above), JB (jump if below), and JAE (jump if above or equal).

• Table 6-5 contains examples of jumps based on signed comparisons, such as JL (jump if less)
and JG (jump if greater).

In 32-bit mode, the LOOPZ (LOOPE) instruction repeats when the Zero flag is set and ECX
is greater than Zero. The LOOPNZ (LOOPNE) instruction repeats when the Zero flag is clear
and ECX is greater than zero. In 64-bit mode, the RCX register is used by the LOOPZ and
LOOPNZ instructions.

Encryption is a process that encodes data, and decryption is a process that decodes data. The
XOR instruction can be used to perform simple encryption and decryption.

Flowcharts are an effective tool for visually representing program logic. You can easily write
assembly language code, using a flowchart as a model. It is helpful to attach a label to each flow-
chart symbol and use the same label in your assembly source code.

A finite-state machine (FSM) is an effective tool for validating strings containing recogniz-
able characters such as signed integers. It is relatively easy to implement a FSM in assembly
language if each state is represented by a label.

The .IF, .ELSE, .ELSEIF, and .ENDIF directives evaluate runtime expressions and greatly simplify
assembly language coding. They are particularly useful when coding complex compound boolean
expressions. You can also create conditional loops, using the .WHILE and .REPEAT directives.

6.9 Key Terms

6.9.1 Terms

bit-mapped set

bit mask

bit vector

boolean expression

cipher text

compound expression

conditional branching

conditional control flow directives

conditional structure

decryption

directed graph

edge

encryption

finite-state machine (FSM)

234 Chapter 6 • Conditional Processing

6.9.2 Instructions, Operators, and Directives

AND

.BREAK

CMP

.CONTINUE

.ELSE

.ELSEIF

.ENDIF

.ENDW

.IF

JA

JAE

JB

JBE

JC

JE

JECXZ

JRCXZ

JG

JGE

JL

JLE

JP

JS

JZ

JNA

JNAE

JNB

JNBE

JNC

JNE

JNG

JNGE

JNL

JNP

JNS

JNZ

LOOPE

LOOPNE

LOOPZ

LOOPNZ

NOT

OR

.REPEAT

TEST

.UNTIL

.UNTILCXZ

.WHILE

XOR

initial state

key (encryption)

logical AND operator

logical OR operator

masking (bits)

node

plain text

set complement

set intersection

set union

short-circuit evaluation

symmetric encryption

terminal state

table-driven selection

white box testing

