
53

3
Assembly Language
Fundamentals

3.1 Basic Language Elements
3.1.1 First Assembly Language Program
3.1.2 Integer Literals
3.1.3 Constant Integer Expressions
3.1.4 Real Number Literals
3.1.5 Character Literals
3.1.6 String Literals
3.1.7 Reserved Words
3.1.8 Identifiers
3.1.9 Directives
3.1.10 Instructions
3.1.11 Section Review

3.2 Example: Adding and Subtracting Integers
3.2.1 The AddTwo Program
3.2.2 Running and Debugging the AddTwo

Program
3.2.3 Program Template
3.2.4 Section Review

3.3 Assembling, Linking, and Running
Programs
3.3.1 The Assemble-Link-Execute Cycle
3.3.2 Listing File
3.3.3 Section Review

3.4 Defining Data
3.4.1 Intrinsic Data Types
3.4.2 Data Definition Statement
3.4.3 Adding a Variable to the AddTwo Program

3.4.4 Defining BYTE and SBYTE Data
3.4.5 Defining WORD and SWORD Data
3.4.6 Defining DWORD and SDWORD Data
3.4.7 Defining QWORD Data
3.4.8 Defining Packed BCD (TBYTE) Data
3.4.9 Defining Floating-Point Types
3.4.10 A Program that Adds Variables
3.4.11 Little-Endian Order
3.4.12 Declaring Uninitialized Data
3.4.13 Section Review

3.5 Symbolic Constants
3.5.1 Equal-Sign Directive
3.5.2 Calculating the Sizes of Arrays and Strings
3.5.3 EQU Directive
3.5.4 TEXTEQU Directive
3.5.5 Section Review

3.6 64-Bit Programming
3.7 Chapter Summary
3.8 Key Terms

3.8.1 Terms
3.8.2 Instructions, Operators, and Directives

3.9 Review Questions and Exercises
3.9.1 Short Answer
3.9.2 Algorithm Workbench

3.10 Programming Exercises

54 Chapter 3 • Assembly Language Fundamentals

This chapter focuses on the basic building blocks of the Microsoft MASM assembler. You
will see how constants and variables are defined, standard formats for numeric and string lit-
erals, and how to assemble and run your first programs. We particularly emphasize the Visual
Studio debugger in this chapter, as an excellent tool for understanding how programs work.
The important thing in this chapter is to move one step at a time, mastering each detail before
you move to the next step. You are building a foundation that will greatly help you in upcom-
ing chapters.

3.1 Basic Language Elements

3.1.1 First Assembly Language Program
Assembly language programming might have a reputation for being obscure and tricky, but we
like to think of it another way—it is a language that gives you nearly total information. You get
to see everything that is going on, even in the CPU’s registers and flags! With this powerful abil-
ity, however, you have the responsibility to manage data representation details and instruction
formats. You work at a very detailed level. To see how this works, let’s look at a simple assembly
language program that adds two numbers and saves the result in a register. We will call it the
AddTwo program:

1: main PROC
2: mov eax,5 ; move 5 to the eax register
3: add eax,6 ; add 6 to the eax register
4:
5: INVOKE ExitProcess,0 ; end the program
6: main ENDP

Although line numbers have been inserted in the beginning of each line to aid our discussion,
you never actually type line numbers when you create assembly programs. Also, don’t try to
type in and run this program just yet—it’s missing some important declarations that we will
include later on in this chapter.

Let’s go through the program one line at a time: Line 1 starts the main procedure, the entry
point for the program. Line 2 places the integer 5 in the eax register. Line 3 adds 6 to the value in
EAX, giving it a new value of 11. Line 5 calls a Windows service (also known as a function)
named ExitProcess that halts the program and returns control to the operating system. Line 6 is
the ending marker of the main procedure.

You probably noticed that we included comments, which always begin with a semicolon
character. We’ve left out a few declarations at the top of the program that we can show later,
but essentially this is a working program. It does not display anything on the screen, but we
could run it with a utility program called a debugger that would let us step through the pro-
gram one line at a time and look at the register values. Later in this chapter, we will show how
to do that.

Adding a Variable
Let’s make our program a little more interesting by saving the results of our addition in a vari-
able named sum. To do this, we will add a couple of markers, or declarations, that identify the
code and data areas of the program:

3.1 Basic Language Elements 55

1: .data ; this is the data area
2: sum DWORD 0 ; create a variable named sum
3:
4: .code ; this is the code area
5: main PROC
6: mov eax,5 ; move 5 to the eax register
7: add eax,6 ; add 6 to the eax register
8: mov sum,eax
9:
10: INVOKE ExitProcess,0 ; end the program
11: main ENDP

The sum variable is declared on Line 2, where we give it a size of 32 bits, using the DWORD
keyword. There are a number of these size keywords, which work more or less like data types.
But they are not as specific as types you might be familiar with, such as int, double, float, and so
on. They only specify a size, but there’s no checking into what actually gets put inside the vari-
able. Remember, you are in total control.

By the way, those code and data areas we mentioned, which were marked by the .code and
.data directives, are called segments. So you have the code segment and the data segment. Later
on, we will see a third segment named stack.

Next, let’s dive deeper into some of the language details, showing how to declare literals (also
known as constants), identifiers, directives, and instructions. You will probably have to read this
chapter a couple of times to retain it all, but it’s definitely worth the time. By the way, throughout
this chapter, when we refer to syntax rules imposed by the assembler, we really mean rules
imposed by the Microsoft MASM assembler. Other assemblers are out there with different syntax
rules, but we will ignore them. We will probably save at least one tree (somewhere in the world) by
not reprinting the word MASM every time we refer to the assembler.

3.1.2 Integer Literals
An integer literal (also known as an integer constant) is made up of an optional leading sign, one
or more digits, and an optional radix character that indicates the number’s base:

[{+ | - }] digits [radix]

So, for example, 26 is a valid integer literal. It doesn’t have a radix, so we assume it’s in decimal
format. If we wanted it to be 26 hexadecimal, we would have to write it as 26h. Similarly, the
number 1101 would be considered a decimal value until we added a “b” at the end to make it
1101b (binary). Here are the possible radix values:

We will use Microsoft syntax notation throughout the book. Elements within square brackets [..] are
optional and elements within braces {..} require a choice of one of the enclosed elements, separated
by the | character. Elements in italics identify items that have known definitions or descriptions.

h hexadecimal r encoded real

q/o octal t decimal (alternate)

d decimal y binary (alternate)

b binary

56 Chapter 3 • Assembly Language Fundamentals

And here are some integer literals declared with various radixes. Each line contains a comment:

26 ; decimal
26d ; decimal
11010011b ; binary
42q ; octal
42o ; octal
1Ah ; hexadecimal
0A3h ; hexadecimal

A hexadecimal literal beginning with a letter must have a leading zero to prevent the assembler
from interpreting it as an identifier.

3.1.3 Constant Integer Expressions
A constant integer expression is a mathematical expression involving integer literals and arithmetic
operators. Each expression must evaluate to an integer, which can be stored in 32 bits (0 through
FFFFFFFFh). The arithmetic operators are listed in Table 3-1 according to their precedence order,
from highest (1) to lowest (4). The important thing to realize about constant integer expressions is that
they can only be evaluated at assembly time. From now on, we will just call them integer expressions.

Operator precedence refers to the implied order of operations when an expression contains
two or more operators. The order of operations is shown for the following expressions:

The following are examples of valid expressions and their values:

Table 3-1 Arithmetic Operators.

Operator Name Precedence Level

() Parentheses 1

�, � Unary plus, minus 2

*, / Multiply, divide 3

MOD Modulus 3

�, � Add, subtract 4

4 + 5 * 2 Multiply, add

12 -1 MOD 5 Modulus, subtract

-5 + 2 Unary minus, add

(4 + 2) * 6 Add, multiply

Expression Value

16 / 5 3

�(3 � 4) * (6 � 1) �35

3.1 Basic Language Elements 57

3.1.4 Real Number Literals
Real number literals (also known as floating-point literals) are represented as either decimal
reals or encoded (hexadecimal) reals. A decimal real contains an optional sign followed by an
integer, a decimal point, an optional integer that expresses a fraction, and an optional exponent:

[sign]integer.[integer][exponent]

These are the formats for the sign and exponent:

sign {+,-}
exponent E[{+,-}]integer

Following are examples of valid decimal reals:

2.
+3.0
-44.2E+05
26.E5

At least one digit and a decimal point are required.

An encoded real represents a real number in hexadecimal, using the IEEE floating-point for-
mat for short reals (see Chapter 12). The binary representation of decimal +1.0, for example, is

0011 1111 1000 0000 0000 0000 0000 0000

The same value would be encoded as a short real in assembly language as

3F800000r

We will not be using real-number constants for a while, because most of the x86 instruction set
is geared toward integer processing. However, Chapter 12 will show how to do arithmetic with
real numbers, also known as floating-point numbers. It’s very interesting, and very technical.

3.1.5 Character Literals
A character literal is a single character enclosed in single or double quotes. The assembler
stores the value in memory as the character’s binary ASCII code. Examples are

'A'
"d"

Recall that Chapter 1 showed that character literals are stored internally as integers, using the
ASCII encoding sequence. So, when you write the character constant “A,” it’s stored in memory

�3 � 4 * 6 � 1 20

25 mod 3 1

Suggestion: Use parentheses in expressions to clarify the order of operations so you don’t have to
remember precedence rules.

Expression Value

58 Chapter 3 • Assembly Language Fundamentals

as the number 65 (or 41 hex). We have a complete table of ASCII codes on the inside back cover
of this book, so be sure to look over them from time to time.

3.1.6 String Literals
A string literal is a sequence of characters (including spaces) enclosed in single or double quotes:

'ABC'
'X'
"Good night, Gracie"
'4096'

Embedded quotes are permitted when used in the manner shown by the following examples:

"This isn't a test"
'Say "Good night," Gracie'

Just as character constants are stored as integers, we can say that string literals are stored in
memory as sequences of integer byte values. So, for example, the string literal “ABCD” contains
the four bytes 41h, 42h, 43h, and 44h.

3.1.7 Reserved Words
Reserved words have special meaning and can only be used in their correct context. Reserved
works, by default, are not case-sensitive. For example, MOV is the same as mov and Mov. There
are different types of reserved words:

• Instruction mnemonics, such as MOV, ADD, and MUL
• Register names
• Directives, which tell the assembler how to assemble programs
• Attributes, which provide size and usage information for variables and operands. Examples

are BYTE and WORD
• Operators, used in constant expressions
• Predefined symbols, such as @data, which return constant integer values at assembly time

A common list of reserved words can be found in Appendix A.

3.1.8 Identifiers
An identifier is a programmer-chosen name. It might identify a variable, a constant, a procedure,
or a code label. There are a few rules on how they can be formed:

• They may contain between 1 and 247 characters.
• They are not case sensitive.
• The first character must be a letter (A..Z, a..z), underscore (_), @ , ?, or $. Subsequent

characters may also be digits.
• An identifier cannot be the same as an assembler reserved word.

Tip: You can make all keywords and identifiers case sensitive by adding the −Cp command line
switch when running the assembler.

3.1 Basic Language Elements 59

In general, it’s a good idea to use descriptive names for identifiers, as you do in high-level
programming language code. Although assembly language instructions are short and cryptic,
there’s no reason to make your identifiers hard to understand also! Here are some examples of
well-formed names:

lineCount firstValue index line_count
myFile xCoord main x_Coord

The following names are legal, but not as desirable:

_lineCount $first @myFile

Generally, you should avoid the @ symbol and underscore as leading characters, since they
are used both by the assembler and by high-level language compilers.

3.1.9 Directives
A directive is a command embedded in the source code that is recognized and acted upon by the
assembler. Directives do not execute at runtime, but they let you define variables, macros, and
procedures. They can assign names to memory segments and perform many other housekeeping
tasks related to the assembler. Directives are not, by default, case sensitive. For example, .data,
.DATA, and .Data are equivalent.

The following example helps to show the difference between directives and instructions. The
DWORD directive tells the assembler to reserve space in the program for a doubleword variable.
The MOV instruction, on the other hand, executes at runtime, copying the contents of myVar to
the EAX register:

myVar DWORD 26
mov eax,myVar

Although all assemblers for Intel processors share the same instruction set, they usually have
different sets of directives. The Microsoft assembler’s REPT directive, for example, is not recog-
nized by some other assemblers.

Defining Segments One important function of assembler directives is to define program sec-
tions, or segments. Segments are sections of a program that have different purposes. For exam-
ple, one segment can be used to define variables, and is identified by the .DATA directive:

.data

The .CODE directive identifies the area of a program containing executable instructions:

.code

The .STACK directive identifies the area of a program holding the runtime stack, setting its size:

.stack 100h

Appendix A contains a useful reference for directives and operators.

60 Chapter 3 • Assembly Language Fundamentals

3.1.10 Instructions
An instruction is a statement that becomes executable when a program is assembled. Instruc-
tions are translated by the assembler into machine language bytes, which are loaded and exe-
cuted by the CPU at runtime. An instruction contains four basic parts:

• Label (optional)
• Instruction mnemonic (required)
• Operand(s) (usually required)
• Comment (optional)

This is how the different parts are arranged:

[label:] mnemonic [operands] [;comment]

Let’s explore each part separately, beginning with the label field.

Label
A label is an identifier that acts as a place marker for instructions and data. A label placed just
before an instruction implies the instruction’s address. Similarly, a label placed just before a vari-
able implies the variable’s address. There are two types of labels: Data labels and Code labels.

A data label identifies the location of a variable, providing a convenient way to reference the
variable in code. The following, for example, defines a variable named count:

count DWORD 100

The assembler assigns a numeric address to each label. It is possible to define multiple data
items following a label. In the following example, array defines the location of the first number
(1024). The other numbers following in memory immediately afterward:

array DWORD 1024, 2048
DWORD 4096, 8192

Variables will be explained in Section 3.4.2, and the MOV instruction will be explained in
Section 4.1.4.

A label in the code area of a program (where instructions are located) must end with a colon
(:) character. Code labels are used as targets of jumping and looping instructions. For example,
the following JMP (jump) instruction transfers control to the location marked by the label named
target, creating a loop:

target:
mov ax,bx
...
jmp target

A code label can share the same line with an instruction, or it can be on a line by itself:

L1: mov ax,bx
L2:

Label names follow the same rules we described for identifiers in Section 3.1.8. You can use the
same code label more than once in a program as long as each label is unique within its enclosing
procedure. We will show how to create procedures in Chapter 5.

3.1 Basic Language Elements 61

Instruction Mnemonic
An instruction mnemonic is a short word that identifies an instruction. In English, a mnemonic is
a device that assists memory. Similarly, assembly language instruction mnemonics such as mov,
add, and sub provide hints about the type of operation they perform. Following are examples of
instruction mnemonics:

Operands
An operand is a value that is used for input or output for an instruction. Assembly language
instructions can have between zero and three operands, each of which can be a register, memory
operand, integer expression, or input–output port. We discussed register names in Chapter 2, and
we discussed integer expressions in Section 3.1.2. There are different ways to create memory
operands—using variable names, registers surrounded by brackets, for example. We will go into
more details about that later. A variable name implies the address of the variable and instructs
the computer to reference the contents of memory at the given address. The following table con-
tains several sample operands:

Let’s look at examples of assembly language instructions having varying numbers of oper-
ands. The STC instruction, for example, has no operands:

stc ; set Carry flag

The INC instruction has one operand:

inc eax ; add 1 to EAX

The MOV instruction has two operands:

mov count,ebx ; move EBX to count

There is a natural ordering of operands. When instructions have multiple operands, the first one
is typically called the destination operand. The second operand is usually called the source
operand. In general, the contents of the destination operand are modified by the instruction. In a
MOV instruction, for example, data is copied from the source to the destination.

Mnemonic Description
MOV Move (assign) one value to another

ADD Add two values

SUB Subtract one value from another

MUL Multiply two values

JMP Jump to a new location

CALL Call a procedure

Example Operand Type
96 Integer literal

2 � 4 Integer expression

eax Register

count Memory

62 Chapter 3 • Assembly Language Fundamentals

The IMUL instruction has three operands, in which the first operand is the destination, and
the following two operands are source operands, which are multiplied together:

imul eax,ebx,5

In this case, EBX is multiplied by 5, and the product is stored in the EAX register.

Comments
Comments are an important way for the writer of a program to communicate information about
the program’s design to a person reading the source code. The following information is typically
included at the top of a program listing:

• Description of the program’s purpose
• Names of persons who created and/or revised the program
• Program creation and revision dates
• Technical notes about the program’s implementation

Comments can be specified in two ways:

• Single-line comments, beginning with a semicolon character (;). All characters following the
semicolon on the same line are ignored by the assembler.

• Block comments, beginning with the COMMENT directive and a user-specified symbol. All
subsequent lines of text are ignored by the assembler until the same user-specified symbol
appears. Here is an example:

COMMENT !
This line is a comment.
This line is also a comment.

!

We can also use any other symbol, as long as it does not appear within the comment lines:

COMMENT &
This line is a comment.
This line is also a comment.

&

Of course, you should provide comments throughout a program, particularly where the intent of
your code is not obvious.

The NOP (No Operation) Instruction
The safest (and the most useless) instruction is NOP (no operation). It takes up 1 byte of pro-
gram storage and doesn’t do any work. It is sometimes used by compilers and assemblers to
align code to efficient address boundaries. In the following example, the first MOV instruction
generates three machine code bytes. The NOP instruction aligns the address of the third instruc-
tion to a doubleword boundary (even multiple of 4):

00000000 66 8B C3 mov ax,bx
00000003 90 nop ; align next instruction
00000004 8B D1 mov edx,ecx

x86 processors are designed to load code and data more quickly from even doubleword addresses.

3.2 Example: Adding and Subtracting Integers 63

3.1.11 Section Review
1. Using the value –35, write it as an integer literal in decimal, hexadecimal, octal, and binary

formats that are consistent with MASM syntax.

2. (Yes/No): Is A5h a valid hexadecimal literal?

3. (Yes/No): Does the multiplication operator (*) have a higher precedence than the division
operator (/) in integer expressions?

4. Create a single integer expression that uses all the operators from Section 3.1.2. Calculate
the value of the expression.

5. Write the real number –6.2 � 104 as a real number literal using MASM syntax.

6. (Yes/No): Must string literals be enclosed in single quotes?

7. Reserved words can be instruction mnemonics, attributes, operators, predefined symbols,
and __________.

8. What is the maximum length of an identifier?

3.2 Example: Adding and Subtracting Integers

3.2.1 The AddTwo Program
Let’s revisit the AddTwo program we showed at the beginning of this chapter and add the neces-
sary declarations to make it a fully operational program. Remember, the line numbers are not
really part of the program:

 1: ; AddTwo.asm - adds two 32-bit integers
 2: ; Chapter 3 example
 3:
 4: .386
 5: .model flat,stdcall
 6: .stack 4096
 7: ExitProcess PROTO, dwExitCode:DWORD
 8:
 9: .code
10: main PROC
11: mov eax,5 ; move 5 to the eax register
12: add eax,6 ; add 6 to the eax register
13:
14: INVOKE ExitProcess,0
15: main ENDP
16: END main

Line 4 contains the .386 directive, which identifies this as a 32-bit program that can access
32-bit registers and addresses. Line 5 selects the program’s memory model (flat), and iden-
tifies the calling convention (named stdcall) for procedures. We use this because 32-bit
Windows services require the stdcall convention to be used. (Chapter 8 explains how stdcall
works.) Line 6 sets aside 4096 bytes of storage for the runtime stack, which every program
must have.

64 Chapter 3 • Assembly Language Fundamentals

Line 7 declares a prototype for the ExitProcess function, which is a standard Windows ser-
vice. A prototype consists of the function name, the PROTO keyword, a comma, and a list of
input parameters. The input parameter for ExitProcess is named dwExitCode. You might
think of it as a return value passed back to the Window operating system. A return value of
zero usually means our program was successful. Any other integer value generally indicates
an error code number. So, you can think of your assembly programs as subroutines, or pro-
cesses, which are called by the operating system. When your program is ready to finish, it
calls ExitProcess and returns an integer that tells the operating system that your program
worked just fine.

Let’s return to our listing of the AddTwo program. Line 16 uses the end directive to mark the last
line to be assembled, and it identifies the program entry point (main). The label main was
declared on Line 10, and it marks the address at which the program will begin to execute.

A Review of the Assembler Directives
Let’s review some of the most important assembler directives we used in the sample program.
First, the .MODEL directive tells the assembler which memory model to use:

.model flat,stdcall

In 32-bit programs, we always use the flat memory model, which is associated with the proces-
sor’s protected mode. We talked about protected mode in Chapter 2. The stdcall keyword tells
the assembler how to manage the runtime stack when procedures are called. That’s a compli-
cated subject that we will address in Chapter 8. Next, the .STACK directive tells the assembler
how many bytes of memory to reserve for the program’s runtime stack:

.stack 4096

More Info: You might be wondering why the operating system wants to know if your program
completed successfully. Here’s why: system administrators often create script files than execute a
number of programs in sequence. At each point in the script, they need to know if the most
recently executed program has failed, so they can exit the script if necessary. It often goes some-
thing like the script shown below, where ErrorLevel 1 indicates that the process return code from
the previous step was greater than or equal to 1:

call program_1
if ErrorLevel 1 goto FailedLabel
call program_2
if ErrorLevel 1 goto FailedLabel
:SuccessLabel
Echo Great, everything worked!

Tip: Visual Studio’s syntax highlighting and wavy lines under keywords are not consistent
when displaying assembly language code. If you want to disable it, here’s how: Choose
Options from the Tools menu, select Text Editor, select C/C++, select Advanced, and under the
Intellisense heading, set Disable Squiggles to True. Click OK to close the Options window.
Also, remember that MASM is not case-sensitive, so you can capitalize or not capitalize key-
words in any combination.

3.2 Example: Adding and Subtracting Integers 65

The value 4096 is probably more than we will ever use, but it happens to correspond to the size
of a memory page in the processor’s system for managing memory. All modern programs use a
stack when calling subroutines—first, to hold passed parameters, and second, to hold the address
of the code that called the function. The CPU uses this address to return when the function call
finishes, back to the spot where the function was called. In addition, the runtime stack can hold
local variables, that is, variables declared inside a function.

The .CODE directive marks the beginning of the code area of a program, the area that con-
tains executable instructions. Usually the next line after .CODE is the declaration of the pro-
gram’s entry point, and by convention, it is usually a procedure named main. The entry point of
a program is the location of the very first instruction the program will execute. We used the fol-
lowing lines to convey this information:

.code
main PROC

The ENDP directive marks the end of a procedure. Our program had a procedure named main,
so the endp must use the same name:

main ENDP

Finally, the END directive marks the end of the program, and references the program entry
point:

END main

If you add any more lines to a program after the END directive, they will be ignored by the
assembler. You can put anything there—program comments, copies of your code, etc.—it
doesn’t matter.

3.2.2 Running and Debugging the AddTwo Program
You can easily use Visual Studio to edit, build, and run assembly language programs. The book’s
example files directory has a folder named Project32 that contains a Visual Studio 2012 Win-
dows Console project that has been configured for 32-bit assembly language programming.
(Another folder named Project64 is configured for 64-bit assembly.) The following instructions,
modeled after Visual Studio 2012, tell you how to open the sample project and create the
AddTwo program:

1. Open the Project32 folder and double-click the file named Project.sln. This should launch
the latest version of Visual Studio installed on your computer.

2. Open the Solution Explorer window inside Visual Studio. It should already be visible, but
you can always make it visible by selecting Solution Explorer from the View menu.

3. Right-click the project name in Solution Explorer, select Add from the context menu, and
then select New Item from the popup menu.

4. In the Add New File dialog window (see Figure 3-1), name the file AddTwo.asm, and choose
an appropriate disk folder for the file by filling in the Location entry.

5. Click the Add button to save the file.

66 Chapter 3 • Assembly Language Fundamentals

Figure 3–1 Adding a new source code file to a Visual Studio project.

6. Type in the program’s source code, shown here. The capitalization of keywords here is not
required:

; AddTwo.asm - adds two 32-bit integers.

.386

.model flat,stdcall

.stack 4096
ExitProcess PROTO,dwExitCode:DWORD

.code
main PROC
 mov eax,5
 add eax,6

 INVOKE ExitProcess,0
main ENDP
END main

7. Select Build Project from the Project menu, and look for error messages at the bottom of the
Visual Studio workspace. It’s called the Error List window. Figure 3-2 shows our sample
program after it has been opened and assembled. Notice that the status line on the bottom of
the window says Build succeeded when there are no errors.

Debugging Demonstration
We will demonstrate a sample debugging session for the AddTwo program. We have not shown
you a way to display variable values directly in the console window yet, so we will run the pro-
gram in a debugging session. We will use Visual Studio 2012 for this demonstration, but it would
work just as well in any version of Visual Studio from 2008 onward.

One way to run and debug a program is to, select Step Over from the Debug menu. Depend-
ing on how Visual Studio was configured, either the F10 function key or the Shift+F8 keys will
execute the Step Over command.

3.2 Example: Adding and Subtracting Integers 67

Figure 3–2 Building the Visual Studio project.

Another way to start a debugging session is to set a breakpoint on a program statement by
clicking the mouse in the vertical gray bar just to the left of the code window. A large red dot
will mark the breakpoint location. Then you can run the program by selecting Start Debugging
from the Debug menu.

Figure 3-3 shows the program at the start of a debugging session. A breakpoint was set on
Line 11, the first MOV instruction, and the debugger has paused on that line. The line has not
executed yet. When the debugger is active, the bottom status line of the Visual Studio window
turns orange. When you stop the debugger and return to edit mode, the status line turns blue. The
visual cue is helpful because you cannot edit or save a program while the debugger is running.

Figure 3-4 shows the debugger after the user has stepped through lines 11 and 12, and is
paused on line 14. By hovering the mouse over the EAX register name, we can see its current
contents (11). We can then finish the program execution by clicking the Continue button on the
toolbar, or by clicking the red Stop Debugging button (on the right side of the toolbar).

Customizing the Debugging Interface
You can customize the debugging interface while it is running. For example, you might want
to display the CPU registers; to do this, select Windows from the Debug menu, and then select
Registers. Figure 3-5 shows the same debugging session we used just now, with the Registers
window visible. We also closed some other nonessential windows. The value shown in EAX,
0000000B, is the hexadecimal representation of 11 decimal. We’ve drawn an arrow in the

Tip: If you try to set a breakpoint on a non-executable line, Visual Studio will just move the break-
point forward to the next executable line when you run the program.

68 Chapter 3 • Assembly Language Fundamentals

Figure 3–3 Debugger paused at a breakpoint.

Figure 3–4 After executing lines 11 and 12 in the debugger.

3.2 Example: Adding and Subtracting Integers 69

Figure 3–5 Adding the Registers window to a debugging session.

figure, pointing to the value. In the Registers window, the EFL register contains all the status flag
settings (Zero, Carry, Overflow, etc.). If you right-click the Registers window and select Flags
from the popup menu, the window will display the individual flag values. Figure 3-6 shows an
example, where the flag values from left to right are: OV (overflow flag), UP (direction flag), EI
(interrupt flag), PL (sign flag), ZR (zero flag), AC (auxiliary carry), PE (parity flag), and CY
(carry flag). The precise meaning of these flags will be explained in Chapter 4.

One of the great things about the Registers window is that as you step through a program, any
register whose value is changed by the current instruction will turn red. Although we cannot
show it on the printed page (which is black and white), the red highlighting really jumps out at
you, to let you know how your program is affecting the registers.

Figure 3–6 Showing the CPU status flags in the Registers window.

Tip: The book’s web site (asmirvine.com) has tutorials that show you how to assemble and debug
assembly language programs.

70 Chapter 3 • Assembly Language Fundamentals

When you run an assembly language program inside Visual Studio, it launches inside a console
window. This is the same window you see when you run the program named cmd.exe from the
Windows Start menu. Alternatively, you could open up a command prompt in the project’s
Debug\Bin folder and run the application directly from the command line. If you did this, you
would only see the program’s output, which consists of text written to the console window. Look
for an executable filename having the same name as your Visual Studio project.

3.2.3 Program Template
Assembly language programs have a simple structure, with small variations. When you begin a
new program, it helps to start with an empty shell program with all basic elements in place. You
can avoid redundant typing by filling in the missing parts and saving the file under a new name.
The following program (Template.asm) can easily be customized. Note that comments have
been inserted, marking the points where your own code should be added. Capitalization of key-
words is optional:

; Program template (Template.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess PROTO, dwExitCode:DWORD

.data
; declare variables here

.code
main PROC

; write your code here

INVOKE ExitProcess,0
main ENDP
END main

Use Comments It’s a very good idea to include a program description, the name of the pro-
gram’s author, creation date, and information about subsequent modifications. Documentation of
this kind is useful to anyone who reads the program listing (including you, months or years from
now). Many programmers have discovered, years after writing a program, that they must
become reacquainted with their own code before they can modify it. If you’re taking a
programming course, your instructor may insist on additional information.

3.2.4 Section Review
1. In the AddTwo program, what is the meaning of the INCLUDE directive?

2. In the AddTwo program, what does the .CODE directive identify?

3. What are the names of the two segments in the AddTwo program?

4. In the AddTwo program, which register holds the sum?

5. In the AddTwo program, which statement halts the program?

3.3 Assembling, Linking, and Running Programs 71

3.3 Assembling, Linking, and Running Programs
A source program written in assembly language cannot be executed directly on its target
computer. It must be translated, or assembled into executable code. In fact, an assembler is very
similar to a compiler, the type of program you would use to translate a C++ or Java program into
executable code.

The assembler produces a file containing machine language called an object file. This file
isn’t quite ready to execute. It must be passed to another program called a linker, which in turn
produces an executable file. This file is ready to execute from the operating system’s command
prompt.

3.3.1 The Assemble-Link-Execute Cycle
The process of editing, assembling, linking, and executing assembly language programs is sum-
marized in Figure 3-7. Following is a detailed description of each step.

Step 1: A programmer uses a text editor to create an ASCII text file named the source file.

Step 2: The assembler reads the source file and produces an object file, a machine-language
translation of the program. Optionally, it produces a listing file. If any errors occur, the program-
mer must return to Step 1 and fix the program.

Step 3: The linker reads the object file and checks to see if the program contains any calls to
procedures in a link library. The linker copies any required procedures from the link library,
combines them with the object file, and produces the executable file.

Step 4: The operating system loader utility reads the executable file into memory and branches
the CPU to the program’s starting address, and the program begins to execute.

See the topic “Getting Started” on the author’s Web site (www.asmirvine.com) for detailed
instructions on assembling, linking, and running assembly language programs using Microsoft
Visual Studio.

Figure 3–7 Assemble-Link-Execute cycle.

3.3.2 Listing File
A listing file contains a copy of the program’s source code, with line numbers, the numeric
address of each instruction, the machine code bytes of each instruction (in hexadecimal), and
a symbol table. The symbol table contains the names of all program identifiers, segments, and
related information. Advanced programmers sometimes use the listing file to get detailed

Source
file

Step 2:
Assembler

Step 1: Text editor

Step 3:
Linker

Step 4:
OS
loaderExecutable

file
OutputObject

file

Link
library

Listing
file

www.asmirvine.com

72 Chapter 3 • Assembly Language Fundamentals

information about the program. Figure 3-8 shows a partial listing file for the AddTwo program.
Let’s examine it in more detail. Lines 1–7 contain no executable code, so they are copied
directly from the source file without changes. Line 9 shows that the beginning of the code seg-
ment is located at address 00000000 (in a 32-bit program, addresses display as 8 hexadecimal
digits). This address is relative to the beginning of the program’s memory footprint, but it will
be converted into an absolute memory address when the program is loaded into memory.
When that happens, the program might start at an address such as 00040000h.

Figure 3–8 Excerpt from the AddTwo source listing file.

Lines 10 and 11 also show the same starting address of 00000000, because the first executable
statement is the MOV instruction on line 11. Notice on line 11 that several hexadecimal bytes
appear between the address and the source code. These bytes (B8 00000005) represent the
machine code instruction (B8), and the constant 32-bit value (00000005) that is assigned to
EAX by the instruction:

11: 00000000 B8 00000005 mov eax,5

The value B8 is also known as an operation code (or just opcode), because it represents the spe-
cific machine instruction to move a 32-bit integer into the eax register. In Chapter 12 we explain
the structure of x86 machine instructions in great detail.

Line 12 also contains an executable instruction, starting at offset 00000005. That offset is a
distance of 5 bytes from the beginning of the program. Perhaps you can guess how that offset
was calculated.

Line 14 contains the invoke directive. Notice how lines 15 and 16 seem to have been inserted into
our code. This is because the INVOKE directive causes the assembler to generate the PUSH and
CALL statements shown on lines 15 and 16. In Chapter 5 we will show how to use PUSH and CALL.

The sample listing file in Figure 3-8 shows that the machine instructions are loaded into
memory as a sequence of integer values, expressed here in hexadecimal: B8, 00000005, 83, C0,

 1: ; AddTwo.asm - adds two 32-bit integers.
 2: ; Chapter 3 example
 3:
 4: .386
 5: .model flat,stdcall
 6: .stack 4096
 7: ExitProcess PROTO,dwExitCode:DWORD
 8:
 9: 00000000 .code
10: 00000000 main PROC
11: 00000000 B8 00000005 mov eax,5
12: 00000005 83 C0 06 add eax,6
13:
14: invoke ExitProcess,0
15: 00000008 6A 00 push +000000000h
16: 0000000A E8 00000000 E call ExitProcess
17: 0000000F main ENDP
18: END main

3.3 Assembling, Linking, and Running Programs 73

06, 6A, 00, EB, 00000000. The number of digits in each number indicates the number of bits: a
2-digit number is 8 bits, a 4-digit number is 16 bits, an 8-digit number is 32 bits, and so on. So
our machine instructions are exactly 15 bytes long (two 4-byte values and seven 1-byte values).

Whenever you want to make sure the assembler is generating the correct machine code bytes
based on your program, the listing file is your best resource. It is also a great teaching tool if
you’re just learning how machine code instructions are generated.

Figure 3–9 Configuring Visual Studio to generate a listing file.

The rest of the listing file contains a list of structures and unions, as well as procedures, parame-
ters, and local variables. We will not show those elements here, but we will discuss them in later
chapters.

3.3.3 Section Review
1. What types of files are produced by the assembler?

2. (True/False): The linker extracts assembled procedures from the link library and inserts
them in the executable program.

3. (True/False): When a program’s source code is modified, it must be assembled and linked
again before it can be executed with the changes.

4. Which operating system component reads and executes programs?

5. What types of files are produced by the linker?

Tip: To tell Visual Studio to generate a listing file, do the following when a project is open:
Select Properties from the Project menu. Under Configuration Properties, select Microsoft
Macro Assembler. Then select Listing File. In the dialog window, set Generate Preprocessed
Source Listing to Yes, and set List All Available Information to Yes. The dialog window is shown
in Figure 3-9.

74 Chapter 3 • Assembly Language Fundamentals

3.4 Defining Data

3.4.1 Intrinsic Data Types
The assembler recognizes a basic set of intrinsic data types, which describe types in terms of
their size (byte, word, doubleword, and so on), whether they are signed, and whether they are
integers or reals. There’s a fair amount of overlap in these types—for example, the DWORD
type (32-bit, unsigned integer) is interchangeable with the SDWORD type (32-bit, signed inte-
ger). You might say that programmers use SDWORD to communicate to readers that a value will
contain a sign, but there is no enforcement by the assembler. The assembler only evaluates the
sizes of operands. So, for example, you can only assign variables of type DWORD, SDWORD,
or REAL4 to a 32-bit integer. Table 3-2 contains a list of all the intrinsic data types. The notation
IEEE in some of the table entries refers to standard real number formats published by the IEEE
Computer Society.

3.4.2 Data Definition Statement
A data definition statement sets aside storage in memory for a variable, with an optional name.
Data definition statements create variables based on intrinsic data types (Table 3-2). A data defi-
nition has the following syntax:

 [name] directive initializer [,initializer]...

Table 3-2 Intrinsic Data Types.

Type Usage

BYTE 8-bit unsigned integer. B stands for byte

SBYTE 8-bit signed integer. S stands for signed

WORD 16-bit unsigned integer

SWORD 16-bit signed integer

DWORD 32-bit unsigned integer. D stands for double

SDWORD 32-bit signed integer. SD stands for signed double

FWORD 48-bit integer (Far pointer in protected mode)

QWORD 64-bit integer. Q stands for quad

TBYTE 80-bit (10-byte) integer. T stands for Ten-byte

REAL4 32-bit (4-byte) IEEE short real

REAL8 64-bit (8-byte) IEEE long real

REAL10 80-bit (10-byte) IEEE extended real

3.4 Defining Data 75

This is an example of a data definition statement:

count DWORD 12345

Name The optional name assigned to a variable must conform to the rules for identifiers
(Section 3.1.8).

Directive The directive in a data definition statement can be BYTE, WORD, DWORD,
SBYTE, SWORD, or any of the types listed in Table 3-2. In addition, it can be any of the legacy
data definition directives shown in Table 3-3.

Initializer At least one initializer is required in a data definition, even if it is zero. Additional ini-
tializers, if any, are separated by commas. For integer data types, initializer is an integer literal or
integer expression matching the size of the variable’s type, such as BYTE or WORD. If you prefer
to leave the variable uninitialized (assigned a random value), the ? symbol can be used as the ini-
tializer. All initializers, regardless of their format, are converted to binary data by the assembler.
Initializers such as 00110010b, 32h, and 50d all have the same binary value.

3.4.3 Adding a Variable to the AddTwo Program
Let’s create a new version of the AddTwo program we introduced at the beginning of this chap-
ter, which we will now call AddTwoSum. This version introduces a variable named sum, which
appears in the complete program listing:

 1: ; AddTwoSum.asm - Chapter 3 example
 2:
 3: .386
 4: .model flat,stdcall
 5: .stack 4096
 6: ExitProcess PROTO, dwExitCode:DWORD
 7:
 8: .data
 9: sum DWORD 0
10:
11: .code
12: main PROC
13: mov eax,5

Table 3-3 Legacy Data Directives.

Directive Usage

DB 8-bit integer

DW 16-bit integer

DD 32-bit integer or real

DQ 64-bit integer or real

DT define 80-bit (10-byte) integer

76 Chapter 3 • Assembly Language Fundamentals

14: add eax,6
15: mov sum,eax
16:
17: INVOKE ExitProcess,0
18: main ENDP
19: END main

You can run this in the debugger by setting a breakpoint on line 13 and stepping through the pro-
gram one line at a time. After executing line 15, hover the mouse over the sum variable to see its
value. Or, you can open a Watch window. To do that, select Windows from the Debug menu (dur-
ing a debugging session), select Watch, and select one of the four available choices (Watch1,
Watch2, Watch3, or Watch4). Then, highlight the sum variable with the mouse and drag it into
the Watch window. Figure 3-10 shows a sample, with a large arrow pointing at the current value
of sum after executing line 15.

Figure 3–10 Using a Watch window in a debugging session.

3.4.4 Defining BYTE and SBYTE Data
The BYTE (define byte) and SBYTE (define signed byte) directives allocate storage for one or
more unsigned or signed values. Each initializer must fit into 8 bits of storage. For example,

value1 BYTE 'A' ; character literal
value2 BYTE 0 ; smallest unsigned byte
value3 BYTE 255 ; largest unsigned byte
value4 SBYTE −128 ; smallest signed byte
value5 SBYTE +127 ; largest signed byte

3.4 Defining Data 77

A question mark (?) initializer leaves the variable uninitialized, implying that it will be assigned
a value at runtime:

value6 BYTE ?

The optional name is a label marking the variable’s offset from the beginning of its enclosing
segment. For example, if value1 is located at offset 0000 in the data segment and consumes one
byte of storage, value2 is automatically located at offset 0001:

value1 BYTE 10h
value2 BYTE 20h

The DB directive can also define an 8-bit variable, signed or unsigned:

val1 DB 255 ; unsigned byte
val2 DB -128 ; signed byte

Multiple Initializers
If multiple initializers are used in the same data definition, its label refers only to the offset of the
first initializer. In the following example, assume list is located at offset 0000. If so, the value 10
is at offset 0000, 20 is at offset 0001, 30 is at offset 0002, and 40 is at offset 0003:

list BYTE 10,20,30,40

Figure 3-11 shows list as a sequence of bytes, each with its own offset.

Figure 3–11 Memory layout of a byte sequence.

Not all data definitions require labels. To continue the array of bytes begun with list, for
example, we can define additional bytes on the next lines:

list BYTE 10,20,30,40
 BYTE 50,60,70,80
 BYTE 81,82,83,84

Within a single data definition, its initializers can use different radixes. Character and string
literals can be freely mixed. In the following example, list1 and list2 have the same contents:

list1 BYTE 10, 32, 41h, 00100010b
list2 BYTE 0Ah, 20h, 'A', 22h

Defining Strings
To define a string of characters, enclose them in single or double quotation marks. The most
common type of string ends with a null byte (containing 0). Called a null-terminated string,
strings of this type are used in many programming languages:

0000:

0001:

0002:

0003:

Offset

10

20

30

40

Value

78 Chapter 3 • Assembly Language Fundamentals

greeting1 BYTE "Good afternoon",0
greeting2 BYTE 'Good night',0

Each character uses a byte of storage. Strings are an exception to the rule that byte values must
be separated by commas. Without that exception, greeting1 would have to be defined as

greeting1 BYTE 'G','o','o','d'....etc.

which would be exceedingly tedious. A string can be divided between multiple lines without
having to supply a label for each line:

greeting1 BYTE "Welcome to the Encryption Demo program "
 BYTE "created by Kip Irvine.",0dh,0ah
 BYTE "If you wish to modify this program, please "
 BYTE "send me a copy.",0dh,0ah,0

The hexadecimal codes 0Dh and 0Ah are alternately called CR/LF (carriage-return line-feed)
or end-of-line characters. When written to standard output, they move the cursor to the left col-
umn of the line following the current line.

The line continuation character (\) concatenates two source code lines into a single statement.
It must be the last character on the line. The following statements are equivalent:

greeting1 BYTE "Welcome to the Encryption Demo program "

and

greeting1 \
BYTE "Welcome to the Encryption Demo program "

DUP Operator
The DUP operator allocates storage for multiple data items, using a integer expression as a
counter. It is particularly useful when allocating space for a string or array, and can be used with
initialized or uninitialized data:

BYTE 20 DUP(0) ; 20 bytes, all equal to zero
BYTE 20 DUP(?) ; 20 bytes, uninitialized
BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"

3.4.5 Defining WORD and SWORD Data
The WORD (define word) and SWORD (define signed word) directives create storage for one or
more 16-bit integers:

word1 WORD 65535 ; largest unsigned value
word2 SWORD -32768 ; smallest signed value
word3 WORD ? ; uninitialized, unsigned

The legacy DW directive can also be used:

val1 DW 65535 ; unsigned
val2 DW -32768 ; signed

Array of 16-Bit Words Create an array of words by listing the elements or using the DUP
operator. The following array contains a list of values:

myList WORD 1,2,3,4,5

3.4 Defining Data 79

Figure 3-12 shows a diagram of the array in memory, assuming myList starts at offset 0000. The
addresses increment by 2 because each value occupies 2 bytes.

Figure 3–12 Memory layout, 16-bit word array.

The DUP operator provides a convenient way to declare an array:

array WORD 5 DUP(?) ; 5 values, uninitialized

3.4.6 Defining DWORD and SDWORD Data
The DWORD directive (define doubleword) and SDWORD directive (define signed double-
word) allocate storage for one or more 32-bit integers:

val1 DWORD 12345678h ; unsigned
val2 SDWORD −2147483648 ; signed
val3 DWORD 20 DUP(?) ; unsigned array

The legacy DD directive can also be used to define doubleword data.

val1 DD 12345678h ; unsigned
val2 DD −2147483648 ; signed

The DWORD can be used to declare a variable that contains the 32-bit offset of another variable.
Below, pVal contains the offset of val3:

pVal DWORD val3

Array of 32-Bt Doublewords Let’s create an array of doublewords by explicitly initializing
each value:

myList DWORD 1,2,3,4,5

Figure 3-13 shows a diagram of this array in memory, assuming myList starts at offset 0000.
The offsets increment by 4.

3.4.7 Defining QWORD Data
The QWORD (define quadword) directive allocates storage for 64-bit (8-byte) values:

quad1 QWORD 1234567812345678h

The legacy DQ directive can also be used to define quadword data:

quad1 DQ 1234567812345678h

Offset

1

2

3

4

5

Value

0000:

0002:

0004:

0006:

0008:

80 Chapter 3 • Assembly Language Fundamentals

Figure 3–13 Memory layout, 32-bit doubleword array.

3.4.8 Defining Packed BCD (TBYTE) Data
Intel stores a packed binary coded decimal (BCD) integers in a 10-byte package. Each byte
(except the highest) contains two decimal digits. In the lower 9 storage bytes, each half-byte
holds a single decimal digit. In the highest byte, the highest bit indicates the number’s sign. If
the highest byte equals 80h, the number is negative; if the highest byte equals 00h, the number is
positive. The integer range is �999,999,999,999,999,999 to +999,999,999,999,999,999.

Example The hexadecimal storage bytes for positive and negative decimal 1234 are shown in
the following table, from the least significant byte to the most significant byte:

MASM uses the TBYTE directive to declare packed BCD variables. Constant initializers
must be in hexadecimal because the assembler does not automatically translate decimal initializ-
ers to BCD. The following two examples demonstrate both valid and invalid ways of represent-
ing decimal �1234:

intVal TBYTE 800000000000001234h ; valid
intVal TBYTE -1234 ; invalid

The reason the second example is invalid is that MASM encodes the constant as a binary integer
rather than a packed BCD integer.

If you want to encode a real number as packed BCD, you can first load it onto the floating-
point register stack with the FLD instruction and then use the FBSTP instruction to convert it to
packed BCD. This instruction rounds the value to the nearest integer:

.data
posVal REAL8 1.5
bcdVal TBYTE ?

.code
fld posVal ; load onto floating-point stack
fbstp bcdVal ; rounds up to 2 as packed BCD

If posVal were equal to 1.5, the resulting BCD value would be 2. In Chapter 7, you will learn
how to do arithmetic with packed BCD values.

Decimal Value Storage Bytes

+1234 34 12 00 00 00 00 00 00 00 00

�1234 34 12 00 00 00 00 00 00 00 80

Offset

1

2

3

4

5

Value

0000:

0004:

0008:

000C:

0010:

3.4 Defining Data 81

3.4.9 Defining Floating-Point Types
REAL4 defines a 4-byte single-precision floating-point variable. REAL8 defines an 8-byte double-
precision value, and REAL10 defines a 10-byte extended-precision value. Each requires one or
more real constant initializers:

rVal1 REAL4 -1.2
rVal2 REAL8 3.2E-260
rVal3 REAL10 4.6E+4096
ShortArray REAL4 20 DUP(0.0)

Table 3-4 describes each of the standard real types in terms of their minimum number of sig-
nificant digits and approximate range:

Table 3-4 Standard Real Number Types.

The DD, DQ, and DT directives can define also real numbers:

rVal1 DD -1.2 ; short real
rVal2 DQ 3.2E-260 ; long real
rVal3 DT 4.6E+4096 ; extended-precision real

3.4.10 A Program That Adds Variables
The sample programs shown so far in this chapter added integers stored in registers. Now that
you have some understanding of how to declare data, we will revise the same program by mak-
ing it add the contents of three integer variables and store the sum in a fourth variable.

 1: ; AddVariables.asm - Chapter 3 example
 2:
 3: .386
 4: .model flat,stdcall
 5: .stack 4096
 6: ExitProcess PROTO, dwExitCode:DWORD
 7:
 8: .data
 9: firstval DWORD 20002000h
10: secondval DWORD 11111111h

Data Type Significant Digits Approximate Range

Short real 6 1.18 � 10-38 to 3.40 � 1038

Long real 15 2.23 � 10-308 to 1.79 � 10308

Extended-precision real 19 3.37 � 10-4932 to 1.18 � 104932

Clarification: The MASM assembler includes data types such as real4 and real8, suggesting that
the values they represent are real numbers. More correctly, the values are floating-point numbers,
which have a limited amount of precision and range. Mathematically, a real number has unlimited
precision and size.

82 Chapter 3 • Assembly Language Fundamentals

11: thirdval DWORD 22222222h
12: sum DWORD 0
13:
14: .code
15: main PROC
16: mov eax,firstval
17: add eax,secondval
18: add eax,thirdval
19: mov sum,eax
20:
21: INVOKE ExitProcess,0
22: main ENDP
23: END main

Notice that we have initialized three variables with nonzero values (lines 9–11). Lines 16–18 add
the variables. The x86 instruction set does not let us add one variable directly to another, but it does
allow a variable to be added to a register. That is why lines 16–17 use EAX as an accumulator:

16: mov eax,firstval
17: add eax,secondval

After line 17, EAX contains the sum of firstval and secondval. Next, line 18 adds thirdval to
the sum in EAX:

18: add eax,thirdval

Finally, on line 19, the sum is copied into the variable named sum:

19: mov sum,eax

As an exercise, we encourage you to run this program in a debugging session and examine each
of the registers after each instruction executes. The final sum should be hexadecimal 53335333.

3.4.11 Little-Endian Order
x86 processors store and retrieve data from memory using little-endian order (low to high). The
least significant byte is stored at the first memory address allocated for the data. The remaining
bytes are stored in the next consecutive memory positions. Consider the doubleword 12345678h. If
placed in memory at offset 0000, 78h would be stored in the first byte, 56h would be stored in the
second byte, and the remaining bytes would be at offsets 0002 and 0003, as shown in Figure 3-14.

Figure 3–14 Little-endian representation of 12345678h.

Tip: During a debugging session, if you want to display the variable in hexadecimal, do the fol-
lowing: Hover the mouse over a variable or register for a second until a gray rectangle appears
under the mouse. Right-click the rectangle and select Hexadecimal Display from the popup menu.

0000: 78

56

34

12

0001:

0002:

0003:

3.4 Defining Data 83

Some other computer systems use big-endian order (high to low). Figure 3-15 shows an exam-
ple of 12345678h stored in big-endian order at offset 0:

Figure 3–15 Big-endian representation of 12345678h.

3.4.12 Declaring Uninitialized Data
The .DATA? directive declares uninitialized data. When defining a large block of uninitialized
data, the .DATA? directive reduces the size of a compiled program. For example, the following
code is declared efficiently:

.data
smallArray DWORD 10 DUP(0) ; 40 bytes
.data?
bigArray DWORD 5000 DUP(?) ; 20,000 bytes, not initialized

The following code, on the other hand, produces a compiled program 20,000 bytes larger:

.data
smallArray DWORD 10 DUP(0) ; 40 bytes
bigArray DWORD 5000 DUP(?) ; 20,000 bytes

Mixing Code and Data The assembler lets you switch back and forth between code and data
in your programs. You might, for example, want to declare a variable used only within a local-
ized area of a program. The following example inserts a variable named temp between two code
statements:

.code
mov eax,ebx
.data
temp DWORD ?
.code
mov temp,eax
. . .

Although the declaration of temp appears to interrupt the flow of executable instructions,
MASM places temp in the data segment, separate from the segment holding compiled code.
At the same time, intermixing .code and .data directives can cause a program to become hard
to read.

3.4.13 Section Review
1. Create an uninitialized data declaration for a 16-bit signed integer.

2. Create an uninitialized data declaration for an 8-bit unsigned integer.

3. Create an uninitialized data declaration for an 8-bit signed integer.

12

34

56

78

0001:

0002:

0003:

0000:

84 Chapter 3 • Assembly Language Fundamentals

4. Create an uninitialized data declaration for a 64-bit integer.

5. Which data type can hold a 32-bit signed integer?

3.5 Symbolic Constants
A symbolic constant (or symbol definition) is created by associating an identifier (a symbol) with
an integer expression or some text. Symbols do not reserve storage. They are used only by the
assembler when scanning a program, and they cannot change at runtime. The following table
summarizes their differences:

We will show how to use the equal-sign directive (=) to create symbols representing integer
expressions. We will use the EQU and TEXTEQU directives to create symbols representing
arbitrary text.

3.5.1 Equal-Sign Directive
The equal-sign directive associates a symbol name with an integer expression (see Section
3.1.3). The syntax is

name = expression

Ordinarily, expression is a 32-bit integer value. When a program is assembled, all occurrences of
name are replaced by expression during the assembler’s preprocessor step. Suppose the follow-
ing statement occurs near the beginning of a source code file:

COUNT = 500

Further, suppose the following statement should be found in the file 10 lines later:

mov eax, COUNT

When the file is assembled, MASM will scan the source file and produce the corresponding code
lines:

mov eax, 500

Why Use Symbols? We might have skipped the COUNT symbol entirely and simply coded
the MOV instruction with the literal 500, but experience has shown that programs are easier to
read and maintain if symbols are used. Suppose COUNT were used many times throughout a
program. At a later time, we could easily redefine its value:

COUNT = 600

Assuming that the source file was assembled again, all instances of COUNT would be automati-
cally replaced by the value 600.

Symbol Variable

Uses storage? No Yes

Value changes at runtime? No Yes

3.5 Symbolic Constants 85

Current Location Counter One of the most important symbols of all, shown as $, is called
the current location counter. For example, the following declaration declares a variable named
selfPtr and initializes it with the variable’s offset value:

selfPtr DWORD $

Keyboard Definitions Programs often define symbols that identify commonly used numeric key-
board codes. For example, 27 is the ASCII code for the Esc key:

Esc_key = 27

Later in the same program, a statement is more self-describing if it uses the symbol rather than
an integer literal. Use

mov al,Esc_key ; good style

rather than

mov al,27 ; poor style

Using the DUP Operator Section 3.4.4 showed how to use the DUP operator to create stor-
age for arrays and strings. The counter used by DUP should be a symbolic constant, to simplify
program maintenance. In the next example, if COUNT has been defined, it can be used in the
following data definition:

array dword COUNT DUP(0)

Redefinitions A symbol defined with � can be redefined within the same program. The fol-
lowing example shows how the assembler evaluates COUNT as it changes value:

COUNT = 5
mov al,COUNT ; AL = 5
COUNT = 10
mov al,COUNT ; AL = 10
COUNT = 100
mov al,COUNT ; AL = 100

The changing value of a symbol such as COUNT has nothing to do with the runtime execution
order of statements. Instead, the symbol changes value according to the assembler’s sequential
processing of the source code during the assembler’s preprocessing stage.

3.5.2 Calculating the Sizes of Arrays and Strings
When using an array, we usually like to know its size. The following example uses a constant
named ListSize to declare the size of list:

list BYTE 10,20,30,40
ListSize = 4

Explicitly stating an array’s size can lead to a programming error, particularly if you should later
insert or remove array elements. A better way to declare an array size is to let the assembler
calculate its value for you. The $ operator (current location counter) returns the offset associated

86 Chapter 3 • Assembly Language Fundamentals

with the current program statement. In the following example, ListSize is calculated by subtract-
ing the offset of list from the current location counter ($):

list BYTE 10,20,30,40
ListSize = ($ - list)

ListSize must follow immediately after list. The following, for example, produces too large a
value (24) for ListSize because the storage used by var2 affects the distance between the current
location counter and the offset of list:

list BYTE 10,20,30,40
var2 BYTE 20 DUP(?)
ListSize = ($ - list)

Rather than calculating the length of a string manually, let the assembler do it:

myString BYTE "This is a long string, containing"
 BYTE "any number of characters"
myString_len = ($ − myString)

Arrays of Words and DoubleWords When calculating the number of elements in an array
containing values other than bytes, you should always divide the total array size (in bytes) by the
size of the individual array elements. The following code, for example, divides the address range
by 2 because each word in the array occupies 2 bytes (16 bits):

list WORD 1000h,2000h,3000h,4000h
ListSize = ($ − list) / 2

Similarly, each element of an array of doublewords is 4 bytes long, so its overall length must be
divided by four to produce the number of array elements:

list DWORD 10000000h,20000000h,30000000h,40000000h
ListSize = ($ − list) / 4

3.5.3 EQU Directive
The EQU directive associates a symbolic name with an integer expression or some arbitrary text.
There are three formats:

name EQU expression
name EQU symbol
name EQU <text>

In the first format, expression must be a valid integer expression (see Section 3.1.3). In the sec-
ond format, symbol is an existing symbol name, already defined with = or EQU. In the third for-
mat, any text may appear within the brackets <. . .>. When the assembler encounters name later
in the program, it substitutes the integer value or text for the symbol.

EQU can be useful when defining a value that does not evaluate to an integer. A real number
constant, for example, can be defined using EQU:

PI EQU <3.1416>

Example The following example associates a symbol with a character string. Then a variable
can be created using the symbol:

3.5 Symbolic Constants 87

pressKey EQU <"Press any key to continue...",0>
.
.
.data
prompt BYTE pressKey

Example Suppose we would like to define a symbol that counts the number of cells in a
10-by-10 integer matrix. We will define symbols two different ways, first as an integer expres-
sion and second as a text expression. The two symbols are then used in data definitions:

matrix1 EQU 10 * 10
matrix2 EQU <10 * 10>
.data
M1 WORD matrix1
M2 WORD matrix2

The assembler produces different data definitions for M1 and M2. The integer expression in
matrix1 is evaluated and assigned to M1. On the other hand, the text in matrix2 is copied
directly into the data definition for M2:

M1 WORD 100
M2 WORD 10 * 10

No Redefinition Unlike the = directive, a symbol defined with EQU cannot be redefined in
the same source code file. This restriction prevents an existing symbol from being inadvertently
assigned a new value.

3.5.4 TEXTEQU Directive
The TEXTEQU directive, similar to EQU, creates what is known as a text macro. There are three
different formats: the first assigns text, the second assigns the contents of an existing text macro,
and the third assigns a constant integer expression:

name TEXTEQU <text>
name TEXTEQU textmacro
name TEXTEQU %constExpr

For example, the prompt1 variable uses the continueMsg text macro:

continueMsg TEXTEQU <"Do you wish to continue (Y/N)?">
.data
prompt1 BYTE continueMsg

Text macros can build on each other. In the next example, count is set to the value of an integer
expression involving rowSize. Then the symbol move is defined as mov. Finally, setupAL is
built from move and count:

rowSize = 5
count TEXTEQU %(rowSize * 2)
move TEXTEQU <mov>
setupAL TEXTEQU <move al,count>

88 Chapter 3 • Assembly Language Fundamentals

Therefore, the statement

setupAL

would be assembled as

mov al,10

A symbol defined by TEXTEQU can be redefined at any time.

3.5.5 Section Review
1. Declare a symbolic constant using the equal-sign directive that contains the ASCII code

(08h) for the Backspace key.

2. Declare a symbolic constant named SecondsInDay using the equal-sign directive and
assign it an arithmetic expression that calculates the number of seconds in a 24-hour period.

3. Write a statement that causes the assembler to calculate the number of bytes in the follow-
ing array, and assign the value to a symbolic constant named ArraySize:

myArray WORD 20 DUP(?)

4. Show how to calculate the number of elements in the following array, and assign the value
to a symbolic constant named ArraySize:

myArray DWORD 30 DUP(?)

5. Use a TEXTEQU expression to redefine “proc” as “procedure.”

6. Use TEXTEQU to create a symbol named Sample for a string constant, and then use the
symbol when defining a string variable named MyString.

7. Use TEXTEQU to assign the symbol SetupESI to the following line of code:

mov esi,OFFSET myArray

3.6 64-Bit Programming
With the advent of 64-bit processors by AMD and Intel, there has been increased interest in 64-bit
programming. MASM supports 64-bit code, and the 64-bit version of the assembler is installed
with all full versions of Visual Studio 2012 (Ultimate, Premium, or Professional) and with the
Visual Studio 2012 Express for Desktop. In each chapter, beginning with this one, we will
include 64-bit versions of some of the sample programs. We will also discuss the Irvine64 sub-
routine library supplied with this book.

Let’s borrow the AddTwoSum program shown earlier in this chapter, and modify it for 64-bit
programming. We will use the 64-bit register RAX to accumulate two integers, and store their
sum in a 64-bit variable:

 1: ; AddTwoSum_64.asm - Chapter 3 example.
 2:
 3: ExitProcess PROTO
 4:
 5: .data
 6: sum DWORD 0
 7:
 8: .code

3.6 64-Bit Programming 89

 9: main PROC
10: mov eax,5
11: add eax,6
12: mov sum,eax
13:
14: mov ecx,0
15: call ExitProcess
16: main ENDP
17: END

Here’s how this program is different from the 32-bit version we showed earlier in the chapter:

• The following three lines, which were in the 32-bit version of the AddTwoSum program are
not used in the 64-bit version:

.386

.model flat,stdcall

.stack 4096

• Statements using the PROTO keyword do not have parameters in 64-bit programs. This is
from Line 3:

 ExitProcess PROTO

This was our earlier 32-bit version:

 ExitProcess PROTO,dwExitCode:DWORD

• Lines 14–15 use two instructions to end the program (mov and call). The 32-bit version used
an INVOKE statement to do the same thing. The 64-bit version of MASM does not support
the INVOKE directive.

• In line 17, the end directive does not specify a program entry point. The 32-bit version of the
program did.

Using 64-Bit Registers
In some applications, you may need to perform arithmetic with integers that are larger than
32 bits. In that case, you can use 64-bit registers and variables. For example, this is how we
could make our sample program use 64-bit values:

• In line 6, we would change DWORD to QWORD when declaring the sum variable.
• In lines 10–12, we would change EAX to its 64-bit version, named RAX.

This is how lines 6–12 would appear after we made the changes:

 6: sum QWORD 0
 7:
 8: .code
 9: main PROC
10: mov rax,5
11: add rax,6
12: mov sum,rax

Whether you write 32-bit or 64-bit assembly programs is largely a matter of preference. Here’s
something to remember: the 64-bit version of MASM 11.0 (shipped with Visual Studio 12) does

90 Chapter 3 • Assembly Language Fundamentals

not support the INVOKE directive. Also, you must be running the 64-bit version of Windows in
order to run 64-bit programs.

You can find instructions at the author’s web site (asmirvine.com) to help you configure
Visual Studio for 64-bit programming.

3.7 Chapter Summary
A constant integer expression is a mathematical expression involving integer literals, symbolic
constants, and arithmetic operators. Precedence refers to the implied order of operations when
an expression contains two or more operators.

A character literal is a single character enclosed in quotes. The assembler converts a character
to a byte containing the character’s binary ASCII code. A string literal is a sequence of charac-
ters enclosed in quotes, optionally ending with a null byte.

Assembly language has a set of reserved words with special meanings that may only be used
in the correct context. An identifier is a programmer-chosen name identifying a variable, a sym-
bolic constant, a procedure, or a code label. Identifiers cannot be reserved words.

A directive is a command embedded in the source code and interpreted by the assembler. An
instruction is a source code statement that is executed by the processor at runtime. An instruc-
tion mnemonic is a short keyword that identifies the operation carried out by an instruction.
A label is an identifier that acts as a place marker for instructions or data.

Operands are values passed to instructions. An assembly language instruction can have
between zero and three operands, each of which can be a register, memory operand, integer
expression, or input-output port number.

Programs contain logical segments named code, data, and stack. The code segment contains
executable instructions. The stack segment holds procedure parameters, local variables, and
return addresses. The data segment holds variables.

A source file contains assembly language statements. A listing file contains a copy of the pro-
gram’s source code, suitable for printing, with line numbers, offset addresses, translated
machine code, and a symbol table. A source file is created with a text editor. An assembler is a
program that reads the source file, producing both object and listing files. The linker is a pro-
gram that reads one or more object files and produces an executable file. The latter is executed
by the operating system loader.

MASM recognizes intrinsic data types, each of which describes a set of values that can be
assigned to variables and expressions of the given type:

• BYTE and SBYTE define 8-bit variables.
• WORD and SWORD define 16-bit variables.
• DWORD and SDWORD define 32-bit variables.
• QWORD and TBYTE define 8-byte and 10-byte variables, respectively.
• REAL4, REAL8, and REAL10 define 4-byte, 8-byte, and 10-byte real number variables,

respectively.

3.8 Key Terms 91

A data definition statement sets aside storage in memory for a variable, and may optionally
assign it a name. If multiple initializers are used in the same data definition, its label refers only to
the offset of the first initializer. To create a string data definition, enclose a sequence of characters
in quotes. The DUP operator generates a repeated storage allocation, using a constant expression
as a counter. The current location counter operator ($) is used in address-calculation expressions.

x86 processors store and retrieve data from memory using little-endian order: The least sig-
nificant byte of a variable is stored at its starting (lowest) address value.

A symbolic constant (or symbol definition) associates an identifier with an integer or text
expression. Three directives create symbolic constants:

• The equal-sign directive (�) associates a symbol name with a constant integer expression.
• The EQU and TEXTEQU directives associate a symbolic name with a constant integer

expression or some arbitrary text.

3.8 Key Terms

3.8.1 Terms

assembler

big endian

binary coded decimal (BCD)

calling convention

character literal

code label

code segment

compiler

constant integer expression

data definition statement

data label

data segment

decimal real

directive

encoded real

executable file

floating-point literal

identifier

initializer

instruction

instruction mnemonic

integer constant

integer literal

intrinsic data type

label

linker

link library

listing file

little-endian order

macro

memory model

memory operand

object file

operand

operator precedence

packed binary coded decimal

process return code

program entry point

real number literal

reserved word

source file

stack segment

string literal

symbolic constant

system function

92 Chapter 3 • Assembly Language Fundamentals

3.8.2 Instructions, Operators, and Directives

3.9 Review Questions and Exercises

3.9.1 Short Answer
1. Provide examples of three different instruction mnemonics.

2. What is a calling convention, and how is it used in assembly language declarations?

3. How do you reserve space for the stack in a program?

4. Explain why the term assembler language is not quite correct.

5. Explain the difference between big endian and little endian. Also, look up the origins of this
term on the Web.

6. Why might you use a symbolic constant rather than an integer literal in your code?

7. How is a source file different from a listing file?

8. How are data labels and code labels different?

9. (True/False): An identifier cannot begin with a numeric digit.

10. (True/False): A hexadecimal literal may be written as 0x3A.

11. (True/False): Assembly language directives execute at runtime.

12. (True/False): Assembly language directives can be written in any combination of uppercase
and lowercase letters.

13. Name the four basic parts of an assembly language instruction.

14. (True/False): MOV is an example of an instruction mnemonic.

15. (True/False): A code label is followed by a colon (:), but a data label does not end with a
colon.

16. Show an example of a block comment.

17. Why is it not a good idea to use numeric addresses when writing instructions that access
variables?

+ (add, unary plus)

= (assign, compare for equality)

/ (divide)

∗ (multiply)

() (parentheses)

− (subtract, unary minus)

ADD

BYTE

CALL

.CODE

COMMENT

.DATA

DWORD

END

ENDP

DUP

EQU

MOD

MOV

NOP

PROC

SBYTE

SDWORD

.STACK

TEXTEQU

3.9 Review Questions and Exercises 93

18. What type of argument must be passed to the ExitProcess procedure?

19. Which directive ends a procedure?

20. In 32-bit mode, what is the purpose of the identifier in the END directive?

21. What is the purpose of the PROTO directive?

22. (True/False): An Object file is produced by the Linker.

23. (True/False): A Listing file is produced by the Assembler.

24. (True/False): A link library is added to a program just before producing an Execut-
able file.

25. Which data directive creates a 32-bit signed integer variable?

26. Which data directive creates a 16-bit signed integer variable?

27. Which data directive creates a 64-bit unsigned integer variable?

28. Which data directive creates an 8-bit signed integer variable?

29. Which data directive creates a 10-byte packed BCD variable?

3.9.2 Algorithm Workbench
1. Define four symbolic constants that represent integer 25 in decimal, binary, octal,

and hexadecimal formats.

2. Find out, by trial and error, if a program can have multiple code and data segments.

3. Create a data definition for a doubleword that stored it in memory in big endian
format.

4. Find out if you can declare a variable of type DWORD and assign it a negative
value. What does this tell you about the assembler’s type checking?

5. Write a program that contains two instructions: (1) add the number 5 to the EAX
register, and (2) add 5 to the EDX register. Generate a listing file and examine the
machine code generated by the assembler. What differences, if any, did you find
between the two instructions?

6. Given the number 456789ABh, list out its byte values in little-endian order.

7. Declare an array of 120 uninitialized unsigned doubleword values.

8. Declare an array of byte and initialize it to the first 5 letters of the alphabet.

9. Declare a 32-bit signed integer variable and initialize it with the smallest possible
negative decimal value. (Hint: Refer to integer ranges in Chapter 1.)

10. Declare an unsigned 16-bit integer variable named wArray that uses three initial-
izers.

11. Declare a string variable containing the name of your favorite color. Initialize it as
a nullterminated string.

12. Declare an uninitialized array of 50 signed doublewords named dArray.

13. Declare a string variable containing the word “TEST” repeated 500 times.

14. Declare an array of 20 unsigned bytes named bArray and initialize all elements to
zero.

94 Chapter 3 • Assembly Language Fundamentals

15. Show the order of individual bytes in memory (lowest to highest) for the following double-
word variable:

val1 DWORD 87654321h

3.10 Programming Exercises

1. Integer Expression Calculation
Using the AddTwo program from Section 3.2 as a reference, write a program that calculates the
following expression, using registers: A = (A + B) − (C + D). Assign integer values to the EAX,
EBX, ECX, and EDX registers.

2. Symbolic Integer Constants
Write a program that defines symbolic constants for all seven days of the week. Create an array
variable that uses the symbols as initializers.

3. Data Definitions
Write a program that contains a definition of each data type listed in Table 3-2 in Section 3.4.
Initialize each variable to a value that is consistent with its data type.

4. Symbolic Text Constants
Write a program that defines symbolic names for several string literals (characters between
quotes). Use each symbolic name in a variable definition.

5. Listing File for AddTwoSum
Generate a listing file for the AddTwoSum program and write a description of the machine code
bytes generated for each instruction. You might have to guess at some of the meanings of the
byte values.

6. AddVariables Program
Modify the AddVariables program so it uses 64-bit variables. Describe the syntax errors gener-
ated by the assembler and what steps you took to resolve the errors.

★

★

★★

★

★★★★

★★★

