
65

CHAPTER OUTLINE

2–1 Decimal Numbers

2–2 Binary Numbers

2–3 Decimal-to-Binary Conversion

2–4 Binary Arithmetic

2–5 Complements of Binary Numbers

2–6 Signed Numbers

2–7 Arithmetic Operations with Signed Numbers

2–8 Hexadecimal Numbers

2–9 Octal Numbers

2–10 Binary Coded Decimal (BCD)

2–11 Digital Codes

2–12 Error Codes

CHAPTER OBJECTIVES

■ Review the decimal number system

■ Count in the binary number system

■ Convert from decimal to binary and from binary

to decimal

■ Apply arithmetic operations to binary numbers

■ Determine the 1’s and 2’s complements of a binary

number

■ Express signed binary numbers in sign-magnitude,

1’s complement, 2’s complement, and floating-point

format

■ Carry out arithmetic operations with signed binary

numbers

■ Convert between the binary and hexadecimal

number systems

■ Add numbers in hexadecimal form

■ Convert between the binary and octal number

systems

■ Express decimal numbers in binary coded decimal

(BCD) form

VISIT THE WEBSITE

Study aids for this chapter are available at

http://www.pearsonglobaleditions.com/floyd

INTRODUCTION

The binary number system and digital codes are

fundamental to computers and to digital electronics

in general. In this chapter, the binary number system

and its relationship to other number systems such as

decimal, hexadecimal, and octal are presented. Arith-

metic operations with binary numbers are covered to

provide a basis for understanding how computers and

many other types of digital systems work. Also, digital

codes such as binary coded decimal (BCD), the Gray

code, and the ASCII are covered. The parity method

for detecting errors in codes is introduced. The TI-36X

calculator is used to illustrate certain operations. The

procedures shown may vary on other types.

■ LSB

■ MSB

■ Byte

■ Floating-point number

■ Hexadecimal

■ Octal

■ BCD

■ Alphanumeric

■ ASCII

■ Parity

■ Cyclic redundancy

check (CRC)

■ Add BCD numbers

■ Convert between the binary system and the Gray

code

■ Interpret the American Standard Code for

Information Interchange (ASCII)

■ Explain how to detect code errors

■ Discuss the cyclic redundancy check (CRC)

KEY TERMS

Key terms are in order of appearance in the chapter.

Number Systems,
Operations, and Codes

2CHAPTER

66 Number Systems, Operations, and Codes

2–1 Decimal Numbers

You are familiar with the decimal number system because you use decimal numbers every

day. Although decimal numbers are commonplace, their weighted structure is often not

understood. In this section, the structure of decimal numbers is reviewed. This review

will help you more easily understand the structure of the binary number system, which is

important in computers and digital electronics.

After completing this section, you should be able to

u Explain why the decimal number system is a weighted system

u Explain how powers of ten are used in the decimal system

u Determine the weight of each digit in a decimal number

In the decimal number system each of the ten digits, 0 through 9, represents a certain

quantity. As you know, the ten symbols (digits) do not limit you to expressing only ten

 different quantities because you use the various digits in appropriate positions within a

number to indicate the magnitude of the quantity. You can express quantities up through

nine before running out of digits; if you wish to express a quantity greater than nine, you

use two or more digits, and the position of each digit within the number tells you the mag-

nitude it represents. If, for example, you wish to express the quantity twenty-three, you use

(by their respective positions in the number) the digit 2 to represent the quantity twenty and

the digit 3 to represent the quantity three, as illustrated below.

The digit 2 has a weight of The digit 3 has a weight

10 in this position. of 1 in this position.

 2 3

 2 * 10 + 3 * 1

 20 + 3

 23

The position of each digit in a decimal number indicates the magnitude of the quantity

represented and can be assigned a weight. The weights for whole numbers are positive

powers of ten that increase from right to left, beginning with 100
= 1.

c 105 104 103 102 101 100

For fractional numbers, the weights are negative powers of ten that decrease from left to

right beginning with 10-1.

102 101 100.10-1 10-2 10-3
c

 Decimal point

The value of a decimal number is the sum of the digits after each digit has been multi-

plied by its weight, as Examples 2–1 and 2–2 illustrate.

The decimal number system has
ten digits.

The decimal number system has
a base of 10.

The value of a digit is determined by
its position in the number.

 Binary Numbers 67

EXAMPLE 2–1

Express the decimal number 47 as a sum of the values of each digit.

Solution

The digit 4 has a weight of 10, which is 101, as indicated by its position. The digit 7 has

a weight of 1, which is 100, as indicated by its position.

 47 = (4 * 101) + (7 * 100)

 = (4 * 10) + (7 * 1) = 40 � 7

Related Problem*

Determine the value of each digit in 939.

*Answers are at the end of the chapter.

CALCULATOR SESSION

Powers of Ten

Find the value of 103.

TI-36X Step 1: 1 0 yx

 Step 2: 3 =

 1000

EXAMPLE 2–2

Express the decimal number 568.23 as a sum of the values of each digit.

Solution

The whole number digit 5 has a weight of 100, which is 102, the digit 6 has a weight of 10,

which is 101, the digit 8 has a weight of 1, which is 100, the fractional digit 2 has a weight

of 0.1, which is 10-1, and the fractional digit 3 has a weight of 0.01, which is 10-2.

 568.23 = (5 * 102) + (6 * 101) + (8 * 100) + (2 * 10-1) + (3 * 10-2)

 = (5 * 100) + (6 * 10) + (8 * 1) + (2 * 0.1) + (3 * 0.01)

 = 500 � 60 � 8 � 0.2 � 0.03

Related Problem

Determine the value of each digit in 67.924.

SECTION 2–1 CHECKUP

Answers are at the end of the chapter.

 1. What weight does the digit 7 have in each of the following numbers?

(a) 1370 (b) 6725 (c) 7051 (d) 58.72

 2. Express each of the following decimal numbers as a sum of the products obtained by

multiplying each digit by its appropriate weight:

(a) 51 (b) 137 (c) 1492 (d) 106.58

2–2 Binary Numbers

The binary number system is another way to represent quantities. It is less complicated than

the decimal system because the binary system has only two digits. The decimal system with

its ten digits is a base-ten system; the binary system with its two digits is a base-two system.

The two binary digits (bits) are 1 and 0. The position of a 1 or 0 in a binary number indicates

its weight, or value within the number, just as the position of a decimal digit determines the

value of that digit. The weights in a binary number are based on powers of two.

68 Number Systems, Operations, and Codes

After completing this section, you should be able to

u Count in binary

u Determine the largest decimal number that can be represented by a given number

of bits

u Convert a binary number to a decimal number

Counting in Binary

To learn to count in the binary system, first look at how you count in the decimal system.

You start at zero and count up to nine before you run out of digits. You then start another

digit position (to the left) and continue counting 10 through 99. At this point you have

exhausted all two-digit combinations, so a third digit position is needed to count from 100

through 999.

A comparable situation occurs when you count in binary, except that you have only two

digits, called bits. Begin counting: 0, 1. At this point you have used both digits, so include

another digit position and continue: 10, 11. You have now exhausted all combinations of

two digits, so a third position is required. With three digit positions you can continue to

count: 100, 101, 110, and 111. Now you need a fourth digit position to continue, and so on.

A binary count of zero through fifteen is shown in Table 2–1. Notice the patterns with

which the 1s and 0s alternate in each column.

The binary number system has two
digits (bits).

The binary number system has
a base of 2.

InfoNote

In processor operations, there

are many cases where adding

or subtracting 1 to a number

stored in a counter is necessary.

Processors have special

instructions that use less time

and generate less machine code

than the ADD or SUB instructions.

For the Intel processors, the INC

(increment) instruction adds 1

to a number. For subtraction, the

corresponding instruction is DEC

(decrement), which subtracts 1

from a number.

As you have seen in Table 2–1, four bits are required to count from zero to 15. In general,

with n bits you can count up to a number equal to 2n - 1.

Largest decimal number = 2n - 1

For example, with five bits (n = 5) you can count from zero to thirty-one.

25 - 1 = 32 - 1 = 31

With six bits (n = 6) you can count from zero to sixty-three.

26 - 1 = 64 - 1 = 63

The value of a bit is determined by
its position in the number.

CALCULATOR SESSION

Powers of Two

Find the value of 25.

TI-36X Step 1: 2 yx

 Step 2: 5 =

 32

TABLE 2–1

Decimal

Number Binary Number

 0 0 0 0 0

 1 0 0 0 1

 2 0 0 1 0

 3 0 0 1 1

 4 0 1 0 0

 5 0 1 0 1

 6 0 1 1 0

 7 0 1 1 1

 8 1 0 0 0

 9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

 Binary Numbers 69

An Application

Learning to count in binary will help you to basically understand how digital circuits can

be used to count events. Let’s take a simple example of counting tennis balls going into a

box from a conveyor belt. Assume that nine balls are to go into each box.

The counter in Figure 2–1 counts the pulses from a sensor that detects the passing of a

ball and produces a sequence of logic levels (digital waveforms) on each of its four par-

allel outputs. Each set of logic levels represents a 4-bit binary number (HIGH = 1 and

LOW = 0), as indicated. As the decoder receives these waveforms, it decodes each set of

four bits and converts it to the corresponding decimal number in the 7-segment display.

When the counter gets to the binary state of 1001, it has counted nine tennis balls, the dis-

play shows decimal 9, and a new box is moved under the conveyor belt. Then the counter

goes back to its zero state (0000), and the process starts over. (The number 9 was used only

in the interest of single-digit simplicity.)

Counter Decoder

1st ball

2nd ball

9th ball
1 0 1 0 1 0 1 0 10

0 1 1 0 0 1 1 0 00

0 0 0 1 1 1 1 0 00

0 0 0 0 0 0 0 1 10

Ball count 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

FIGURE 2–1 Illustration of a simple binary counting application.

The Weighting Structure of Binary Numbers

A binary number is a weighted number. The right-most bit is the LSB (least significant bit)

in a binary whole number and has a weight of 20
= 1. The weights increase from right to

left by a power of two for each bit. The left-most bit is the MSB (most significant bit); its

weight depends on the size of the binary number.

Fractional numbers can also be represented in binary by placing bits to the right of the

binary point, just as fractional decimal digits are placed to the right of the decimal point.

The left-most bit is the MSB in a binary fractional number and has a weight of 2-1
= 0.5.

The fractional weights decrease from left to right by a negative power of two for each bit.

The weight structure of a binary number is

2n-1
c 23 22 21 20 . 2-1 2-2

c 2-n

 Binary point

where n is the number of bits from the binary point. Thus, all the bits to the left of the

binary point have weights that are positive powers of two, as previously discussed for whole

numbers. All bits to the right of the binary point have weights that are negative powers of

two, or fractional weights.

The powers of two and their equivalent decimal weights for an 8-bit binary whole num-

ber and a 6-bit binary fractional number are shown in Table 2–2. Notice that the weight

doubles for each positive power of two and that the weight is halved for each negative

power of two. You can easily extend the table by doubling the weight of the most signifi-

cant positive power of two and halving the weight of the least significant negative power of

two; for example, 29
= 512 and 2-7

= 0.0078125.

The weight or value of a bit increases
from right to left in a binary number.

InfoNote

Processors use binary numbers

to select memory locations. Each

location is assigned a unique

number called an address. Some

microprocessors, for example,

have 32 address lines which can

select 232 (4,294,967,296) unique

locations.

70 Number Systems, Operations, and Codes

TABLE 2–2

Binary weights.

Positive Powers of Two

(Whole Numbers)

Negative Powers of Two

(Fractional Number)

28 27 26 25 24 23 22 21 20 221 222 223 224 225 226

256 128 64 32 16 8 4 2 1 1/2 1/4 1/8 1/16 1/32 1/64

0.5 0.25 0.125 0.625 0.03125 0.015625

Binary-to-Decimal Conversion

The decimal value of any binary number can be found by adding the weights of all bits that

are 1 and discarding the weights of all bits that are 0.

Add the weights of all 1s in a binary
number to get the decimal value.

EXAMPLE 2–3

Convert the binary whole number 1101101 to decimal.

Solution

Determine the weight of each bit that is a 1, and then find the sum of the weights to get

the decimal number.

 Weight: 26 25 24 23 22 21 20

 Binary number: 1 1 0 1 1 0 1

 1101101 = 26 + 25 + 23 + 22 + 20

 = 64 + 32 + 8 + 4 + 1 = 109

Related Problem

Convert the binary number 10010001 to decimal.

EXAMPLE 2–4

Convert the fractional binary number 0.1011 to decimal.

Solution

Determine the weight of each bit that is a 1, and then sum the weights to get the decimal

fraction.

 Weight: 2-1 2-2 2-3 2-4

 Binary number: 0 . 1 0 1 1

 0.1011 = 2-1 + 2-3 + 2-4

 = 0.5 + 0.125 + 0.0625 = 0.6875

Related Problem

Convert the binary number 10.111 to decimal.

SECTION 2–2 CHECKUP

 1. What is the largest decimal number that can be represented in binary with eight bits?

 2. Determine the weight of the 1 in the binary number 10000.

 3. Convert the binary number 10111101.011 to decimal.

 Decimal-to-Binary Conversion 71

Repeated Division-by-2 Method

A systematic method of converting whole numbers from decimal to binary is the repeated

division-by-2 process. For example, to convert the decimal number 12 to binary, begin by

dividing 12 by 2. Then divide each resulting quotient by 2 until there is a 0 whole-number

quotient. The remainders generated by each division form the binary number. The first

remainder to be produced is the LSB (least significant bit) in the binary number, and the

2–3 Decimal-to-Binary Conversion

In Section 2–2 you learned how to convert a binary number to the equivalent decimal num-

ber. Now you will learn two ways of converting from a decimal number to a binary number.

After completing this section, you should be able to

u Convert a decimal number to binary using the sum-of-weights method

u Convert a decimal whole number to binary using the repeated division-by-2

method

u Convert a decimal fraction to binary using the repeated multiplication-by-2

method

Sum-of-Weights Method

One way to find the binary number that is equivalent to a given decimal number is to deter-

mine the set of binary weights whose sum is equal to the decimal number. An easy way

to remember binary weights is that the lowest is 1, which is 20, and that by doubling any

weight, you get the next higher weight; thus, a list of seven binary weights would be 64, 32,

16, 8, 4, 2, 1 as you learned in the last section. The decimal number 9, for example, can be

expressed as the sum of binary weights as follows:

9 = 8 + 1 or 9 = 23 + 20

Placing 1s in the appropriate weight positions, 23 and 20, and 0s in the 22 and 21 positions

determines the binary number for decimal 9.

 23 22 21 20

 1 0 0 1 Binary number for decimal 9

To get the binary number for a given
decimal number, find the binary
weights that add up to the decimal
number.

EXAMPLE 2–5

Convert the following decimal numbers to binary:

(a) 12 (b) 25

(c) 58 (d) 82

Solution

(a) 12 = 8 + 4 = 23 + 22 1100

(b) 25 = 16 + 8 + 1 = 24 + 23 + 20 11001

(c) 58 = 32 + 16 + 8 + 2 = 25 + 24 + 23 + 21 111010

(d) 82 = 64 + 16 + 2 = 26 + 24 + 21 1010010

Related Problem

Convert the decimal number 125 to binary.

To get the binary number for a given
decimal number, divide the decimal
number by 2 until the quotient is 0.
Remainders form the binary number.

72 Number Systems, Operations, and Codes

last remainder to be produced is the MSB (most significant bit). This procedure is illus-

trated as follows for converting the decimal number 12 to binary.

Remainder

0

0

1

1

Stop when the

whole-number quotient is 0.
1 1 0 0

MSB LSB

1

2
= 0

3

2
= 1

6

2
= 3

12

2
= 6

EXAMPLE 2–6

Related Problem

Convert decimal number 39 to binary.

CALCULATOR SESSION

Conversion of a Decimal

Number to a Binary Number

Convert decimal 57 to binary.

 DEC

TI-36X Step 1: 3rd EE

 Step 2: 5 7

 BIN

 Step 3: 3rd X

 111001

Convert the following decimal numbers to binary:

(a) 19 (b) 45

Solution

(a) Remainder

19

2
= 9 1

9

2
= 4 1

4

2
= 2 0

2

2
= 1 0

1

2
= 0 1

 1 0 0 1 1

 MSB LSB

(b) Remainder

45

2
= 22 1

22

2
= 11 0

11

2
= 5 1

5

2
= 2 1

2

2
= 1 0

1

2
= 0 1

 1 0 1 1 0 1

 MSB LSB

 Decimal-to-Binary Conversion 73

Converting Decimal Fractions to Binary

Examples 2–5 and 2–6 demonstrated whole-number conversions. Now let’s look at

fractional conversions. An easy way to remember fractional binary weights is that the

most significant weight is 0.5, which is 2-1, and that by halving any weight, you get

the next lower weight; thus a list of four fractional binary weights would be 0.5, 0.25,

0.125, 0.0625.

Sum-of-Weights

The sum-of-weights method can be applied to fractional decimal numbers, as shown in the

following example:

0.625 = 0.5 + 0.125 = 2-1 + 2-3
= 0.101

There is a 1 in the 2-1 position, a 0 in the 2-2 position, and a 1 in the 2-3 position.

Repeated Multiplication by 2

As you have seen, decimal whole numbers can be converted to binary by repeated divi-

sion by 2. Decimal fractions can be converted to binary by repeated multiplication by 2.

For example, to convert the decimal fraction 0.3125 to binary, begin by multiplying

0.3125 by 2 and then multiplying each resulting fractional part of the product by 2 until

the fractional product is zero or until the desired number of decimal places is reached.

The carry digits, or carries, generated by the multiplications produce the binary number.

The first carry produced is the MSB, and the last carry is the LSB. This procedure is

illustrated as follows:

{
{

{
{

0

1

0

1

MSB LSB

Carry

0.3125 � 2 � 0.625

0.625 � 2 � 1.25

0.25 � 2 � 0.50

0.50 � 2 � 1.00

Continue to the desired number of decimal places

or stop when the fractional part is all zeros.

.0 1 0 1

SECTION 2–3 CHECKUP

 1. Convert each decimal number to binary by using the sum-of-weights method:

(a) 23 (b) 57 (c) 45.5

 2. Convert each decimal number to binary by using the repeated division-by-2 method

(repeated multiplication-by-2 for fractions):

(a) 14 (b) 21 (c) 0.375

74 Number Systems, Operations, and Codes

2–4 Binary Arithmetic

Binary arithmetic is essential in all digital computers and in many other types of digital

systems. To understand digital systems, you must know the basics of binary addition, sub-

traction, multiplication, and division. This section provides an introduction that will be

expanded in later sections.

After completing this section, you should be able to

u Add binary numbers

u Subtract binary numbers

u Multiply binary numbers

u Divide binary numbers

Binary Addition

The four basic rules for adding binary digits (bits) are as follows:

0 + 0 = 0 Sum of 0 with a carry of 0

0 + 1 = 1 Sum of 1 with a carry of 0

1 + 0 = 1 Sum of 1 with a carry of 0

1 + 1 = 10 Sum of 0 with a carry of 1

Notice that the first three rules result in a single bit and in the fourth rule the addition of two

1s yields a binary two (10). When binary numbers are added, the last condition creates a

sum of 0 in a given column and a carry of 1 over to the next column to the left, as illustrated

in the following addition of 11 + 1:

 Carry Carry

 1 1

 0 1 1

 + 0 0 1

 1 0 0

In the right column, 1 + 1 = 0 with a carry of 1 to the next column to the left. In the middle

column, 1 + 1 + 0 = 0 with a carry of 1 to the next column to the left. In the left column,

1 + 0 + 0 = 1.

When there is a carry of 1, you have a situation in which three bits are being added (a bit

in each of the two numbers and a carry bit). This situation is illustrated as follows:

Carry bits

 1 + 0 + 0 = 01 Sum of 1 with a carry of 0

 1 + 1 + 0 = 10 Sum of 0 with a carry of 1

 1 + 0 + 1 = 10 Sum of 0 with a carry of 1

 1 + 1 + 1 = 11 Sum of 1 with a carry of 1

In binary 1 � 1 � 10, not 2.

EXAMPLE 2–7

Add the following binary numbers:

(a) 11 + 11 (b) 100 + 10

(c) 111 + 11 (d) 110 + 100

 Binary Arithmetic 75

Binary Subtraction

The four basic rules for subtracting bits are as follows:

 0 - 0 = 0

 1 - 1 = 0

 1 - 0 = 1

 10 - 1 = 1 0 - 1 with a borrow of 1

When subtracting numbers, you sometimes have to borrow from the next column to the

left. A borrow is required in binary only when you try to subtract a 1 from a 0. In this case,

when a 1 is borrowed from the next column to the left, a 10 is created in the column being

subtracted, and the last of the four basic rules just listed must be applied. Examples 2–8

and 2–9 illustrate binary subtraction; the equivalent decimal subtractions are also shown.

In binary 10 � 1 � 1, not 9.

EXAMPLE 2–8

Perform the following binary subtractions:

(a) 11 - 01 (b) 11 - 10

Solution

(a)

11

-01

10

3

-1

2

(b)

11

-10

01

3

-2

1

No borrows were required in this example. The binary number 01 is the same as 1.

Related Problem

Subtract 100 from 111.

Solution

The equivalent decimal addition is also shown for reference.

(a)

11

+ 11

110

3

+ 3

6

(b)

100

+ 10

110

4

+ 2

6

(c)

111

+ 11

1010

7

+ 3

10

(d)

110

+ 100

1010

6

+ 4

10

Related Problem

Add 1111 and 1100.

EXAMPLE 2–9

Subtract 011 from 101.

Solution

101

-011

010

5

-3

2

76 Number Systems, Operations, and Codes

Binary Division

Division in binary follows the same procedure as division in decimal, as Example 2–11

illustrates. The equivalent decimal divisions are also given.

Let’s examine exactly what was done to subtract the two binary numbers since a borrow

is required. Begin with the right column.

Left column: Middle column:

When a 1 is borrowed, Borrow 1 from next column

a 0 is left, so 0 � 0 � 0. to the left, making a 10 in

this column, then 10 � 1 � 1.

1
0
101 Right column:

�0 11 1 � 1 � 0

0 10

↓

↓

↓

Related Problem

Subtract 101 from 110.

Binary Multiplication

The four basic rules for multiplying bits are as follows:

 0 * 0 = 0

 0 * 1 = 0

 1 * 0 = 0

 1 * 1 = 1

Multiplication is performed with binary numbers in the same manner as with decimal num-

bers. It involves forming partial products, shifting each successive partial product left one

place, and then adding all the partial products. Example 2–10 illustrates the procedure; the

equivalent decimal multiplications are shown for reference.

Binary multiplication of two bits is
the same as multiplication of the
decimal digits 0 and 1.

EXAMPLE 2–10

Perform the following binary multiplications:

(a) 11 * 11 (b) 101 * 111

Solution

(a)

11

* 11

11

+11

1001

3

* 3

9

(b)

 111

* 101

111

000

 +111

100011

7

* 5

35

Related Problem

Multiply 1101 * 1010.

Partial

products
u Partial

products
µ

A calculator can be used to perform
arithmetic operations with binary
numbers as long as the capacity of
the calculator is not exceeded. EXAMPLE 2–11

Perform the following binary divisions:

(a) 110 , 11 (b) 110 , 10

 Complements of Binary Numbers 77

SECTION 2–4 CHECKUP

 1. Perform the following binary additions:

(a) 1101 + 1010 (b) 10111 + 01101

 2. Perform the following binary subtractions:

(a) 1101 2 0100 (b) 1001 2 0111

 3. Perform the indicated binary operations:

(a) 110 * 111 (b) 1100 , 011

2–5 Complements of Binary Numbers

The 1’s complement and the 2’s complement of a binary number are important because

they permit the representation of negative numbers. The method of 2’s complement arith-

metic is commonly used in computers to handle negative numbers.

After completing this section, you should be able to

u Convert a binary number to its 1’s complement

u Convert a binary number to its 2’s complement using either of two methods

Finding the 1’s Complement

The 1’s complement of a binary number is found by changing all 1s to 0s and all 0s to 1s,

as illustrated below:

1 0 1 1 0 0 1 0 Binary number

T T T T T T T T

0 1 0 0 1 1 0 1 1>s complement

The simplest way to obtain the 1’s complement of a binary number with a digital circuit

is to use parallel inverters (NOT circuits), as shown in Figure 2–2 for an 8-bit binary number.

Change each bit in a number to get
the 1’s complement.

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

FIGURE 2–2 Example of inverters used to obtain the 1’s complement of a binary number.

Solution

(a)

10

11�110

11

000

2

3�6

6

0

(b)

11

10�110

10

10

3

2�6

6

0

10

00

Related Problem

Divide 1100 by 100.

78 Number Systems, Operations, and Codes

An alternative method of finding the 2’s complement of a binary number is as follows:

 1. Start at the right with the LSB and write the bits as they are up to and including the

first 1.

 2. Take the 1’s complements of the remaining bits.

Finding the 2’s Complement

The 2’s complement of a binary number is found by adding 1 to the LSB of the 1’s complement.

2>s complement = (1>s complement) + 1

Add 1 to the 1’s complement to get
the 2’s complement.

Change all bits to the left of the least
significant 1 to get 2’s complement.

The 2’s complement of a negative binary number can be realized using inverters and an

adder, as indicated in Figure 2–3. This illustrates how an 8-bit number can be converted to

its 2’s complement by first inverting each bit (taking the 1’s complement) and then adding

1 to the 1’s complement with an adder circuit.

0 1 0 1 0 1 1 0

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

Adder

Negative number

1’s complement

Input bits

Output bits (sum)

2’s complement

Carry

in

1

(add 1)

FIGURE 2–3 Example of obtaining the 2’s complement of a negative binary number.

EXAMPLE 2–12

Find the 2’s complement of 10110010.

Solution

10110010

01001101

+ 1

01001110

Binary number

1>s complement

Add 1

2>s complement

Related Problem

Determine the 2’s complement of 11001011.

EXAMPLE 2–13

Find the 2’s complement of 10111000 using the alternative method.

Solution

10111000 Binary number

01001000 2>s complement

Related Problem

Find the 2’s complement of 11000000.

e e

These bits stay the same.c
1’s complements

of original bits c

 Signed Numbers 79

To convert from a 1’s or 2’s complement back to the true (uncomplemented) binary form,

use the same two procedures described previously. To go from the 1’s complement back to

true binary, reverse all the bits. To go from the 2’s complement form back to true binary,

take the 1’s complement of the 2’s complement number and add 1 to the least significant bit.

SECTION 2–5 CHECKUP

 1. Determine the 1’s complement of each binary number:

(a) 00011010 (b) 11110111 (c) 10001101

 2. Determine the 2’s complement of each binary number:

 (a) 00010110 (b) 11111100 (c) 10010001

2–6 Signed Numbers

Digital systems, such as the computer, must be able to handle both positive and negative

numbers. A signed binary number consists of both sign and magnitude information. The

sign indicates whether a number is positive or negative, and the magnitude is the value of

the number. There are three forms in which signed integer (whole) numbers can be repre-

sented in binary: sign-magnitude, 1’s complement, and 2’s complement. Of these, the 2’s

complement is the most important and the sign-magnitude is the least used. Noninteger and

very large or small numbers can be expressed in floating-point format.

After completing this section, you should be able to

u Express positive and negative numbers in sign-magnitude

u Express positive and negative numbers in 1’s complement

u Express positive and negative numbers in 2’s complement

u Determine the decimal value of signed binary numbers

u Express a binary number in floating-point format

The Sign Bit

The left-most bit in a signed binary number is the sign bit, which tells you whether the

number is positive or negative.

A 0 sign bit indicates a positive number, and a 1 sign bit indicates a negative number.

Sign-Magnitude Form

When a signed binary number is represented in sign-magnitude, the left-most bit is the sign

bit and the remaining bits are the magnitude bits. The magnitude bits are in true (uncomple-

mented) binary for both positive and negative numbers. For example, the decimal number

+25 is expressed as an 8-bit signed binary number using the sign-magnitude form as

00011001

Sign bit Magnitude bits

The decimal number 225 is expressed as

10011001

Notice that the only difference between +25 and 225 is the sign bit because the magnitude

bits are in true binary for both positive and negative numbers.

In the sign-magnitude form, a negative number has the same magnitude bits as the

corresponding positive number but the sign bit is a 1 rather than a zero.

u

c c

80 Number Systems, Operations, and Codes

The Decimal Value of Signed Numbers

Sign-Magnitude

Decimal values of positive and negative numbers in the sign-magnitude form are determined

by summing the weights in all the magnitude bit positions where there are 1s and ignoring

those positions where there are zeros. The sign is determined by examination of the sign bit.

1’s Complement Form

Positive numbers in 1’s complement form are represented the same way as the positive

sign-magnitude numbers. Negative numbers, however, are the 1’s complements of the cor-

responding positive numbers. For example, using eight bits, the decimal number 225 is

expressed as the 1’s complement of +25 (00011001) as

11100110

In the 1’s complement form, a negative number is the 1’s complement of the cor-

responding positive number.

2’s Complement Form

Positive numbers in 2’s complement form are represented the same way as in the sign-

magnitude and 1’s complement forms. Negative numbers are the 2’s complements of the

corresponding positive numbers. Again, using eight bits, let’s take decimal number 225 and

express it as the 2’s complement of +25 (00011001). Inverting each bit and adding 1, you get

-25 = 11100111

In the 2’s complement form, a negative number is the 2’s complement of the cor-

responding positive number.

InfoNote

Processors use the 2’s

complement for negative integer

numbers in arithmetic operations.

The reason is that subtraction

of a number is the same as

adding the 2’s complement of

the number. Processors form the

2’s complement by inverting the

bits and adding 1, using special

instructions that produce the same

result as the adder in Figure 2–3.

EXAMPLE 2–14

Express the decimal number 239 as an 8-bit number in the sign-magnitude, 1’s com-

plement, and 2’s complement forms.

Solution

First, write the 8-bit number for +39.

00100111

In the sign-magnitude form, 239 is produced by changing the sign bit to a 1 and

leaving the magnitude bits as they are. The number is

10100111

In the 1’s complement form, 239 is produced by taking the 1’s complement of +39

(00100111).

11011000

In the 2’s complement form, 239 is produced by taking the 2’s complement of +39

(00100111) as follows:

11011000 1>s complement
+ 1

 11011001 2>s complement

Related Problem

Express +19 and 219 as 8-bit numbers in sign-magnitude, 1’s complement, and 2’s

complement.

 Signed Numbers 81

EXAMPLE 2–15

Determine the decimal value of this signed binary number expressed in sign-magnitude:

10010101.

Solution

The seven magnitude bits and their powers-of-two weights are as follows:

26 25 24 23 22 21 20

0 0 1 0 1 0 1

Summing the weights where there are 1s,

16 + 4 + 1 = 21

The sign bit is 1; therefore, the decimal number is 221.

Related Problem

Determine the decimal value of the sign-magnitude number 01110111.

1’s Complement

Decimal values of positive numbers in the 1’s complement form are determined by sum-

ming the weights in all bit positions where there are 1s and ignoring those positions where

there are zeros. Decimal values of negative numbers are determined by assigning a nega-

tive value to the weight of the sign bit, summing all the weights where there are 1s, and

adding 1 to the result.

EXAMPLE 2–16

Determine the decimal values of the signed binary numbers expressed in 1’s complement:

(a) 00010111 (b) 11101000

Solution

(a) The bits and their powers-of-two weights for the positive number are as follows:

-27 26 25 24 23 22 21 20

0 0 0 1 0 1 1 1

 Summing the weights where there are 1s,

16 + 4 + 2 + 1 = �23

(b) The bits and their powers-of-two weights for the negative number are as follows.

Notice that the negative sign bit has a weight of 227 or 2128.

-27 26 25 24 23 22 21 20

1 1 1 0 1 0 0 0

 Summing the weights where there are 1s,

-128 + 64 + 32 + 8 = -24

 Adding 1 to the result, the final decimal number is

-24 + 1 = �23

Related Problem

Determine the decimal value of the 1’s complement number 11101011.

82 Number Systems, Operations, and Codes

From these examples, you can see why the 2’s complement form is preferred for rep-

resenting signed integer numbers: To convert to decimal, it simply requires a summation

of weights regardless of whether the number is positive or negative. The 1’s complement

system requires adding 1 to the summation of weights for negative numbers but not for

positive numbers. Also, the 1’s complement form is generally not used because two repre-

sentations of zero (00000000 or 11111111) are possible.

Range of Signed Integer Numbers

We have used 8-bit numbers for illustration because the 8-bit grouping is common in most

computers and has been given the special name byte. With one byte or eight bits, you can

represent 256 different numbers. With two bytes or sixteen bits, you can represent 65,536

different numbers. With four bytes or 32 bits, you can represent 4.295 * 109 different

numbers. The formula for finding the number of different combinations of n bits is

Total combinations = 2n

For 2’s complement signed numbers, the range of values for n-bit numbers is

Range = -(2n-1) to +(2n-1 - 1)

where in each case there is one sign bit and n 2 1 magnitude bits. For example, with four bits

you can represent numbers in 2’s complement ranging from 2(23) = 28 to 23 2 1 = +7.

Similarly, with eight bits you can go from 2128 to +127, with sixteen bits you can go from

2’s Complement

Decimal values of positive and negative numbers in the 2’s complement form are deter-

mined by summing the weights in all bit positions where there are 1s and ignoring those

positions where there are zeros. The weight of the sign bit in a negative number is given a

negative value.

EXAMPLE 2–17

Determine the decimal values of the signed binary numbers expressed in 2’s complement:

(a) 01010110 (b) 10101010

Solution

(a) The bits and their powers-of-two weights for the positive number are as follows:

-27 26 25 24 23 22 21 20

0 1 0 1 0 1 1 0

Summing the weights where there are 1s,

64 + 16 + 4 + 2 = �86

(b) The bits and their powers-of-two weights for the negative number are as follows.

Notice that the negative sign bit has a weight of 227
= 2128.

-27 26 25 24 23 22 21 20

1 0 1 0 1 0 1 0

Summing the weights where there are 1s,

-128 + 32 + 8 + 2 = �86

Related Problem

Determine the decimal value of the 2’s complement number 11010111.

The range of magnitude values
represented by binary numbers
depends on the number of bits (n).

 Signed Numbers 83

232,768 to +32,767, and so on. There is one less positive number than there are negative

numbers because zero is represented as a positive number (all zeros).

Floating-Point Numbers

To represent very large integer (whole) numbers, many bits are required. There is also a

problem when numbers with both integer and fractional parts, such as 23.5618, need to be

represented. The floating-point number system, based on scientific notation, is capable of

representing very large and very small numbers without an increase in the number of bits

and also for representing numbers that have both integer and fractional components.

A floating-point number (also known as a real number) consists of two parts plus a

sign. The mantissa is the part of a floating-point number that represents the magnitude of

the number and is between 0 and 1. The exponent is the part of a floating-point number

that represents the number of places that the decimal point (or binary point) is to be moved.

A decimal example will be helpful in understanding the basic concept of floating-point

numbers. Let’s consider a decimal number which, in integer form, is 241,506,800. The

mantissa is .2415068 and the exponent is 9. When the integer is expressed as a floating-

point number, it is normalized by moving the decimal point to the left of all the digits so

that the mantissa is a fractional number and the exponent is the power of ten. The floating-

point number is written as

0.2415068 * 109

For binary floating-point numbers, the format is defined by ANSI/IEEE Standard 754-1985

in three forms: single-precision, double-precision, and extended-precision. These all have the

same basic formats except for the number of bits. Single-precision floating-point numbers

have 32 bits, double-precision numbers have 64 bits, and extended-precision numbers have 80

bits. We will restrict our discussion to the single-precision floating-point format.

Single-Precision Floating-Point Binary Numbers

In the standard format for a single-precision binary number, the sign bit (S) is the left-most

bit, the exponent (E) includes the next eight bits, and the mantissa or fractional part (F)

includes the remaining 23 bits, as shown next.

 32 bits

S Exponent (E) Mantissa (fraction, F)

 1 bit 8 bits 23 bits

In the mantissa or fractional part, the binary point is understood to be to the left of

the 23 bits. Effectively, there are 24 bits in the mantissa because in any binary number the

left-most (most significant) bit is always a 1. Therefore, this 1 is understood to be there

although it does not occupy an actual bit position.

The eight bits in the exponent represent a biased exponent, which is obtained by add-

ing 127 to the actual exponent. The purpose of the bias is to allow very large or very

small numbers without requiring a separate sign bit for the exponents. The biased exponent

allows a range of actual exponent values from 2126 to +128.

To illustrate how a binary number is expressed in floating-point format, let’s use

1011010010001 as an example. First, it can be expressed as 1 plus a fractional binary num-

ber by moving the binary point 12 places to the left and then multiplying by the appropriate

power of two.

1011010010001 = 1.011010010001 * 212

Assuming that this is a positive number, the sign bit (S) is 0. The exponent, 12, is expressed

as a biased exponent by adding it to 127 (12 + 127 = 139). The biased exponent (E) is

expressed as the binary number 10001011. The mantissa is the fractional part (F) of the

binary number, .011010010001. Because there is always a 1 to the left of the binary point

InfoNote

In addition to the CPU (central

processing unit), computers

use coprocessors to perform

complicated mathematical

calculations using floating-point

numbers. The purpose is to increase

performance by freeing up the CPU

for other tasks. The mathematical

coprocessor is also known as the

floating-point unit (FPU).

84 Number Systems, Operations, and Codes

in the power-of-two expression, it is not included in the mantissa. The complete floating-

point number is

 S E F

0 10001011 01101001000100000000000

Next, let’s see how to evaluate a binary number that is already in floating-point format.

The general approach to determining the value of a floating-point number is expressed by

the following formula:

Number = (-1)S(1 + F)(2E-127)

To illustrate, let’s consider the following floating-point binary number:

 S E F

1 10010001 10001110001000000000000

The sign bit is 1. The biased exponent is 10010001 = 145. Applying the formula, we get

 Number = (-1)1 (1.10001110001)(2145-127)

 = (-1)(1.10001110001)(218) = -1100011100010000000

This floating-point binary number is equivalent to 2407,688 in decimal. Since the expo-

nent can be any number between 2126 and +128, extremely large and small numbers can

be expressed. A 32-bit floating-point number can replace a binary integer number having

129 bits. Because the exponent determines the position of the binary point, numbers con-

taining both integer and fractional parts can be represented.

There are two exceptions to the format for floating-point numbers: The number 0.0 is repre-

sented by all 0s, and infinity is represented by all 1s in the exponent and all 0s in the mantissa.

EXAMPLE 2–18

Convert the decimal number 3.248 * 104 to a single-precision floating-point binary number.

Solution

Convert the decimal number to binary.

3.248 * 104
= 32480 = 1111110111000002 = 1.11111011100000 * 214

The MSB will not occupy a bit position because it is always a 1. Therefore, the man-

tissa is the fractional 23-bit binary number 11111011100000000000000 and the biased

exponent is

14 + 127 = 141 = 100011012

The complete floating-point number is

0 10001101 11111011100000000000000

Related Problem

Determine the binary value of the following floating-point binary number:

0 10011000 10000100010100110000000

SECTION 2–6 CHECKUP

 1. Express the decimal number +9 as an 8-bit binary number in the sign-magnitude system.

 2. Express the decimal number 233 as an 8-bit binary number in the 1’s complement

system.

 3. Express the decimal number 246 as an 8-bit binary number in the 2’s complement

system.

 4. List the three parts of a signed, floating-point number.

 Arithmetic Operations with Signed Numbers 85

2–7 Arithmetic Operations with Signed Numbers

In the last section, you learned how signed numbers are represented in three different forms. In

this section, you will learn how signed numbers are added, subtracted, multiplied, and divided.

Because the 2’s complement form for representing signed numbers is the most widely used

in computers and microprocessor-based systems, the coverage in this section is limited to 2’s

complement arithmetic. The processes covered can be extended to the other forms if necessary.

After completing this section, you should be able to

u Add signed binary numbers

u Define overflow

u Explain how computers add strings of numbers

u Subtract signed binary numbers

u Multiply signed binary numbers using the direct addition method

u Multiply signed binary numbers using the partial products method

u Divide signed binary numbers

Addition

The two numbers in an addition are the addend and the augend. The result is the sum.

There are four cases that can occur when two signed binary numbers are added.

 1. Both numbers positive

 2. Positive number with magnitude larger than negative number

 3. Negative number with magnitude larger than positive number

 4. Both numbers negative

Let’s take one case at a time using 8-bit signed numbers as examples. The equivalent decimal

numbers are shown for reference.

Both numbers positive:

00000111

+ 00000100

00001011

7

+ 4

11

The sum is positive and is therefore in true (uncomplemented) binary.

Positive number with magnitude larger than negative number:

00001111

 + 11111010

1 00001001

15

+ -6

9

The final carry bit is discarded. The sum is positive and therefore in true (uncomplemented)

binary.

Negative number with magnitude larger than positive number:

00010000

+ 11101000

11111000

16

 + -24

-8

The sum is negative and therefore in 2’s complement form.

Both numbers negative:

11111011

+ 11110111

1 11110010

-5

+ -9

-14

The final carry bit is discarded. The sum is negative and therefore in 2’s complement form.

Addition of two positive numbers
yields a positive number.

Addition of a positive number and
a smaller negative number yields a
positive number.

Addition of a positive number and
a larger negative number or two
negative numbers yields a negative
number in 2’s complement.

Discard carry

Discard carry

86 Number Systems, Operations, and Codes

Subtraction

Subtraction is a special case of addition. For example, subtracting +6 (the subtrahend)

from +9 (the minuend) is equivalent to adding 26 to +9. Basically, the subtraction opera-

tion changes the sign of the subtrahend and adds it to the minuend. The result of a subtrac-

tion is called the difference.

The sign of a positive or negative binary number is changed by taking its 2’s

complement.

In a computer, the negative numbers are stored in 2’s complement form so, as you can

see, the addition process is very simple: Add the two numbers and discard any final carry bit.

Overflow Condition

When two numbers are added and the number of bits required to represent the sum exceeds

the number of bits in the two numbers, an overflow results as indicated by an incorrect sign

bit. An overflow can occur only when both numbers are positive or both numbers are nega-

tive. If the sign bit of the result is different than the sign bit of the numbers that are added,

overflow is indicated. The following 8-bit example will illustrate this condition.

01111101 125

 + 00111010 + 58

10110111 183

Sign incorrect

Magnitude incorrect

In this example the sum of 183 requires eight magnitude bits. Since there are seven mag-

nitude bits in the numbers (one bit is the sign), there is a carry into the sign bit which pro-

duces the overflow indication.

Numbers Added Two at a Time

Now let’s look at the addition of a string of numbers, added two at a time. This can be accom-

plished by adding the first two numbers, then adding the third number to the sum of the first

two, then adding the fourth number to this result, and so on. This is how computers add strings

of numbers. The addition of numbers taken two at a time is illustrated in Example 2–19.

•
EXAMPLE 2–19

Add the signed numbers: 01000100, 00011011, 00001110, and 00010010.

Solution

The equivalent decimal additions are given for reference.

68 01000100

+ 27 + 00011011

95 01011111

+ 14 + 00001110

109 01101101

+ 18 + 00010010

127 01111111

Add 1st two numbers

1st sum

Add 3rd number

2nd sum

Add 4th number

Final sum

Related Problem

Add 00110011, 10111111, and 01100011. These are signed numbers.

Subtraction is addition with the sign
of the subtrahend changed.

 Arithmetic Operations with Signed Numbers 87

For example, when you take the 2’s complement of the positive number 00000100

(+ 4), you get 11111100, which is 24 as the following sum-of-weights evaluation

shows:

-128 + 64 + 32 + 16 + 8 + 4 = -4

As another example, when you take the 2’s complement of the negative number 11101101

(219), you get 00010011, which is +19 as the following sum-of-weights evaluation

shows:

16 + 2 + 1 = 19

Since subtraction is simply an addition with the sign of the subtrahend changed, the

process is stated as follows:

To subtract two signed numbers, take the 2’s complement of the subtrahend and

add. Discard any final carry bit.

Example 2–20 illustrates the subtraction process.

When you subtract two binary
numbers with the 2’s complement
method, it is important that both
numbers have the same number
of bits.

EXAMPLE 2–20

Perform each of the following subtractions of the signed numbers:

(a) 00001000 2 00000011 (b) 00001100 2 11110111

(c) 11100111 2 00010011 (d) 10001000 2 11100010

Solution

Like in other examples, the equivalent decimal subtractions are given for reference.

(a) In this case, 8 2 3 = 8 + (23) = 5.

00001000

+ 11111101

1 00000101

Minuend (+8)

2>s complement of subtrahend (-3)

Difference (+5)

(b) In this case, 12 2 (29) = 12 + 9 = 21.

00001100

+ 00001001

00010101

Minuend (+12)

2>s complement of subtrahend (+9)

Difference (+21)

(c) In this case, 225 2 (+19) = 225 + (219) = 244.

11100111

+ 11101101

1 11010100

Minuend (-25)

2>s complement of subtrahend (-19)

Difference (-44)

(d) In this case, 2120 2 (230) = 2120 + 30 = 290.

10001000

+ 00011110

10100110

Minuend (-120)

2>s complement of subtrahend (+30)

Difference (-90)

Related Problem

Subtract 01000111 from 01011000.

Discard carry

Discard carry

88 Number Systems, Operations, and Codes

Multiplication

The numbers in a multiplication are the multiplicand, the multiplier, and the product.

These are illustrated in the following decimal multiplication:

8

* 3

24

Multiplicand

Multiplier

Product

The multiplication operation in most computers is accomplished using addition. As you have

already seen, subtraction is done with an adder; now let’s see how multiplication is done.

Direct addition and partial products are two basic methods for performing multiplica-

tion using addition. In the direct addition method, you add the multiplicand a number of

times equal to the multiplier. In the previous decimal example (8 * 3), three multiplicands

are added: 8 + 8 + 8 = 24. The disadvantage of this approach is that it becomes very

lengthy if the multiplier is a large number. For example, to multiply 350 * 75, you must

add 350 to itself 75 times. Incidentally, this is why the term times is used to mean multiply.

When two binary numbers are multiplied, both numbers must be in true (uncomple-

mented) form. The direct addition method is illustrated in Example 2–21 adding two binary

numbers at a time.

Multiplication is equivalent to
adding a number to itself a number
of times equal to the multiplier.

EXAMPLE 2–21

Multiply the signed binary numbers: 01001101 (multiplicand) and 00000100 (multiplier)

using the direct addition method.

Solution

Since both numbers are positive, they are in true form, and the product will be positive. The

decimal value of the multiplier is 4, so the multiplicand is added to itself four times as follows:

01001101 1st time

+ 01001101 2nd time

10011010 Partial sum

+ 01001101 3rd time

11100111 Partial sum

+ 01001101 4th time

100110100 Product

Since the sign bit of the multiplicand is 0, it has no effect on the outcome. All of the

bits in the product are magnitude bits.

Related Problem

Multiply 01100001 by 00000110 using the direct addition method.

The partial products method is perhaps the more common one because it reflects

the way you multiply longhand. The multiplicand is multiplied by each multiplier digit

beginning with the least significant digit. The result of the multiplication of the multi-

plicand by a multiplier digit is called a partial product. Each successive partial product

is moved (shifted) one place to the left and when all the partial products have been pro-

duced, they are added to get the final product. Here is a decimal example.

239

* 123

717

478

+ 239

29,397

Multiplicand

Multiplier

1st partial product (3 * 239)

2nd partial product (2 * 239)

3rd partial product (1 * 239)

Final product

 Arithmetic Operations with Signed Numbers 89

The sign of the product of a multiplication depends on the signs of the multiplicand and

the multiplier according to the following two rules:

• If the signs are the same, the product is positive.

• If the signs are different, the product is negative.

The basic steps in the partial products method of binary multiplication are as follows:

Step 1: Determine if the signs of the multiplicand and multiplier are the same or differ-

ent. This determines what the sign of the product will be.

Step 2: Change any negative number to true (uncomplemented) form. Because most

computers store negative numbers in 2’s complement, a 2’s complement oper-

ation is required to get the negative number into true form.

Step 3: Starting with the least significant multiplier bit, generate the partial products.

When the multiplier bit is 1, the partial product is the same as the multiplicand.

When the multiplier bit is 0, the partial product is zero. Shift each successive

partial product one bit to the left.

Step 4: Add each successive partial product to the sum of the previous partial products

to get the final product.

Step 5: If the sign bit that was determined in step 1 is negative, take the 2’s comple-

ment of the product. If positive, leave the product in true form. Attach the sign

bit to the product.

EXAMPLE 2–22

Multiply the signed binary numbers: 01010011 (multiplicand) and 11000101 (multiplier).

Solution

Step 1: The sign bit of the multiplicand is 0 and the sign bit of the multiplier is 1. The

sign bit of the product will be 1 (negative).

Step 2: Take the 2’s complement of the multiplier to put it in true form.

11000101 h 00111011

Step 3 and 4: The multiplication proceeds as follows. Notice that only the magnitude

bits are used in these steps.

1010011

* 0111011

1010011

+ 1010011

11111001

+ 0000000

011111001

+ 1010011

1110010001

+ 1010011

100011000001

+ 1010011

1001100100001

+ 0000000

1001100100001

Multiplicand

Multiplier

1st partial product

2nd partial product

Sum of 1st and 2nd

3rd partial product

Sum

4th partial product

Sum

5th partial product

Sum

6th partial product

Sum

7th partial product

Final product

90 Number Systems, Operations, and Codes

Division

The numbers in a division are the dividend, the divisor, and the quotient. These are illus-

trated in the following standard division format.

dividend

divisor
= quotient

The division operation in computers is accomplished using subtraction. Since subtraction

is done with an adder, division can also be accomplished with an adder.

The result of a division is called the quotient; the quotient is the number of times that

the divisor will go into the dividend. This means that the divisor can be subtracted from the

dividend a number of times equal to the quotient, as illustrated by dividing 21 by 7.

21

- 7

14

- 7

7

- 7

0

Dividend

1st subtraction of divisor

1st partial remainder

2nd subtraction of divisor

2nd partial remainder

3rd subtraction of divisor

Zero remainder

In this simple example, the divisor was subtracted from the dividend three times before a

remainder of zero was obtained. Therefore, the quotient is 3.

The sign of the quotient depends on the signs of the dividend and the divisor according

to the following two rules:

• If the signs are the same, the quotient is positive.

• If the signs are different, the quotient is negative.

When two binary numbers are divided, both numbers must be in true (uncomplemented)

form. The basic steps in a division process are as follows:

Step 1: Determine if the signs of the dividend and divisor are the same or different. This

determines what the sign of the quotient will be. Initialize the quotient to zero.

Step 2: Subtract the divisor from the dividend using 2’s complement addition to get

the first partial remainder and add 1 to the quotient. If this partial remainder is

positive, go to step 3. If the partial remainder is zero or negative, the division

is complete.

Step 3: Subtract the divisor from the partial remainder and add 1 to the quotient. If the

result is positive, repeat for the next partial remainder. If the result is zero or

negative, the division is complete.

Continue to subtract the divisor from the dividend and the partial remainders until there is

a zero or a negative result. Count the number of times that the divisor is subtracted and you

have the quotient. Example 2–23 illustrates these steps using 8-bit signed binary numbers.

Step 5: Since the sign of the product is a 1 as determined in step 1, take the 2’s com-

plement of the product.

1001100100001 h 0110011011111

Attach the sign bit

1 0110011011111

Related Problem

Verify the multiplication is correct by converting to decimal numbers and performing

the multiplication.

 Arithmetic Operations with Signed Numbers 91

EXAMPLE 2–23

Divide 01100100 by 00011001.

Solution

Step 1: The signs of both numbers are positive, so the quotient will be positive. The

quotient is initially zero: 00000000.

Step 2: Subtract the divisor from the dividend using 2’s complement addition

(remember that final carries are discarded).

01100100

+ 11100111

01001011

Dividend

2>s complement of divisor

Positive 1st partial remainder

 Add 1 to quotient: 00000000 + 00000001 = 00000001.

Step 3: Subtract the divisor from the 1st partial remainder using 2’s complement

addition.

01001011

+ 11100111

00110010

1st partial remainder

2>s complement of divisor

Positive 2nd partial remainder

 Add 1 to quotient: 00000001 + 00000001 = 00000010.

Step 4: Subtract the divisor from the 2nd partial remainder using 2’s complement

addition.

00110010

+ 11100111

00011001

2nd partial remainder

2>s complement of divisor

Positive 3rd partial remainder

 Add 1 to quotient: 00000010 + 00000001 = 00000011.

Step 5: Subtract the divisor from the 3rd partial remainder using 2’s complement

addition.

00011001

+ 11100111

00000000

3rd partial remainder

2>s complement of divisor

Zero remainder

 Add 1 to quotient: 00000011 + 00000001 = 00000100 (final quotient). The

process is complete.

Related Problem

Verify that the process is correct by converting to decimal numbers and performing the

division.

SECTION 2–7 CHECKUP

 1. List the four cases when numbers are added.

 2. Add the signed numbers 00100001 and 10111100.

 3. Subtract the signed numbers 00110010 from 01110111.

 4. What is the sign of the product when two negative numbers are multiplied?

 5. Multiply 01111111 by 00000101.

 6. What is the sign of the quotient when a positive number is divided by a negative number?

 7. Divide 00110000 by 00001100.

92 Number Systems, Operations, and Codes

2–8 Hexadecimal Numbers

The hexadecimal number system has sixteen characters; it is used primarily as a compact

way of displaying or writing binary numbers because it is very easy to convert between

binary and hexadecimal. As you are probably aware, long binary numbers are difficult to

read and write because it is easy to drop or transpose a bit. Since computers and micropro-

cessors understand only 1s and 0s, it is necessary to use these digits when you program in

“machine language.” Imagine writing a sixteen bit instruction for a microprocessor system

in 1s and 0s. It is much more efficient to use hexadecimal or octal; octal numbers are covered

in Section 2–9. Hexadecimal is widely used in computer and microprocessor applications.

After completing this section, you should be able to

u List the hexadecimal characters

u Count in hexadecimal

u Convert from binary to hexadecimal

u Convert from hexadecimal to binary

u Convert from hexadecimal to decimal

u Convert from decimal to hexadecimal

u Add hexadecimal numbers

u Determine the 2’s complement of a hexadecimal number

u Subtract hexadecimal numbers

The hexadecimal number system has a base of sixteen; that is, it is composed of 16

numeric and alphabetic characters. Most digital systems process binary data in groups

that are multiples of four bits, making the hexadecimal number very convenient because

each hexadecimal digit represents a 4-bit binary number (as listed in Table 2–3).

The hexadecimal number system
consists of digits 0–9 and letters A–F.

TABLE 2–3

Decimal Binary Hexadecimal

 0 0000 0

 1 0001 1

 2 0010 2

 3 0011 3

 4 0100 4

 5 0101 5

 6 0110 6

 7 0111 7

 8 1000 8

 9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Ten numeric digits and six alphabetic characters make up the hexadecimal number sys-

tem. The use of letters A, B, C, D, E, and F to represent numbers may seem strange at

first, but keep in mind that any number system is only a set of sequential symbols. If

you understand what quantities these symbols represent, then the form of the symbols

 Hexadecimal Numbers 93

 themselves is less important once you get accustomed to using them. We will use the sub-

script 16 to designate hexadecimal numbers to avoid confusion with decimal numbers.

Sometimes you may see an “h” following a hexadecimal number.

Counting in Hexadecimal

How do you count in hexadecimal once you get to F? Simply start over with another col-

umn and continue as follows:

c, E, F, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2A, 2B, 2C, 2D, 2E, 2F, 30, 31, c

With two hexadecimal digits, you can count up to FF16, which is decimal 255. To count

beyond this, three hexadecimal digits are needed. For instance, 10016 is decimal 256, 10116

is decimal 257, and so forth. The maximum 3-digit hexadecimal number is FFF16, or deci-

mal 4095. The maximum 4-digit hexadecimal number is FFFF16, which is decimal 65,535.

Binary-to-Hexadecimal Conversion

Converting a binary number to hexadecimal is a straightforward procedure. Simply break

the binary number into 4-bit groups, starting at the right-most bit and replace each 4-bit

group with the equivalent hexadecimal symbol.

InfoNote

With memories in the gigabyte

(GB) range, specifying a memory

address in binary is quite

cumbersome. For example, it takes

32 bits to specify an address in

a 4 GB memory. It is much easier

to express a 32-bit code using

8 hexadecimal digits.

EXAMPLE 2–24

Convert the following binary numbers to hexadecimal:

(a) 1100101001010111 (b) 111111000101101001

Solution

(a) 1100101001010111 (b) 00111111000101101001

 C A 5 7 = CA5716 3 F 1 6 9 = 3F16916

 Two zeros have been added in part (b) to complete a 4-bit group at the left.

Related Problem

Convert the binary number 1001111011110011100 to hexadecimal.

e ee ee ee e e
T TT TT TT T T

Hexadecimal-to-Binary Conversion

To convert from a hexadecimal number to a binary number, reverse the process and replace

each hexadecimal symbol with the appropriate four bits.

Hexadecimal is a convenient way
to represent binary numbers.

EXAMPLE 2–25

Determine the binary numbers for the following hexadecimal numbers:

(a) 10A416 (b) CF8E16 (c) 974216

Solution

(a) 1 0 A 4 (b) C F 8 E (c) 9 7 4 2

 1000010100100 1100111110001110 1001011101000010

 In part (a), the MSB is understood to have three zeros preceding it, thus forming a

4-bit group.

Related Problem

Convert the hexadecimal number 6BD3 to binary.

f f fT T T f f f fT T T T f f f fT T T T

94 Number Systems, Operations, and Codes

It should be clear that it is much easier to deal with a hexadecimal number than with the

equivalent binary number. Since conversion is so easy, the hexadecimal system is widely

used for representing binary numbers in programming, printouts, and displays.

Hexadecimal-to-Decimal Conversion

One way to find the decimal equivalent of a hexadecimal number is to first convert the

hexadecimal number to binary and then convert from binary to decimal.

Conversion between hexadecimal
and binary is direct and easy.

EXAMPLE 2–26

Convert the following hexadecimal numbers to decimal:

(a) 1C16 (b) A8516

Solution

Remember, convert the hexadecimal number to binary first, then to decimal.

(a) 1 C

00011100 = 24 + 23 + 22
= 16 + 8 + 4 = 2810

(b) A 8 5

101010000101 = 211 + 29 + 27 + 22 + 20
= 2048 + 512 + 128 + 4 + 1 = 269310

Related Problem

Convert the hexadecimal number 6BD to decimal.

f f fT T T

f fT T

EXAMPLE 2–27

Convert the following hexadecimal numbers to decimal:

(a) E516 (b) B2F816

Solution

Recall from Table 2–3 that letters A through F represent decimal numbers 10 through

15, respectively.

(a) E516 = (E * 16) + (5 * 1) = (14 * 16) + (5 * 1) = 224 + 5 = 22910

(b) B2F816 = (B * 4096) + (2 * 256) + (F * 16) + (8 * 1)

 = (11 * 4096) + (2 * 256) + (15 * 16) + (8 * 1)

 = 45,056 + 512 + 240 + 8 = 45,81610

Related Problem

Convert 60A16 to decimal.

Another way to convert a hexadecimal number to its decimal equivalent is to multiply

the decimal value of each hexadecimal digit by its weight and then take the sum of these

products. The weights of a hexadecimal number are increasing powers of 16 (from right to

left). For a 4-digit hexadecimal number, the weights are

163 162 161 160

4096 256 16 1

A calculator can be used to
perform arithmetic operations with
hexadecimal numbers.

CALCULATOR SESSION

Conversion of a Hexadecimal

Number to a Decimal Number

Convert hexadecimal 28A to

decimal.

 HEX

TI-36X Step 1: 3rd (

 A

 Step 2: 2 8 3rd 1/x

 DEC

 Step 3: 3rd EE

 650

 Hexadecimal Numbers 95

Decimal-to-Hexadecimal Conversion

Repeated division of a decimal number by 16 will produce the equivalent hexadecimal

number, formed by the remainders of the divisions. The first remainder produced is the least

significant digit (LSD). Each successive division by 16 yields a remainder that becomes a

digit in the equivalent hexadecimal number. This procedure is similar to repeated division

by 2 for decimal-to-binary conversion that was covered in Section 2–3. Example 2–28

illustrates the procedure. Note that when a quotient has a fractional part, the fractional part

is multiplied by the divisor to get the remainder.

EXAMPLE 2–28

Convert the decimal number 650 to hexadecimal by repeated division by 16.

Solution

Hexadecimal

remainder

� 40 0.625 � 16 � 10 �

� 2 0.5 � 16 � 8 �

� 0 0.125 � 16 � 2 �

Stop when whole number Hexadecimal number

quotient is zero.
MSD LSD

2 8 A

.125
2

16

.5
40

16

.625
650

16
A

8

2

Related Problem

Convert decimal 2591 to hexadecimal.

Hexadecimal Addition

Addition can be done directly with hexadecimal numbers by remembering that the hexadeci-

mal digits 0 through 9 are equivalent to decimal digits 0 through 9 and that hexadecimal digits

A through F are equivalent to decimal numbers 10 through 15. When adding two hexadeci-

mal numbers, use the following rules. (Decimal numbers are indicated by a subscript 10.)

 1. In any given column of an addition problem, think of the two hexadecimal digits in

terms of their decimal values. For instance, 516 = 510 and C16 = 1210.

 2. If the sum of these two digits is 1510 or less, bring down the corresponding hexa-

decimal digit.

 3. If the sum of these two digits is greater than 1510, bring down the amount of the sum

that exceeds 1610 and carry a 1 to the next column.

CALCULATOR SESSION

Conversion of a Decimal

Number to a Hexadecimal

Number

Convert decimal 650 to hexadecimal.

 DEC

TI-36X Step 1: 3rd EE

 Step 2: 6 5 0

 HEX

 Step 3: 3rd (

 28A

EXAMPLE 2–29

Add the following hexadecimal numbers:

(a) 2316 + 1616 (b) 5816 + 2216 (c) 2B16 + 8416 (d) DF16 + AC16

Solution

(a)

2316

+ 1616

3916

 right column: 316 + 616 = 310 + 610 = 910 = 916

 left column: 216 + 116 = 210 + 110 = 310 = 316

96 Number Systems, Operations, and Codes

Related Problem

Add 4C16 and 3A16.

(b)

5816

+ 2216

7A16

 right column: 816 + 216 = 810 + 210 = 1010 = A16

 left column: 516 + 216 = 510 + 210 = 710 = 716

(c)

2B16

+ 8416

AF16

 right column: B16 + 416 = 1110 + 410 = 1510 = F16

 left column: 216 + 816 = 210 + 810 = 1010 = A16

(d)

DF16

+ AC16

18B16

 right column: F16 + C16 = 1510 + 1210 = 2710

 2710 2 1610 = 1110 = B16 with a 1 carry

 left column: D16 + A16 + 116 = 1310 + 1010 + 110 = 2410

 2410 2 1610 = 810 = 816 with a 1 carry

Hexadecimal Subtraction

As you have learned, the 2’s complement allows you to subtract by adding binary numbers.

Since a hexadecimal number can be used to represent a binary number, it can also be used

to represent the 2’s complement of a binary number.

There are three ways to get the 2’s complement of a hexadecimal number. Method 1 is

the most common and easiest to use. Methods 2 and 3 are alternate methods.

Method 1: Convert the hexadecimal number to binary. Take the 2’s complement of

the binary number. Convert the result to hexadecimal. This is illustrated

in Figure 2–4.

Example:

2’s complement
in hexadecimal

2’s complement
in binary

BinaryHexadecimal

D611010110001010102A

FIGURE 2–4 Getting the 2’s complement of a hexadecimal number, Method 1.

Example:

2’s complement
in hexadecimal

1’s complement
in hexadecimal

plus 1

Subtract from
maximum

Hexadecimal

D6D5 + 1FF – 2A2A

FIGURE 2–5 Getting the 2’s complement of a hexadecimal number, Method 2.

Method 2: Subtract the hexadecimal number from the maximum hexadecimal

number and add 1. This is illustrated in Figure 2–5.

 Hexadecimal Numbers 97

Method 3: Write the sequence of single hexadecimal digits. Write the sequence in

reverse below the forward sequence. The 1’s complement of each hex

digit is the digit directly below it. Add 1 to the resulting number to get the

2’s complement. This is illustrated in Figure 2–6.

Example:

2’s complement
in hexadecimal

D6

1’s complement
in hexadecimal

plus 1

D5 + 1
2
D

3
C

4
B

0
F

Hexadecimal

2A

1
E

2
D

3
C

4
B

5
A

6
9

7
8

8
7

9
6

A
5

B
4

C
3

D
2

E
1

F
0

0
F

1
E

5
A

6
9

7
8

8
7

9
6

A
5

B
4

C
3

D
2

E
1

F
0

FIGURE 2–6 Getting the 2’s complement of a hexadecimal number, Method 3.

EXAMPLE 2–30

Subtract the following hexadecimal numbers:

(a) 8416 - 2A16 (b) C316 - 0B16

Solution

(a) 2A16 = 00101010

 2’s complement of 2A16 = 11010110 = D616 (using Method 1)

8416

+ D616

15A16

Add

Drop carry, as in 2>s complement addition

 The difference is 5A16.

(b) 0B16 = 00001011

 2’s complement of 0B16 = 11110101 = F516 (using Method 1)

C316

+ F516

1B816

Add

Drop carry

 The difference is B816.

Related Problem

Subtract 17316 from BCD16.

SECTION 2–8 CHECKUP

 1. Convert the following binary numbers to hexadecimal:

(a) 10110011 (b) 110011101000

 2. Convert the following hexadecimal numbers to binary:

(a) 5716 (b) 3A516 (c) F80B16

 3. Convert 9B3016 to decimal.

 4. Convert the decimal number 573 to hexadecimal.

98 Number Systems, Operations, and Codes

 5. Add the following hexadecimal numbers directly:

(a) 1816 + 3416 (b) 3F16 + 2A16

 6. Subtract the following hexadecimal numbers:

(a) 7516 - 2116 (b) 9416 - 5C16

2–9 Octal Numbers

Like the hexadecimal number system, the octal number system provides a convenient way

to express binary numbers and codes. However, it is used less frequently than hexadecimal

in conjunction with computers and microprocessors to express binary quantities for input

and output purposes.

After completing this section, you should be able to

u Write the digits of the octal number system

u Convert from octal to decimal

u Convert from decimal to octal

u Convert from octal to binary

u Convert from binary to octal

The octal number system is composed of eight digits, which are

0, 1, 2, 3, 4, 5, 6, 7

To count above 7, begin another column and start over:

10, 11, 12, 13, 14, 15, 16, 17, 20, 21, c

Counting in octal is similar to counting in decimal, except that the digits 8 and 9 are not

used. To distinguish octal numbers from decimal numbers or hexadecimal numbers, we

will use the subscript 8 to indicate an octal number. For instance, 158 in octal is equivalent

to 1310 in decimal and D in hexadecimal. Sometimes you may see an “o” or a “Q” follow-

ing an octal number.

Octal-to-Decimal Conversion

Since the octal number system has a base of eight, each successive digit position is an

increasing power of eight, beginning in the right-most column with 80. The evaluation of

an octal number in terms of its decimal equivalent is accomplished by multiplying each

digit by its weight and summing the products, as illustrated here for 23748.

 Weight: 83 82 81 80

 Octal number: 2 3 7 4

 23748 = (2 * 83) + (3 * 82) + (7 * 81) + (4 * 80)

 = (2 * 512) + (3 * 64) + (7 * 8) + (4 * 1)

 = 1024 + 192 + 56 + 4 = 127610

Decimal-to-Octal Conversion

A method of converting a decimal number to an octal number is the repeated division-

by-8 method, which is similar to the method used in the conversion of decimal numbers to

binary or to hexadecimal. To show how it works, let’s convert the decimal number 359 to

The octal number system has a
base of 8.

 Octal Numbers 99

octal. Each successive division by 8 yields a remainder that becomes a digit in the equiva-

lent octal number. The first remainder generated is the least significant digit (LSD).

7

4

5

Remainder

� 44 0.875 � 8 �

� 5 0.5 � 8 �

� 0 0.625 � 8 �

Stop when whole number Octal number
quotient is zero.

MSD LSD

5 4 7

.625
5

8

.5
44

8

.875
359

8

Octal-to-Binary Conversion

Because each octal digit can be represented by a 3-bit binary number, it is very easy to

convert from octal to binary. Each octal digit is represented by three bits as shown in

Table 2–4.

CALCULATOR SESSION

Conversion of a Decimal

Number to an Octal Number

Convert decimal 439 to octal.

 DEC

TI-36X Step 1: 3rd EE

 Step 2: 4 3 9

 OCT

 Step 3: 3rd)

 667

Octal is a convenient way to
represent binary numbers, but
it is not as commonly used as
hexadecimal.

TABLE 2–4

Octal/binary conversion.

Octal Digit 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

To convert an octal number to a binary number, simply replace each octal digit with the

appropriate three bits.

EXAMPLE 2–31

Convert each of the following octal numbers to binary:

(a) 138 (b) 258 (c) 1408 (d) 75268

Solution

(a) 1 3 (b) 2 5 (c) 1 4 0 (d) 7 5 2 6

 001011 010101 001100000 111101010110

Related Problem

Convert each of the binary numbers to decimal and verify that each value agrees with

the decimal value of the corresponding octal number.

V VT T V VT T V V VT T T V V V VT T T T

Binary-to-Octal Conversion

Conversion of a binary number to an octal number is the reverse of the octal-to-binary

conversion. The procedure is as follows: Start with the right-most group of three bits and,

moving from right to left, convert each 3-bit group to the equivalent octal digit. If there

are not three bits available for the left-most group, add either one or two zeros to make a

complete group. These leading zeros do not affect the value of the binary number.

100 Number Systems, Operations, and Codes

U U

T T

U U U

T T T

U U U U
T T T T

U U U U

T T T T

EXAMPLE 2–32

Convert each of the following binary numbers to octal:

(a) 110101 (b) 101111001 (c) 100110011010 (d) 11010000100

Solution

(a) 110101 (b) 101111001

 6 5 = 658 5 7 1 = 5718

(c) 100110011010 (d) 011010000100

 4 6 3 2 = 46328 3 2 0 4 = 32048

Related Problem

Convert the binary number 1010101000111110010 to octal.

SECTION 2–9 CHECKUP

 1. Convert the following octal numbers to decimal:

(a) 738 (b) 1258

 2. Convert the following decimal numbers to octal:

(a) 9810 (b) 16310

 3. Convert the following octal numbers to binary:

(a) 468 (b) 7238 (c) 56248

 4. Convert the following binary numbers to octal:

(a) 110101111 (b) 1001100010 (c) 10111111001

2–10 Binary Coded Decimal (BCD)

Binary coded decimal (BCD) is a way to express each of the decimal digits with a binary

code. There are only ten code groups in the BCD system, so it is very easy to convert

between decimal and BCD. Because we like to read and write in decimal, the BCD code

provides an excellent interface to binary systems. Examples of such interfaces are keypad

inputs and digital readouts.

After completing this section, you should be able to

u Convert each decimal digit to BCD

u Express decimal numbers in BCD

u Convert from BCD to decimal

u Add BCD numbers

The 8421 BCD Code

The 8421 code is a type of BCD (binary coded decimal) code. Binary coded decimal means

that each decimal digit, 0 through 9, is represented by a binary code of four bits. The desig-

nation 8421 indicates the binary weights of the four bits (23, 22, 21, 20). The ease of conver-

sion between 8421 code numbers and the familiar decimal numbers is the main advantage

In BCD, 4 bits represent each
decimal digit.

 Binary Coded Decimal (BCD) 101

of this code. All you have to remember are the ten binary combinations that represent the

ten decimal digits as shown in Table 2–5. The 8421 code is the predominant BCD code, and

when we refer to BCD, we always mean the 8421 code unless otherwise stated.

TABLE 2–5

Decimal/BCD conversion.

Decimal Digit 0 1 2 3 4 5 6 7 8 9

BCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Invalid Codes

You should realize that, with four bits, sixteen numbers (0000 through 1111) can be repre-

sented but that, in the 8421 code, only ten of these are used. The six code combinations that

are not used—1010, 1011, 1100, 1101, 1110, and 1111—are invalid in the 8421 BCD code.

To express any decimal number in BCD, simply replace each decimal digit with the

appropriate 4-bit code, as shown by Example 2–33.

EXAMPLE 2–33

Convert each of the following decimal numbers to BCD:

(a) 35 (b) 98 (c) 170 (d) 2469

Solution

(a) 3 5 (b) 9 8

 00110101 10011000

(c) 1 7 0 (d) 2 4 6 9

 000101110000 0010010001101001

Related Problem

Convert the decimal number 9673 to BCD.

f fT T f fT T

f f fT T T f f f fT T T T

Convert each of the following BCD codes to decimal:

(a) 10000110 (b) 001101010001 (c) 1001010001110000

Solution

(a) 10000110 (b) 001101010001 (c) 1001010001110000

 8 6 3 5 1 9 4 7 0

Related Problem

Convert the BCD code 10000010001001110110 to decimal.

e e e e

T T T T

e e

T T

e e e

T T T

EXAMPLE 2–34

It is equally easy to determine a decimal number from a BCD number. Start at the

right-most bit and break the code into groups of four bits. Then write the decimal digit

represented by each 4-bit group.

102 Number Systems, Operations, and Codes

Applications

Digital clocks, digital thermometers, digital meters, and other devices with seven-segment

displays typically use BCD code to simplify the displaying of decimal numbers. BCD is

not as efficient as straight binary for calculations, but it is particularly useful if only limited

processing is required, such as in a digital thermometer.

BCD Addition

BCD is a numerical code and can be used in arithmetic operations. Addition is the most

important operation because the other three operations (subtraction, multiplication, and

division) can be accomplished by the use of addition. Here is how to add two BCD

numbers:

Step 1: Add the two BCD numbers, using the rules for binary addition in Section 2–4.

Step 2: If a 4-bit sum is equal to or less than 9, it is a valid BCD number.

Step 3: If a 4-bit sum is greater than 9, or if a carry out of the 4-bit group is generated,

it is an invalid result. Add 6 (0110) to the 4-bit sum in order to skip the six

invalid states and return the code to 8421. If a carry results when 6 is added,

simply add the carry to the next 4-bit group.

Example 2–35 illustrates BCD additions in which the sum in each 4-bit column is equal

to or less than 9, and the 4-bit sums are therefore valid BCD numbers. Example 2–36 illus-

trates the procedure in the case of invalid sums (greater than 9 or a carry).

An alternative method to add BCD numbers is to convert them to decimal, perform the

addition, and then convert the answer back to BCD.

InfoNote

BCD is sometimes used for

arithmetic operations in processors.

To represent BCD numbers in

a processor, they usually are

“packed,” so that eight bits have

two BCD digits. Normally, a

processor will add numbers as if

they were straight binary. Special

instructions are available for

computer programmers to correct

the results when BCD numbers

are added or subtracted. For

example, in Assembly Language,

the programmer will include a

DAA (Decimal Adjust for Addition)

instruction to automatically correct

the answer to BCD following an

addition.

EXAMPLE 2–35

Add the following BCD numbers:

(a) 0011 + 0100 (b) 00100011 + 00010101

(c) 10000110 + 00010011 (d) 010001010000 + 010000010111

Solution

The decimal number additions are shown for comparison.

(a)

0011

+ 0100

0111

3

+ 4

7

(b)

0010

+ 0001

0011

0011

 0101

1000

23

+ 15

38

(c)

1000

+ 0001

1001

0110

 0011

1001

86

+ 13

99

(d)

0100

+ 0100

1000

0101

 0001

0110

0000

 0111

0111

450

+ 417

867

Note that in each case the sum in any 4-bit column does not exceed 9, and the results are

valid BCD numbers.

Related Problem

Add the BCD numbers: 1001000001000011 + 0000100100100101.

EXAMPLE 2–36

Add the following BCD numbers:

(a) 1001 + 0100 (b) 1001 + 1001

(c) 00010110 + 00010101 (d) 01100111 + 01010011

 Binary Coded Decimal (BCD) 103

Solution

The decimal number additions are shown for comparison.

(a) 1001 9

 1 0100 14

 1101 Invalid BCD number (.9) 13

 1 0110 Add 6

 0001 0011 Valid BCD number

 T T
 1 3

(b) 1001 9

 1 1001 1 9

 1 0010 Invalid because of carry 18

 1 0110 Add 6

 0001 1000 Valid BCD number

 T T
 1 8

(c) 0001 0110 16

 1 0001 0101 1 15

 0010 1011 Right group is invalid (.9), 31

 left group is valid.

 1 0110 Add 6 to invalid code. Add

 carry, 0001, to next group.

 0011 0001 Valid BCD number

 T T
 3 1

(d) 0110 0111 67

 1 0101 0011 1 53

 1011 1010 Both groups are invalid (.9) 120

 1 0110 1 0110 Add 6 to both groups

 0001 0010 0000 Valid BCD number

 T T T

 1 2 0

Related Problem

Add the BCD numbers: 01001000 + 00110100.

ee
ee

ee
ee e

SECTION 2–10 CHECKUP

 1. What is the binary weight of each 1 in the following BCD numbers?

(a) 0010 (b) 1000 (c) 0001 (d) 0100

 2. Convert the following decimal numbers to BCD:

(a) 6 (b) 15 (c) 273 (d) 849

 3. What decimal numbers are represented by each BCD code?

(a) 10001001 (b) 001001111000 (c) 000101010111

 4. In BCD addition, when is a 4-bit sum invalid?

104 Number Systems, Operations, and Codes

2–11 Digital Codes

Many specialized codes are used in digital systems. You have just learned about the BCD

code; now let’s look at a few others. Some codes are strictly numeric, like BCD, and oth-

ers are alphanumeric; that is, they are used to represent numbers, letters, symbols, and

instructions. The codes introduced in this section are the Gray code, the ASCII code, and

the Unicode.

After completing this section, you should be able to

u Explain the advantage of the Gray code

u Convert between Gray code and binary

u Use the ASCII code

u Discuss the Unicode

The Gray Code

The Gray code is unweighted and is not an arithmetic code; that is, there are no specific

weights assigned to the bit positions. The important feature of the Gray code is that it

exhibits only a single bit change from one code word to the next in sequence. This property

is important in many applications, such as shaft position encoders, where error suscepti-

bility increases with the number of bit changes between adjacent numbers in a sequence.

Table 2–6 is a listing of the 4-bit Gray code for decimal numbers 0 through 15. Binary

numbers are shown in the table for reference. Like binary numbers, the Gray code can have

any number of bits. Notice the single-bit change between successive Gray code words.

For instance, in going from decimal 3 to decimal 4, the Gray code changes from 0010 to

0110, while the binary code changes from 0011 to 0100, a change of three bits. The only

bit change in the Gray code is in the third bit from the right: the other bits remain the same.

The single bit change characteristic
of the Gray code minimizes the
chance for error.

TABLE 2–6

Four-bit Gray code.

Decimal Binary Gray Code Decimal Binary Gray Code

0 0000 0000 8 1000 1100

1 0001 0001 9 1001 1101

2 0010 0011 10 1010 1111

3 0011 0010 11 1011 1110

4 0100 0110 12 1100 1010

5 0101 0111 13 1101 1011

6 0110 0101 14 1110 1001

7 0111 0100 15 1111 1000

Binary-to-Gray Code Conversion

Conversion between binary code and Gray code is sometimes useful. The following rules

explain how to convert from a binary number to a Gray code word:

 1. The most significant bit (left-most) in the Gray code is the same as the corresponding

MSB in the binary number.

 2. Going from left to right, add each adjacent pair of binary code bits to get the next

Gray code bit. Discard carries.

 Digital Codes 105

For example, the conversion of the binary number 10110 to Gray code is as follows:

1- + S 0- + S 1- + S 1- + S 0 Binary

T T T T T
1 1 1 0 1 Gray

The Gray code is 11101.

Gray-to-Binary Code Conversion

To convert from Gray code to binary, use a similar method; however, there are some differ-

ences. The following rules apply:

 1. The most significant bit (left-most) in the binary code is the same as the correspond-

ing bit in the Gray code.

 2. Add each binary code bit generated to the Gray code bit in the next adjacent position.

Discard carries.

For example, the conversion of the Gray code word 11011 to binary is as follows:

1 1 0 1 1 Gray

1 0 0 1 0 Binary

The binary number is 10010.

� ↓

↓

� ↓

↓

� ↓

↓

� ↓↓

↓

EXAMPLE 2–37

(a) Convert the binary number 11000110 to Gray code.

(b) Convert the Gray code 10101111 to binary.

Solution

(a) Binary to Gray code:

1- + S 1- + S 0- + S 0- + S 0- + S 1- + S 1- + S 0

 T T T T T T T T
 1 0 1 0 0 1 0 1

(b) Gray code to binary:

1 0 1 0 1 1 1 1

1 1 0 0 1 0 1 0

Related Problem

(a) Convert binary 101101 to Gray code.

(b) Convert Gray code 100111 to binary.

↓� ↓

↓

�

↓

↓� ↓

↓

� ↓

↓

� ↓

↓

�

↓

↓�

↓

↓

An Application

The concept of a 3-bit shaft position encoder is shown in Figure 2–7. Basically, there are

three concentric rings that are segmented into eight sectors. The more sectors there

are, the more accurately the position can be represented, but we are using only eight

to illustrate. Each sector of each ring is either reflective or nonreflective. As the rings

rotate with the shaft, they come under an IR emitter that produces three separate IR

beams. A 1 is indicated where there is a reflected beam, and a 0 is indicated where

there is no reflected beam. The IR detector senses the presence or absence of reflected

106 Number Systems, Operations, and Codes

(a) Binary code (b) Gray code

000

001

111110

101

100

011 010

1

1

0

000

001

100101

111

110

010 011

1

1

1IR
emitter/detector

IR beams

Reflected Nonreflected

IR
emitter/detector

FIGURE 2–7 A simplified illustration of how the Gray code solves the error problem in

shaft position encoders. Three bits are shown to illustrate the concept, although most shaft

encoders use more than 10 bits to achieve a higher resolution.

beams and produces a corresponding 3-bit code. The IR emitter/detector is in a fixed

position. As the shaft rotates counterclockwise through 360°, the eight sectors move

under the three beams. Each beam is either reflected or absorbed by the sector surface

to represent a binary or Gray code number that indicates the shaft position.

In Figure 2–7(a), the sectors are arranged in a straight binary pattern, so that the detector

output goes from 000 to 001 to 010 to 011 and so on. When a beam is aligned over a reflective

sector, the output is 1; when a beam is aligned over a nonreflective sector, the output is 0. If

one beam is slightly ahead of the others during the transition from one sector to the next, an

erroneous output can occur. Consider what happens when the beams are on the 111 sector and

about to enter the 000 sector. If the MSB beam is slightly ahead, the position would be incor-

rectly indicated by a transitional 011 instead of a 111 or a 000. In this type of application, it

is virtually impossible to maintain precise mechanical alignment of the IR emitter/detector

beams; therefore, some error will usually occur at many of the transitions between sectors.

The Gray code is used to eliminate the error problem which is inherent in the binary code.

As shown in Figure 2–7(b), the Gray code assures that only one bit will change between

adjacent sectors. This means that even though the beams may not be in precise alignment,

there will never be a transitional error. For example, let’s again consider what happens when

the beams are on the 111 sector and about to move into the next sector, 101. The only two

possible outputs during the transition are 111 and 101, no matter how the beams are aligned.

A similar situation occurs at the transitions between each of the other sectors.

Alphanumeric Codes

In order to communicate, you need not only numbers, but also letters and other symbols. In

the strictest sense, alphanumeric codes are codes that represent numbers and alphabetic

characters (letters). Most such codes, however, also represent other characters such as sym-

bols and various instructions necessary for conveying information.

At a minimum, an alphanumeric code must represent 10 decimal digits and 26 letters of the

alphabet, for a total of 36 items. This number requires six bits in each code combination because

five bits are insufficient (25
= 32). There are 64 total combinations of six bits, so there are

28 unused code combinations. Obviously, in many applications, symbols other than just num-

bers and letters are necessary to communicate completely. You need spaces, periods, colons,

semicolons, question marks, etc. You also need instructions to tell the receiving system what to

do with the information. With codes that are six bits long, you can handle decimal numbers, the

alphabet, and 28 other symbols. This should give you an idea of the requirements for a basic

alphanumeric code. The ASCII is a common alphanumeric code and is covered next.

 Digital Codes 107

ASCII

ASCII is the abbreviation for American Standard Code for Information Interchange. Pro-

nounced “askee,” ASCII is a universally accepted alphanumeric code used in most comput-

ers and other electronic equipment. Most computer keyboards are standardized with the

ASCII. When you enter a letter, a number, or control command, the corresponding ASCII

code goes into the computer.

ASCII has 128 characters and symbols represented by a 7-bit binary code. Actually,

ASCII can be considered an 8-bit code with the MSB always 0. This 8-bit code is 00

through 7F in hexadecimal. The first thirty-two ASCII characters are nongraphic com-

mands that are never printed or displayed and are used only for control purposes. Examples

of the control characters are “null,” “line feed,” “start of text,” and “escape.” The other

characters are graphic symbols that can be printed or displayed and include the letters of

the alphabet (lowercase and uppercase), the ten decimal digits, punctuation signs, and other

commonly used symbols.

Table 2–7 is a listing of the ASCII code showing the decimal, hexadecimal, and binary

representations for each character and symbol. The left section of the table lists the names

of the 32 control characters (00 through 1F hexadecimal). The graphic symbols are listed

in the rest of the table (20 through 7F hexadecimal).

InfoNote

A computer keyboard has a

dedicated microprocessor that

constantly scans keyboard

circuits to detect when a key has

been pressed and released. A

unique scan code is produced by

computer software representing

that particular key. The scan

code is then converted to an

alphanumeric code (ASCII) for

use by the computer.

EXAMPLE 2–38

Use Table 2–7 to determine the binary ASCII codes that are entered from the compu-

ter’s keyboard when the following C language program statement is typed in. Also

express each code in hexadecimal.

if (x 7 5)

Solution

The ASCII code for each symbol is found in Table 2–7.

Symbol Binary Hexadecimal

i 1101001 6916

f 1100110 6616

Space 0100000 2016

(0101000 2816

x 1111000 7816

> 0111110 3E16

5 0110101 3516

) 0101001 2916

Related Problem

Use Table 2–7 to determine the sequence of ASCII codes required for the following

C program statement and express each code in hexadecimal:

if (y 6 8)

The ASCII Control Characters

The first thirty-two codes in the ASCII table (Table 2–7) represent the control characters.

These are used to allow devices such as a computer and printer to communicate with each

other when passing information and data. The control key function allows a control char-

acter to be entered directly from an ASCII keyboard by pressing the control key (CTRL)

and the corresponding symbol.

108

T
A

B
L

E
 2

–
7

A
m

e
ri
c
a
n
 S

ta
n
d
a
rd

 C
o
d
e
 f
o
r

In
fo

rm
a
ti
o
n
 I
n
te

rc
h
a
n
g
e
 (

A
S

C
II
).

C
o
n

tr
o
l

C
h

a
ra

ct
er

s
G

ra
p

h
ic

 S
y
m

b
o
ls

N
a
m

e
D

ec
B

in
a
ry

H
ex

S
y
m

b
o
l

D
ec

B
in

a
ry

H
ex

S
y
m

b
o
l

D
ec

B
in

a
ry

H
ex

S
y
m

b
o
l

D
ec

B
in

a
ry

H
ex

N
U

L

0

0
0
0
0
0
0
0

0
0

sp
ac

e
3
2

0
1
0
0
0
0
0

2
0

@
6
4

1
0
0
0
0
0
0

4
0

9

9
6

1
1
0
0
0
0
0

6
0

S
O

H

1

0
0
0
0
0
0
1

0
1

!
3
3

0
1
0
0
0
0
1

2
1

A
6
5

1
0
0
0
0
0
1

4
1

a

9
7

1
1
0
0
0
0
1

6
1

S
T

X

2

0
0
0
0
0
1
0

0
2

”
3
4

0
1
0
0
0
1
0

2
2

B
6
6

1
0
0
0
0
1
0

4
2

b

9
8

1
1
0
0
0
1
0

6
2

E
T

X

3

0
0
0
0
0
1
1

0
3

#
3
5

0
1
0
0
0
1
1

2
3

C
6
7

1
0
0
0
0
1
1

4
3

c

9
9

1
1
0
0
0
1
1

6
3

E
O

T

4

0
0
0
0
1
0
0

0
4

$
3
6

0
1
0
0
1
0
0

2
4

D
6
8

1
0
0
0
1
0
0

4
4

d
1
0
0

1
1
0
0
1
0
0

6
4

E
N

Q

5

0
0
0
0
1
0
1

0
5

%
3
7

0
1
0
0
1
0
1

2
5

E
6
9

1
0
0
0
1
0
1

4
5

e
1
0
1

1
1
0
0
1
0
1

6
5

A
C

K

6

0
0
0
0
1
1
0

0
6

&
3
8

0
1
0
0
1
1
0

2
6

F
7
0

1
0
0
0
1
1
0

4
6

f
1
0
2

1
1
0
0
1
1
0

6
6

B
E

L

7

0
0
0
0
1
1
1

0
7

’
3
9

0
1
0
0
1
1
1

2
7

G
7
1

1
0
0
0
1
1
1

4
7

g
1
0
3

1
1
0
0
1
1
1

6
7

B
S

8

0
0
0
1
0
0
0

0
8

(
4
0

0
1
0
1
0
0
0

2
8

H
7
2

1
0
0
1
0
0
0

4
8

h
1
0
4

1
1
0
1
0
0
0

6
8

H
T

9

0
0
0
1
0
0
1

0
9

)
4
1

0
1
0
1
0
0
1

2
9

I
7
3

1
0
0
1
0
0
1

4
9

i
1
0
5

1
1
0
1
0
0
1

6
9

L
F

1
0

0
0
0
1
0
1
0

0
A

*
4
2

0
1
0
1
0
1
0

2
A

J
7
4

1
0
0
1
0
1
0

4
A

j
1
0
6

1
1
0
1
0
1
0

6
A

V
T

1
1

0
0
0
1
0
1
1

0
B

1
4
3

0
1
0
1
0
1
1

2
B

K
7
5

1
0
0
1
0
1
1

4
B

k
1
0
7

1
1
0
1
0
1
1

6
B

F
F

1
2

0
0
0
1
1
0
0

0
C

,
4
4

0
1
0
1
1
0
0

2
C

L
7
6

1
0
0
1
1
0
0

4
C

l
1
0
8

1
1
0
1
1
0
0

6
C

C
R

1
3

0
0
0
1
1
0
1

0
D

2
4
5

0
1
0
1
1
0
1

2
D

M
7
7

1
0
0
1
1
0
1

4
D

m
1
0
9

1
1
0
1
1
0
1

6
D

S
O

1
4

0
0
0
1
1
1
0

0
E

.
4
6

0
1
0
1
1
1
0

2
E

N
7
8

1
0
0
1
1
1
0

4
E

n
1
1
0

1
1
0
1
1
1
0

6
E

S
I

1
5

0
0
0
1
1
1
1

0
F

/
4
7

0
1
0
1
1
1
1

2
F

O
7
9

1
0
0
1
1
1
1

4
F

o
1
1
1

1
1
0
1
1
1
1

6
F

D
L

E
1
6

0
0
1
0
0
0
0

1
0

0
4
8

0
1
1
0
0
0
0

3
0

P
8
0

1
0
1
0
0
0
0

5
0

p
1
1
2

1
1
1
0
0
0
0

7
0

D
C

1
1
7

0
0
1
0
0
0
1

1
1

1
4
9

0
1
1
0
0
0
1

3
1

Q
8
1

1
0
1
0
0
0
1

5
1

q
1
1
3

1
1
1
0
0
0
1

7
1

D
C

2
1
8

0
0
1
0
0
1
0

1
2

2
5
0

0
1
1
0
0
1
0

3
2

R
8
2

1
0
1
0
0
1
0

5
2

r
1
1
4

1
1
1
0
0
1
0

7
2

D
C

3
1
9

0
0
1
0
0
1
1

1
3

3
5
1

0
1
1
0
0
1
1

3
3

S
8
3

1
0
1
0
0
1
1

5
3

s
1
1
5

1
1
1
0
0
1
1

7
3

D
C

4
2
0

0
0
1
0
1
0
0

1
4

4
5
2

0
1
1
0
1
0
0

3
4

T
8
4

1
0
1
0
1
0
0

5
4

t
1
1
6

1
1
1
0
1
0
0

7
4

N
A

K
2
1

0
0
1
0
1
0
1

1
5

5
5
3

0
1
1
0
1
0
1

3
5

U
8
5

1
0
1
0
1
0
1

5
5

u
1
1
7

1
1
1
0
1
0
1

7
5

S
Y

N
2
2

0
0
1
0
1
1
0

1
6

6
5
4

0
1
1
0
1
1
0

3
6

V
8
6

1
0
1
0
1
1
0

5
6

v
1
1
8

1
1
1
0
1
1
0

7
6

E
T

B
2
3

0
0
1
0
1
1
1

1
7

7
5
5

0
1
1
0
1
1
1

3
7

W
8
7

1
0
1
0
1
1
1

5
7

w
1
1
9

1
1
1
0
1
1
1

7
7

C
A

N
2
4

0
0
1
1
0
0
0

1
8

8
5
6

0
1
1
1
0
0
0

3
8

X
8
8

1
0
1
1
0
0
0

5
8

x
1
2
0

1
1
1
1
0
0
0

7
8

E
M

2
5

0
0
1
1
0
0
1

1
9

9
5
7

0
1
1
1
0
0
1

3
9

Y
8
9

1
0
1
1
0
0
1

5
9

y
1
2
1

1
1
1
1
0
0
1

7
9

S
U

B
2
6

0
0
1
1
0
1
0

1
A

:
5
8

0
1
1
1
0
1
0

3
A

Z
9
0

1
0
1
1
0
1
0

5
A

z
1
2
2

1
1
1
1
0
1
0

7
A

E
S

C
2
7

0
0
1
1
0
1
1

1
B

;
5
9

0
1
1
1
0
1
1

3
B

[
9
1

1
0
1
1
0
1
1

5
B

{
1
2
3

1
1
1
1
0
1
1

7
B

F
S

2
8

0
0
1
1
1
0
0

1
C

<
6
0

0
1
1
1
1
0
0

3
C

\
9
2

1
0
1
1
1
0
0

5
C

|
1
2
4

1
1
1
1
1
0
0

7
C

G
S

2
9

0
0
1
1
1
0
1

1
D

5
6
1

0
1
1
1
1
0
1

3
D

]
9
3

1
0
1
1
1
0
1

5
D

}
1
2
5

1
1
1
1
1
0
1

7
D

R
S

3
0

0
0
1
1
1
1
0

1
E

>
6
2

0
1
1
1
1
1
0

3
E

^
9
4

1
0
1
1
1
1
0

5
E

,
1
2
6

1
1
1
1
1
1
0

7
E

U
S

3
1

0
0
1
1
1
1
1

1
F

?
6
3

0
1
1
1
1
1
1

3
F

_
9
5

1
0
1
1
1
1
1

5
F

D
el

1
2
7

1
1
1
1
1
1
1

7
F

 Error Codes 109

Extended ASCII Characters

In addition to the 128 standard ASCII characters, there are an additional 128 characters that

were adopted by IBM for use in their PCs (personal computers). Because of the popularity

of the PC, these particular extended ASCII characters are also used in applications other

than PCs and have become essentially an unofficial standard.

The extended ASCII characters are represented by an 8-bit code series from hexadecimal

80 to hexadecimal FF and can be grouped into the following general categories: foreign

(non-English) alphabetic characters, foreign currency symbols, Greek letters, mathematical

symbols, drawing characters, bar graphing characters, and shading characters.

Unicode

Unicode provides the ability to encode all of the characters used for the written languages

of the world by assigning each character a unique numeric value and name utilizing the

universal character set (UCS). It is applicable in computer applications dealing with multi-

lingual text, mathematical symbols, or other technical characters.

Unicode has a wide array of characters, and their various encoding forms are used in many

environments. While ASCII basically uses 7-bit codes, Unicode uses relatively abstract “code

points”—non-negative integer numbers—that map sequences of one or more bytes, using

different encoding forms and schemes. To permit compatibility, Unicode assigns the first 128

code points to the same characters as ASCII. One can, therefore, think of ASCII as a 7-bit

encoding scheme for a very small subset of Unicode and of the UCS.

Unicode consists of about 100,000 characters, a set of code charts for visual reference,

an encoding methodology and set of standard character encodings, and an enumeration

of character properties such as uppercase and lowercase. It also consists of a number of

related items, such as character properties, rules for text normalization, decomposition,

collation, rendering, and bidirectional display order (for the correct display of text contain-

ing both right-to-left scripts, such as Arabic or Hebrew, and left-to-right scripts).

SECTION 2–11 CHECKUP

 1. Convert the following binary numbers to the Gray code:

(a) 1100 (b) 1010 (c) 11010

 2. Convert the following Gray codes to binary:

(a) 1000 (b) 1010 (c) 11101

 3. What is the ASCII representation for each of the following characters? Express each

as a bit pattern and in hexadecimal notation.

 (a) K (b) r (c) $ (d) 1

2–12 Error Codes

In this section, three methods for adding bits to codes to detect a single-bit error are dis-

cussed. The parity method of error detection is introduced, and the cyclic redundancy

check is discussed. Also, the Hamming code for error detection and correction is presented.

After completing this section, you should be able to

u Determine if there is an error in a code based on the parity bit

u Assign the proper parity bit to a code

u Explain the cyclic redundancy (CRC) check

u Describe the Hamming code

110 Number Systems, Operations, and Codes

Parity Method for Error Detection

Many systems use a parity bit as a means for bit error detection. Any group of bits contain

either an even or an odd number of 1s. A parity bit is attached to a group of bits to make

the total number of 1s in a group always even or always odd. An even parity bit makes the

total number of 1s even, and an odd parity bit makes the total odd.

A given system operates with even or odd parity, but not both. For instance, if a system

operates with even parity, a check is made on each group of bits received to make sure the

total number of 1s in that group is even. If there is an odd number of 1s, an error has occurred.

As an illustration of how parity bits are attached to a code, Table 2–8 lists the parity bits

for each BCD number for both even and odd parity. The parity bit for each BCD number is in

the P column.

A parity bit tells if the number of 1s
is odd or even.

TABLE 2–8

The BCD code with parity bits.

Even Parity Odd Parity

P BCD P BCD

0 0000 1 0000

1 0001 0 0001

1 0010 0 0010

0 0011 1 0011

1 0100 0 0100

0 0101 1 0101

0 0110 1 0110

1 0111 0 0111

1 1000 0 1000

0 1001 1 1001

The parity bit can be attached to the code at either the beginning or the end, depending

on system design. Notice that the total number of 1s, including the parity bit, is always even

for even parity and always odd for odd parity.

Detecting an Error

A parity bit provides for the detection of a single bit error (or any odd number of errors, which

is very unlikely) but cannot check for two errors in one group. For instance, let’s assume that

we wish to transmit the BCD code 0101. (Parity can be used with any number of bits; we are

using four for illustration.) The total code transmitted, including the even parity bit, is

Even parity bit

00101

 BCD code

Now let’s assume that an error occurs in the third bit from the left (the 1 becomes a 0).

Even parity bit

00001

 Bit error

When this code is received, the parity check circuitry determines that there is only a single

1 (odd number), when there should be an even number of 1s. Because an even number of

1s does not appear in the code when it is received, an error is indicated.

An odd parity bit also provides in a similar manner for the detection of a single error in

a given group of bits.

e

 Error Codes 111

EXAMPLE 2–39

Assign the proper even parity bit to the following code groups:

(a) 1010 (b) 111000 (c) 101101

(d) 1000111001001 (e) 101101011111

Solution

Make the parity bit either 1 or 0 as necessary to make the total number of 1s even. The

parity bit will be the left-most bit (color).

(a) 01010 (b) 1111000 (c) 0101101

(d) 0100011100101 (e) 1101101011111

Related Problem

Add an even parity bit to the 7-bit ASCII code for the letter K.

EXAMPLE 2–40

An odd parity system receives the following code groups: 10110, 11010, 110011,

110101110100, and 1100010101010. Determine which groups, if any, are in error.

Solution

Since odd parity is required, any group with an even number of 1s is incorrect. The

following groups are in error: 110011 and 1100010101010.

Related Problem

The following ASCII character is received by an odd parity system: 00110111. Is it correct?

Cyclic Redundancy Check

The cyclic redundancy check (CRC) is a widely used code used for detecting one- and

two-bit transmission errors when digital data are transferred on a communication link.

The communication link can be between two computers that are connected to a network

or between a digital storage device (such as a CD, DVD, or a hard drive) and a PC. If it is

properly designed, the CRC can also detect multiple errors for a number of bits in sequence

(burst errors). In CRC, a certain number of check bits, sometimes called a checksum, are

appended to the data bits (added to end) that are being transmitted. The transmitted data

are tested by the receiver for errors using the CRC. Not every possible error can be identi-

fied, but the CRC is much more efficient than just a simple parity check.

CRC is often described mathematically as the division of two polynomials to generate a

remainder. A polynomial is a mathematical expression that is a sum of terms with positive

exponents. When the coefficients are limited to 1s and 0s, it is called a univariate polynomial.

An example of a univariate polynomial is 1x3 + 0x2 + 1x1 + 1x0 or simply x3 + x1 + x0,

which can be fully described by the 4-bit binary number 1011. Most cyclic redundancy checks

use a 16-bit or larger polynomial, but for simplicity the process is illustrated here with four bits.

Modulo-2 Operations

Simply put, CRC is based on the division of two binary numbers; and, as you know, division

is just a series of subtractions and shifts. To do subtraction, a method called modulo-2 addi-

tion can be used. Modulo-2 addition (or subtraction) is the same as binary addition with the

carries discarded, as shown in the truth table in Table 2–9. Truth tables are widely used to

describe the operation of logic circuits, as you will learn in Chapter 3. With two bits, there

is a total of four possible combinations, as shown in the table. This particular table describes

the modulo-2 operation also known as exclusive-OR and can be implemented with a logic

TABLE 2–9

Modulo-2 operation.

Input Bits Output Bit

0 0 0

0 1 1

1 0 1

1 1 0

112 Number Systems, Operations, and Codes

gate that will be introduced in Chapter 3. A simple rule for modulo-2 is that the output is 1

if the inputs are different; otherwise, it is 0.

CRC Process

The process is as follows:

 1. Select a fixed generator code; it can have fewer bits than the data bits to be checked.

This code is understood in advance by both the sending and receiving devices and

must be the same for both.

 2. Append a number of 0s equal to the number of bits in the generator code to the data bits.

 3. Divide the data bits including the appended bits by the generator code bits using

modulo-2.

 4. If the remainder is 0, the data and appended bits are sent as is.

 5. If the remainder is not 0, the appended bits are made equal to the remainder bits in

order to get a 0 remainder before data are sent.

 6. At the receiving end, the receiver divides the incoming appended data bit code by

the same generator code as used by the sender.

 7. If the remainder is 0, there is no error detected (it is possible in rare cases for multi-

ple errors to cancel). If the remainder is not 0, an error has been detected in the trans-

mission and a retransmission is requested by the receiver.

Figure 2–8 illustrates the CRC process.

Remainder � 0

(a) Transmitting end of communication link

Remainder � 0

Append data

bits with

remainder

(initially

with x zeros).

Divide using

modulo-2

subtraction.

Send.

Check

remainder.

Data bits plus

appended bitsData bits plus appended bits

y data bits

x-bit generator code

Remainder � 0

(b) Receiving end of communication link

Remainder � 0

Divide using

modulo-2

subtraction.

Error(s).

Request

retransmission.

No errors.

Process the

data bits.

Check

remainder.

Data bits

x-bit generator code

Data bits plus appended bits

FIGURE 2–8 The CRC process.

 Error Codes 113

EXAMPLE 2–41

Determine the transmitted CRC for the following byte of data (D) and generator code

(G). Verify that the remainder is 0.

D: 11010011

G: 1010

Solution

Since the generator code has four data bits, add four 0s (blue) to the data byte. The

appended data (D9) is

D� = 110100110000

Divide the appended data by the generator code (red) using the modulo-2 operation until

all bits have been used.

D�

G
=

110100110000

1010

110100110000

1010

 1110

 1010

 1000

 1010

 1011

 1010

 1000

 1010

 100

Remainder = 0100. Since the remainder is not 0, append the data with the four

remainder bits (blue). Then divide by the generator code (red). The transmitted CRC is

110100110100.

110100110100

1010

1110

1010

1000

1010

1011

1010

1010

1010

00

Remainder = 0

Related Problem

Change the generator code to 1100 and verify that a 0 remainder results when the CRC

process is applied to the data byte (11010011).

114 Number Systems, Operations, and Codes

EXAMPLE 2–42

During transmission, an error occurs in the second bit from the left in the appended data

byte generated in Example 2–41. The received data is

D� = 100100110100

Apply the CRC process to the received data to detect the error using the same generator

code (1010).

Solution

100100110100

1010

 1100

 1010

 1101

 1010

 1111

 1010

 1010

 1010

 0100

Remainder = 0100. Since it is not zero, an error is indicated.

Related Problem

Assume two errors in the data byte as follows: 10011011. Apply the CRC process to

check for the errors using the same received data and the same generator code.

Hamming Code

The Hamming code is used to detect and correct a single-bit error in a transmitted code.

To accomplish this, four redundancy bits are introduced in a 7-bit group of data bits. These

redundancy bits are interspersed at bit positions 2n (n = 0, 1, 2, 3) within the original data

bits. At the end of the transmission, the redundancy bits have to be removed from the data

bits. A recent version of the Hamming code places all the redundancy bits at the end of the

data bits, making their removal easier than that of the interspersed bits. A coverage of the

classic Hamming code is available on the website.

SECTION 2–12 CHECKUP

 1. Which odd-parity code is in error?

(a) 1011 (b) 1110 (c) 0101 (d) 1000

 2. Which even-parity code is in error?

 (a) 11000110 (b) 00101000 (c) 10101010 (d) 11111011

 3. Add an even parity bit to the end of each of the following codes.

 (a) 1010100 (b) 0100000 (c) 1110111 (d) 1000110

 4. What does CRC stand for?

 5. Apply modulo-2 operations to determine the following:

 (a) 1 + 1 (b) 1 2 1 (c) 1 2 0 (d) 0 + 1

