
32

2
x86 Processor
Architecture

2.1 General Concepts
2.1.1 Basic Microcomputer Design
2.1.2 Instruction Execution Cycle
2.1.3 Reading from Memory
2.1.4 Loading and Executing a Program
2.1.5 Section Review

2.2 32-Bit x86 Processors
2.2.1 Modes of Operation
2.2.2 Basic Execution Environment
2.2.3 x86 Memory Management
2.2.4 Section Review

2.3 64-Bit x86-64 Processors
2.3.1 64-Bit Operation Modes
2.3.2 Basic 64-Bit Execution Environment

2.4 Components of a Typical x86 Computer
2.4.1 Motherboard
2.4.2 Memory
2.4.3 Section Review

2.5 Input-Output System
2.5.1 Levels of I/O Access
2.5.2 Section Review

2.6 Chapter Summary
2.7 Key Terms
2.8 Review Questions

This chapter focuses on the underlying hardware associated with x86 assembly language. It may
be said that assembly language is the ideal software tool for communicating directly with a
machine. If that is true, then assembly programmers must be intimately familiar with the proces-
sor’s internal architecture and capabilities. We will discuss some of the basic operations that take
place inside the processor when instructions are executed. We will talk about how programs are
loaded and executed by the operating system. A sample motherboard layout will give some
insight into the hardware environment of x86 systems, and the chapter ends with a discussion of
how layered input/output works between application programs and operating systems. All of the
topics in this chapter provide the hardware foundation for you to begin writing assembly lan-
guage programs.

2.1 General Concepts 33

2.1 General Concepts
This chapter describes the architecture of the x86 processor family and its host computer sys-
tem from a programmer’s point of view. Included in this group are all Intel IA-32 and Intel 64
processors, such as the Intel Pentium and Core-Duo, as well as the Advanced Micro Devices
(AMD) processors, such as Athlon, Phenom, Opteron, and AMD64. Assembly language is a great
tool for learning how a computer works, and it requires you to have a working knowledge of com-
puter hardware. To that end, the concepts and details in this chapter will help you to understand
the assembly language code you write.

We strike a balance between concepts applying to all microcomputer systems and specifics
about x86 processors. You may work on various processors in the future, so we expose you to
broad concepts. To avoid giving you a superficial understanding of machine architecture, we focus
on specifics of the x86, which will give you a solid grounding when programming in assembly
language.

2.1.1 Basic Microcomputer Design
Figure 2-1 shows the basic design of a hypothetical microcomputer. The central processor
unit (CPU), where calculations and logical operations take place, contains a limited number of
storage locations named registers, a high-frequency clock, a control unit, and an arithmetic
logic unit.

• The clock synchronizes the internal operations of the CPU with other system components.
• The control unit (CU) coordinates the sequencing of steps involved in executing machine

instructions.
• The arithmetic logic unit (ALU) performs arithmetic operations such as addition and subtrac-

tion and logical operations such as AND, OR, and NOT.

The CPU is attached to the rest of the computer via pins attached to the CPU socket in the
computer’s motherboard. Most pins connect to the data bus, the control bus, and the address bus.
The memory storage unit is where instructions and data are held while a computer program is
running. The storage unit receives requests for data from the CPU, transfers data from random
access memory (RAM) to the CPU, and transfers data from the CPU into memory. All process-
ing of data takes place within the CPU, so programs residing in memory must be copied into the
CPU before they can execute. Individual program instructions can be copied into the CPU one at
a time, or groups of instructions can be copied together.

A bus is a group of parallel wires that transfer data from one part of the computer to another.
A computer system usually contains four bus types: data, I/O, control, and address. The data bus
transfers instructions and data between the CPU and memory. The I/O bus transfers data

If you want to learn more about the Intel IA-32 architecture, read the Intel 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1: Basic Architecture. It’s a free download from the
Intel web site (www.intel.com).

www.intel.com

34 Chapter 2 • x86 Processor Architecture

between the CPU and the system input/output devices. The control bus uses binary signals to
synchronize actions of all devices attached to the system bus. The address bus holds the
addresses of instructions and data when the currently executing instruction transfers data
between the CPU and memory.

Clock Each operation involving the CPU and the system bus is synchronized by an internal
clock pulsing at a constant rate. The basic unit of time for machine instructions is a machine cycle
(or clock cycle). The length of a clock cycle is the time required for one complete clock pulse. In
the following figure, a clock cycle is depicted as the time between one falling edge and the next:

The duration of a clock cycle is calculated as the reciprocal of the clock’s speed, which in
turn is measured in oscillations per second. A clock that oscillates 1 billion times per second
(1 GHz), for example, produces a clock cycle with a duration of one billionth of a second
(1 nanosecond).

A machine instruction requires at least one clock cycle to execute, and a few require in excess
of 50 clocks (the multiply instruction on the 8088 processor, for example). Instructions requiring
memory access often have empty clock cycles called wait states because of the differences in the
speeds of the CPU, the system bus, and memory circuits.

2.1.2 Instruction Execution Cycle
A single machine instruction does not just magically execute all at once. The CPU has to go
through a predefined sequence of steps to execute a machine instruction, called the instruction
execution cycle. Let’s assume that the instruction pointer register holds the address of the
instruction we want to execute. Here are the steps to execute it:

One cycle

1

0

Figure 2–1 Block diagram of a microcomputer.

Central processor unit
(CPU)

Memory storage
unit

Registers

I/O
device

#1

I/O
device

#2

Data bus, I/O bus

Control bus

Address bus

ALU ClockCU

2.1 General Concepts 35

1. First, the CPU has to fetch the instruction from an area of memory called the instruction
queue. Right after doing this, it increments the instruction pointer.

2. Next, the CPU decodes the instruction by looking at its binary bit pattern. This bit pattern
might reveal that the instruction has operands (input values).

3. If operands are involved, the CPU fetches the operands from registers and memory. Some-
times, this involves address calculations.

4. Next, the CPU executes the instruction, using any operand values it fetched during the earlier
step. It also updates a few status flags, such as Zero, Carry, and Overflow.

5. Finally, if an output operand was part of the instruction, the CPU stores the result of its exe-
cution in the operand.

We usually simplify this complicated-sounding process to three basic steps: Fetch,
Decode, and Execute. An operand is a value that is either an input or an output to an opera-
tion. For example, the expression Z = X + Y has two input operands (X and Y) and a single
output operand (Z).

A block diagram showing data flow within a typical CPU is shown in Figure 2-2. The diagram
helps to show relationships between components that interact during the instruction execution
cycle. In order to read program instructions from memory, an address is placed on the address
bus. Next, the memory controller places the requested code on the data bus, making the code
available inside the code cache. The instruction pointer’s value determines which instruction will
be executed next. The instruction is analyzed by the instruction decoder, causing the appropriate

Figure 2–2 Simplified CPU block diagram.

Code cache

Instruction decoder

Instruction pointer

Floating-point unit

Control unit

Data cache

A
dd

re
ss

 b
us

D
at

a
bu

s

Memory

Code

Data

Registers
ALU

36 Chapter 2 • x86 Processor Architecture

digital signals to be sent to the control unit, which coordinates the ALU and floating-point unit.
Although the control bus is not shown in this figure, it carries signals that use the system clock to
coordinate the transfer of data between the different CPU components.

2.1.3 Reading from Memory
As a rule, computers read memory much more slowly than they access internal registers. This is
because reading a single value from memory involves four separate steps:

1. Place the address of the value you want to read on the address bus.
2. Assert (change the value of) the processor’s RD (read) pin.
3. Wait one clock cycle for the memory chips to respond.
4. Copy the data from the data bus into the destination operand.

Each of these steps generally requires a single clock cycle, a measurement of time based on a
clock that ticks inside the processor at a regular rate. Computer CPUs are often described in
terms of their clock speeds. A speed of 1.2 GHz, for example, means the clock ticks, or oscil-
lates, 1.2 billion times per second. So, 4 clock cycles go by fairly fast, considering each one lasts
for only 1/1,200,000,000th of a second. Still, that’s much slower than the CPU registers, which
are usually accessed in only one clock cycle.

Fortunately, CPU designers figured out a long time ago that computer memory creates a
speed bottleneck because most programs have to access variables. They came up with a clever
way to reduce the amount of time spent reading and writing memory—they store the most
recently used instructions and data in high-speed memory called cache. The idea is that a pro-
gram is more likely to want to access the same memory and instructions repeatedly, so cache
keeps these values where they can be accessed quickly. Also, when the CPU begins to execute a
program, it can look ahead and load the next thousand instructions (for example) into cache, on
the assumption that these instructions will be needed fairly soon. If there happens to be a loop in
that block of code, the same instructions will be in cache. When the processor is able to find its
data in cache memory, we call that a cache hit. On the other hand, if the CPU tries to find some-
thing in cache and it’s not there, we call that a cache miss.

Cache memory for the x86 family comes in two types. Level-1 cache (or primary cache)
is stored right on the CPU. Level-2 cache (or secondary cache) is a little bit slower, and
attached to the CPU by a high-speed data bus. The two types of cache work together in an
optimal way.

There’s a reason why cache memory is faster than conventional RAM—it’s because cache
memory is constructed from a special type of memory chip called static RAM. It’s expensive, but
it does not have to be constantly refreshed in order to keep its contents. On the other hand, con-
ventional memory, known as dynamic RAM, must be refreshed constantly. It’s much slower, but
cheaper.

2.1.4 Loading and Executing a Program
Before a program can run, it must be loaded into memory by a utility known as a program
loader. After loading, the operating system must point the CPU to the program’s entry point,
which is the address at which the program is to begin execution. The following steps break this
process down in more detail:

2.2 32-Bit x86 Processors 37

• The operating system (OS) searches for the program’s filename in the current disk directory.
If it cannot find the name there, it searches a predetermined list of directories (called paths)
for the filename. If the OS fails to find the program filename, it issues an error message.

• If the program file is found, the OS retrieves basic information about the program’s file from
the disk directory, including the file size and its physical location on the disk drive.

• The OS determines the next available location in memory and loads the program file into mem-
ory. It allocates a block of memory to the program and enters information about the program’s
size and location into a table (sometimes called a descriptor table). Additionally, the OS may
adjust the values of pointers within the program so they contain addresses of program data.

• The OS begins execution of the program’s first machine instruction (its entry point). As soon
as the program begins running, it is called a process. The OS assigns the process an identifi-
cation number (process ID), which is used to keep track of it while running.

• The process runs by itself. It is the OS’s job to track the execution of the process and to
respond to requests for system resources. Examples of resources are memory, disk files, and
input-output devices.

• When the process ends, it is removed from memory.

2.1.5 Section Review
1. The central processor unit (CPU) contains registers and what other basic elements?

2. The central processor unit is connected to the rest of the computer system using what three
buses?

3. Why does memory access take more machine cycles than register access?

4. What are the three basic steps in the instruction execution cycle?

5. Which two additional steps are required in the instruction execution cycle when a memory
operand is used?

2.2 32-Bit x86 Processors
In this section, we focus on the basic architectural features of all x86 processors. This includes
members of the Intel IA-32 family as well as all 32-bit AMD processors.

2.2.1 Modes of Operation
x86 processors have three primary modes of operation: protected mode, real-address mode, and
system management mode. A sub-mode, named virtual-8086, is a special case of protected
mode. Here are short descriptions of each:

Tip: If you’re using any version of Microsoft Windows, press Ctrl-Alt-Delete and select the
Task Manager item. The Task Manager window lets you view lists of Applications and Pro-
cesses. Applications are the names of complete programs currently running, such as Windows
Explorer or Microsoft Visual C++. When you click on the Processes tab, you see a long list of
process names. Each of those processes is a small program running independently of all the
others. You can continuously track the amount of CPU time and memory used by each pro-
cess. In some cases, you can shut down a process by selecting its name and pressing the
Delete key.

38 Chapter 2 • x86 Processor Architecture

Protected Mode Protected mode is the native state of the processor, in which all instructions
and features are available. Programs are given separate memory areas named segments, and the
processor prevents programs from referencing memory outside their assigned segments.

Virtual-8086 Mode While in protected mode, the processor can directly execute real-address
mode software such as MS-DOS programs in a safe environment. In other words, if a program
crashes or attempts to write data into the system memory area, it will not affect other programs
running at the same time. A modern operating system can execute multiple separate virtual-8086
sessions at the same time.

Real-Address Mode Real-address mode implements the programming environment of an
early Intel processor with a few extra features, such as the ability to switch into other modes.
This mode is useful if a program requires direct access to system memory and hardware
devices.

System Management Mode System management mode (SMM) provides an operating sys-
tem with a mechanism for implementing functions such as power management and system secu-
rity. These functions are usually implemented by computer manufacturers who customize the
processor for a particular system setup.

2.2.2 Basic Execution Environment

Address Space
In 32-bit protected mode, a task or program can address a linear address space of up to 4 GBytes.
Beginning with the P6 processor, a technique called extended physical addressing allows a total
of 64 GBytes of physical memory to be addressed. Real-address mode programs, on the other
hand, can only address a range of 1 MByte. If the processor is in protected mode and running
multiple programs in virtual-8086 mode, each program has its own 1-MByte memory area.

Figure 2–3 Basic program execution registers.

CS

SS

DS
EIP

EFLAGS

16-Bit Segment Registers

EAX

EBX

ECX

EDX

32-Bit General-Purpose Registers

ES

FS

GS

EBP

ESP

ESI

EDI

2.2 32-Bit x86 Processors 39

Basic Program Execution Registers
Registers are high-speed storage locations directly inside the CPU, designed to be accessed at
much higher speed than conventional memory. When a processing loop is optimized for speed,
for example, loop counters are held in registers rather than variables. Figure 2-3 shows the basic
program execution registers. There are eight general-purpose registers, six segment registers, a
processor status flags register (EFLAGS), and an instruction pointer (EIP).

General-Purpose Registers The general-purpose registers are primarily used for arith-
metic and data movement. As shown in Figure 2-4, the lower 16 bits of the EAX register can be
referenced by the name AX.

Figure 2–4 General-purpose registers.

Portions of some registers can be addressed as 8-bit values. For example, the AX register has an
8-bit upper half named AH and an 8-bit lower half named AL. The same overlapping relationship
exists for the EAX, EBX, ECX, and EDX registers:

The remaining general-purpose registers can only be accessed using 32-bit or 16-bit names,
as shown in the following table:

32-Bit 16-Bit 8-Bit (High) 8-Bit (Low)

EAX AX AH AL

EBX BX BH BL

ECX CX CH CL

EDX DX DH DL

32-Bit 16-Bit

ESI SI

EDI DI

EBP BP

ESP SP

AH AL

16 bits

8

AX

EAX

8

32 bits

8 bits � 8 bits

40 Chapter 2 • x86 Processor Architecture

Specialized Uses Some general-purpose registers have specialized uses:

• EAX is automatically used by multiplication and division instructions. It is often called the
extended accumulator register.

• The CPU automatically uses ECX as a loop counter.
• ESP addresses data on the stack (a system memory structure). It is rarely used for ordinary

arithmetic or data transfer. It is often called the extended stack pointer register.
• ESI and EDI are used by high-speed memory transfer instructions. They are sometimes called

the extended source index and extended destination index registers.
• EBP is used by high-level languages to reference function parameters and local variables on

the stack. It should not be used for ordinary arithmetic or data transfer except at an advanced
level of programming. It is often called the extended frame pointer register.

Segment Registers In real-address mode, 16-bit segment registers indicate base addresses of
preassigned memory areas named segments. In protected mode, segment registers hold pointers
to segment descriptor tables. Some segments hold program instructions (code), others hold vari-
ables (data), and another segment named the stack segment holds local function variables and
function parameters.

Instruction Pointer The EIP, or instruction pointer, register contains the address of the next
instruction to be executed. Certain machine instructions manipulate EIP, causing the program to
branch to a new location.

EFLAGS Register The EFLAGS (or just Flags) register consists of individual binary bits
that control the operation of the CPU or reflect the outcome of some CPU operation. Some
instructions test and manipulate individual processor flags.

Control Flags Control flags control the CPU’s operation. For example, they can cause the
CPU to break after every instruction executes, interrupt when arithmetic overflow is detected,
enter virtual-8086 mode, and enter protected mode.

Programs can set individual bits in the EFLAGS register to control the CPU’s operation.
Examples are the Direction and Interrupt flags.

Status Flags The status flags reflect the outcomes of arithmetic and logical operations per-
formed by the CPU. They are the Overflow, Sign, Zero, Auxiliary Carry, Parity, and Carry flags.
Their abbreviations are shown immediately after their names:

• The Carry flag (CF) is set when the result of an unsigned arithmetic operation is too large to
fit into the destination.

• The Overflow flag (OF) is set when the result of a signed arithmetic operation is too large or
too small to fit into the destination.

• The Sign flag (SF) is set when the result of an arithmetic or logical operation generates a
negative result.

• The Zero flag (ZF) is set when the result of an arithmetic or logical operation generates a
result of zero.

A flag is set when it equals 1; it is clear (or reset) when it equals 0.

2.2 32-Bit x86 Processors 41

• The Auxiliary Carry flag (AC) is set when an arithmetic operation causes a carry from bit 3
to bit 4 in an 8-bit operand.

• The Parity flag (PF) is set if the least-significant byte in the result contains an even number
of 1 bits. Otherwise, PF is clear. In general, it is used for error checking when there is a possi-
bility that data might be altered or corrupted.

MMX Registers
MMX technology improves the performance of Intel processors when implementing advanced
multimedia and communications applications. The eight 64-bit MMX registers support special
instructions called SIMD (Single-Instruction, Multiple-Data). As the name implies, MMX
instructions operate in parallel on the data values contained in MMX registers. Although they
appear to be separate registers, the MMX register names are in fact aliases to the same registers
used by the floating-point unit.

XMM Registers
The x86 architecture also contains eight 128-bit registers called XMM registers. They are used
by streaming SIMD extensions to the instruction set.

Floating-Point Unit The floating-point unit (FPU) performs high-speed floating-point arith-
metic. At one time a separate coprocessor chip was required for this. From the Intel486 onward,
the FPU has been integrated into the main processor chip. There are eight floating-point data
registers in the FPU, named ST(0), ST(1), ST(2), ST(3), ST(4), ST(5), ST(6), and ST(7). The
remaining control and pointer registers are shown in Figure 2-5.

Figure 2–5 Floating-point unit registers.

2.2.3 x86 Memory Management
x86 processors manage memory according to the basic modes of operation discussed in
Section 2.2.1. Protected mode is the most robust and powerful, but it does restrict application
programs from directly accessing system hardware.

80-Bit Data Registers

FPU data pointer

Tag register

Control register

Status register

ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

FPU instruction pointer

Opcode register

16-Bit Control Registers

48-Bit Pointer Registers

42 Chapter 2 • x86 Processor Architecture

In real-address mode, only 1 MByte of memory can be addressed, from hexadecimal 00000
to FFFFF. The processor can run only one program at a time, but it can momentarily interrupt
that program to process requests (called interrupts) from peripherals. Application programs are
permitted to access any memory location, including addresses that are linked directly to system
hardware. The MS-DOS operating system runs in real-address mode, and Windows 95 and 98
can be booted into this mode.

In protected mode, the processor can run multiple programs at the same time. It assigns each
process (running program) a total of 4 GByte of memory. Each program can be assigned its own
reserved memory area, and programs are prevented from accidentally accessing each other’s
code and data. MS-Windows and Linux run in protected mode.

In virtual-8086 mode, the computer runs in protected mode and creates a virtual-8086
machine with its own 1-MByte address space that simulates an 80x86 computer running in real-
address mode. Windows NT and 2000, for example, create a virtual-8086 machine when you
open a Command window. You can run many such windows at the same time, and each is pro-
tected from the actions of the others. Some MS-DOS programs that make direct references to
computer hardware will not run in this mode under Windows NT, 2000, and XP.

Chapter 11 explains many more details of both real-address mode and protected mode.

2.2.4 Section Review
1. What are the x86 processor’s three basic modes of operation?

2. Name all eight 32-bit general-purpose registers.

3. Name all six segment registers.

4. What special purpose does the ECX register serve?

2.3 64-Bit x86-64 Processors
In this section, we focus on the basic architectural details of all 64-bit processors that use the
x86-64 instruction set. This group the Intel 64 and AMD64 processor families. The instruction
set is a 64-bit extension of the x86 instruction set we’ve already looked at. Here are some of the
essential features:

1. It is backward-compatible with the x86 instruction set.
2. Addresses are 64 bits long, allowing for a virtual address space of size 264 bytes. In current

chip implementations, only the lowest 48 bits are used.
3. It can use 64-bit general-purpose registers, allowing instructions to have 64-bit integer

operands.
4. It uses eight more general-purpose registers than the x86.
5. It uses a 48-bit physical address space, which supports up to 256 terabytes of RAM.

On the other hand, when running in native 64-bit mode, these processors do not support
16-bit real mode or virtual-8086 mode. (There is a legacy mode that still supports 16-bit pro-
gramming, but it is not available in 64-bit versions of Microsoft Windows.)

Note: Although x86-64 refers to an instruction set, we will from this point on treat it as a processor
type. For the purpose of learning assembly language, it is not necessary to consider hardware
implementation differences between processors that support x86-64.

2.3 64-Bit x86-64 Processors 43

The first Intel processor to use x86-64 was the Xeon, followed by a host of other processors,
including Core i5 and Core i7 processors. Examples of AMD’s processors that use x86-64 are
Opteron and Athlon 64.

You might also have heard of another 64-bit architecture from Intel known as IA-64, later
renamed to Itanium. The IA-64 instruction set is completely different from x86 and x86-64. Ita-
nium processors are often used for high-performance database and network servers.

2.3.1 64-Bit Operation Modes
The Intel 64 architecture introduces a new mode named IA-32e. Technically it contains two sub-
modes, named compatibility mode and 64-bit mode. But it’s easier to refer to these as modes
rather than submodes, so we will do that from now on.

Compatibility Mode
When running in compatibility mode, existing 16-bit and 32-bit applications can usually run
without being recompiled. However, 16-bit Windows (Win16) and DOS applications will not
run in 64-bit Microsoft Windows. Unlike earlier versions of Windows, 64-bit Windows does not
have a virtual DOS machine subsystem to take advantage of the processor’s ability to switch into
virtual-8086 mode.

64-Bit Mode
In 64-bit mode, the processor runs applications that use the 64-bit linear address space. This is
the native mode for 64-bit Microsoft Windows. This mode enables 64-bit instruction operands.

2.3.2 Basic 64-Bit Execution Environment
In 64-bit mode, addresses can theoretically be as large as 64-bits, although processors currently
only support 48 bits for addresses. In terms of registers, the following are the most important
differences from 32-bit processors:

• Sixteen 64-bit general purpose registers (in 32-bit mode, you have only eight general-purpose
registers)

• Eight 80-bit floating-point registers
• A 64-bit status flags register named RFLAGS (only the lower 32 bits are used)
• A 64-bit instruction pointer named RIP

As you may recall, the 32-bit flags and instruction pointers are named EFLAGS and EIP. In
addition, there are some specialized registers for multimedia processing we mentioned when
talking about the x86 processor:

• Eight 64-bit MMX registers
• Sixteen 128-bit XMM registers (in 32-bit mode, you have only 8 of these)

General-Purpose Registers
The general-purpose registers, introduced when we described 32-bit processors, are the basic
operands for instructions that do arithmetic, move data, and loop through data. The general-
purpose registers can access 8-bit, 16-bit, 32-bit, or 64-bit operands (with a special prefix).

In 64-bit mode, the default operand size is 32 bits and there are eight general-purpose regis-
ters. By adding the REX (register extension) prefix to each instruction, however, the operands
can be 64 bits long and a total of 16 general-purpose registers become available. You have all the

44 Chapter 2 • x86 Processor Architecture

same registers as in 32-bit mode, plus eight numbered registers, R8 through R15. Table 2-1
shows which registers are available when the REX prefix is enabled.

Table 2-1 Operand Sizes in 64-Bit Mode When REX Is Enabled.

Here are a few more details to remember:

• In 64-bit mode, a single instruction cannot access both a high-byte register, such as AH, BH,
CH, and DH, and at the same time, the low byte of one of the new byte registers (such as
DIL).

• The 32-bit EFLAGS register is replaced by a 64-bit RFLAGS register in 64-bit mode. The
two registers share the same lower 32 bits, and the upper 32 bits of RFLAGS are not used.

• The status flags are the same in 32-bit mode and 64-bit mode.

2.4 Components of a Typical x86 Computer
Let us look at how the x86 integrates with other components by examining a typical mother-
board configuration and the set of chips that surround the CPU. Then we will discuss memory,
I/O ports, and common device interfaces. Finally, we will show how assembly language pro-
grams can perform I/O at different levels of access by tapping into system hardware, firmware,
and by calling functions in the operating system.

2.4.1 Motherboard
The heart of a microcomputer is its motherboard, a flat circuit board onto which are placed the
computer’s CPU, supporting processors (chipset), main memory, input-output connectors,
power supply connectors, and expansion slots. The various components are connected to each
other by a bus, a set of wires etched directly on the motherboard. Dozens of motherboards are
available on the PC market, varying in expansion capabilities, integrated components, and
speed. The following components have traditionally been found on PC motherboards:

• A CPU socket. Sockets are different shapes and sizes, depending on the type of processor
they support

• Memory slots (SIMM or DIMM), holding small plug-in memory boards
• BIOS (basic input–output system) computer chips, holding system software
• CMOS RAM, with a small circular battery to keep it powered
• Connectors for mass-storage devices such as hard drives and CD-ROMs
• USB connectors for external devices
• Keyboard and mouse ports

Operand Size Available Registers

8 bits AL, BL, CL, DL, DIL, SIL, BPL, SPL, R8L, R9L, R10L, R11L, R12L, R13L, R14L, R15L

16 bits AX, BX, CX, DX, DI, SI, BP, SP, R8W, R9W, R10W, R11W, R12W, R13W, R14W, R15W

32 bits EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP, R8D, R9D, R10D, R11D, R12D, R13D,
R14D, R15D

64 bits RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, R8, R9, R10, R11, R12, R13, R14, R15

2.4 Components of a Typical x86 Computer 45

• PCI bus connectors for sound cards, graphics cards, data acquisition boards, and other input–
output devices

The following components are optional:

• Integrated sound processor
• Parallel and serial device connectors
• Integrated network adapter
• AGP bus connector for a high-speed video card

Following are some important support processors in a typical system:

• The Floating-Point Unit (FPU) handles floating-point and extended integer calculations.
• The 8284/82C284 Clock Generator, known simply as the clock, oscillates at a constant speed.

The clock generator synchronizes the CPU and the rest of the computer.
• The 8259A Programmable Interrupt Controller (PIC) handles external interrupts from hard-

ware devices, such as the keyboard, system clock, and disk drives. These devices interrupt the
CPU and make it process their requests immediately.

• The 8253 Programmable Interval Timer/Counter interrupts the system 18.2 times per second,
updates the system date and clock, and controls the speaker. It is also responsible for con-
stantly refreshing memory because RAM memory chips can remember their data for only a
few milliseconds.

• The 8255 Programmable Parallel Port transfers data to and from the computer using the
IEEE Parallel Port interface. This port is commonly used for printers, but it can be used with
other input–output devices as well.

PCI and PCI Express Bus Architectures
The PCI (Peripheral Component Interconnect) bus provides a connecting bridge between the CPU
and other system devices such as hard drives, memory, video controllers, sound cards, and network
controllers. More recently, the PCI Express bus provides two-way serial connections between
devices, memory, and the processor. It carries data in packets, similar to networks, in separate
“lanes.” It is widely supported by graphics controllers, and can transfer data at very high speeds.

Motherboard Chipset
A motherboard chipset is a collection of processor chips designed to work together on a specific
type of motherboard. Various chipsets have features that increase processing power, multimedia
capabilities, or reduce power consumption. The Intel P965 Express Chipset can be used as an
example. It is used in desktop PCs, with either an Intel Core 2 Duo or a Pentium D processor.
Here are some of its features:

• Intel Fast Memory Access uses an updated Memory Controller Hub (MCH). It can access
dual-channel DDR2 memory, at an 800 MHz clock speed.

• An I/O Controller Hub (Intel ICH8/R/DH) uses Intel Matrix Storage Technology (MST) to
support multiple Serial ATA devices (disk drives).

• Support for multiple USB ports, multiple PCI express slots, networking, and Intel Quiet Sys-
tem technology.

• A high definition audio chip provides digital sound capabilities.

46 Chapter 2 • x86 Processor Architecture

A diagram may be seen in Figure 2-6. Motherboard manufacturers will build products around
specific chipsets. For example, the P5B-E P965 motherboard by Asus Corporation uses the P965
chipset.

Figure 2–6 Intel 965 express chipset block diagram.

2.4.2 Memory
Several basic types of memory are used in Intel-based systems: read-only memory (ROM), eras-
able programmable read-only memory (EPROM), dynamic random-access memory (DRAM),
static RAM (SRAM), video RAM (VRAM), and complimentary metal oxide semiconductor
(CMOS) RAM:

• ROM is permanently burned into a chip and cannot be erased.
• EPROM can be erased slowly with ultraviolet light and reprogrammed.
• DRAM, commonly known as main memory, is where programs and data are kept when a

program is running. It is inexpensive, but must be refreshed every millisecond to avoid losing
its contents. Some systems use ECC (error checking and correcting) memory.

• SRAM is used primarily for expensive, high-speed cache memory. It does not have to be
refreshed. CPU cache memory is comprised of SRAM.

• VRAM holds video data. It is dual ported, allowing one port to continuously refresh the dis-
play while another port writes data to the display.

• CMOS RAM on the system motherboard stores system setup information. It is refreshed by
a battery, so its contents are retained when the computer’s power is off.

2.4.3 Section Review
1. Describe SRAM and its most common use.

2. Describe VRAM.

Source: The Intel P965 Express Chipset (product brief),
© 2006 by Intel Corporation, used by permission.

2.5 Input–Output System 47

3. List at least two features found in the Intel P965 Express chipset.

4. Name four types of RAM mentioned in this chapter.

5. What is the purpose of the 8259A PIC controller?

2.5 Input–Output System

2.5.1 Levels of I/O Access
Application programs routinely read input from keyboard and disk files and write output to the
screen and to files. I/O need not be accomplished by directly accessing hardware—instead, you
can call functions provided by the operating system. I/O is available at different access levels,
similar to the virtual machine concept shown in Chapter 1. There are three primary levels:

• High-level language functions: A high-level programming language such as C++ or Java
contains functions to perform input–output. These functions are portable because they work
on a variety of different computer systems and are not dependent on any one operating
system.

• Operating system: Programmers can call operating system functions from a library known
as the API (application programming interface). The operating system provides high-level opera-
tions such as writing strings to files, reading strings from the keyboard, and allocating blocks of
memory.

• BIOS: The basic input–output system is a collection of low-level subroutines that communi-
cate directly with hardware devices. The BIOS is installed by the computer’s manufacturer and
is tailored to fit the computer’s hardware. Operating systems typically communicate with
the BIOS.

Device Drivers Device drivers are programs that permit the operating system to communicate
directly with hardware devices and the system BIOS. For example, a device driver might receive
a request from the OS to read some data; the device driver satisfies the request by executing code
in the device firmware that reads data in a way that is unique to the device. Device drivers are
usually installed in one of two ways: (1) before a specific hardware device is attached to a com-
puter, or (2) after a device has been attached and identified. In the latter case, the OS recognizes
the device name and signature; it then locates and installs the device driver software onto the
computer.

We can put the I/O hierarchy into perspective by showing what happens when an application
program displays a string of characters on the screen (Fig. 2-7). The following steps are
involved:

1. A statement in the application program calls an HLL library function that writes the string to
standard output.

2. The library function (Level 3) calls an operating system function, passing a string pointer.

Tip: Because computer games are so memory and I/O intensive, they push computer performance to the
max. Programmers who excel at game programming often know a lot about video and sound hardware,
and optimize their code for hardware features.

48 Chapter 2 • x86 Processor Architecture

3. The operating system function (Level 2) uses a loop to call a BIOS subroutine, passing it the
ASCII code and color of each character. The operating system calls another BIOS subroutine
to advance the cursor to the next position on the screen.

4. The BIOS subroutine (Level 1) receives a character, maps it to a particular system font, and
sends the character to a hardware port attached to the video controller card.

5. The video controller card (Level 0) generates timed hardware signals to the video display that
control the raster scanning and displaying of pixels.

Figure 2–7 Access levels for input–output operations.

Programming at Multiple Levels Assembly language programs have power and flexibility in
the area of input-output programming. They can choose from the following access levels
(Figure 2-8):

• Level 3: Call library functions to perform generic text I/O and file-based I/O. We supply such
a library with this book, for instance.

• Level 2: Call operating system functions to perform generic text I/O and file-based I/O. If the OS
uses a graphical user interface, it has functions to display graphics in a device-independent way.

• Level 1: Call BIOS functions to control device-specific features such as color, graphics,
sound, keyboard input, and low-level disk I/O.

• Level 0: Send and receive data from hardware ports, having absolute control over specific
devices. This approach cannot be used with a wide variety of hardware devices, so we say
that it is not portable. Different devices often use different hardware ports, so the program
code must be customized for each specific type of device.

What are the tradeoffs? Control versus portability is the primary one. Level 2 (OS) works on
any computer running the same operating system. If an I/O device lacks certain capabilities, the
OS will do its best to approximate the intended result. Level 2 is not particularly fast because
each I/O call must go through several layers before it executes.

Application program

OS function

BIOS function

Hardware Level 0

Level 1

Level 2

Level 3

2.5 Input–Output System 49

Figure 2–8 Assembly language access levels.

Level 1 (BIOS) works on all systems having a standard BIOS, but will not produce the same
result on all systems. For example, two computers might have video displays with different res-
olution capabilities. A programmer at Level 1 would have to write code to detect the user’s hard-
ware setup and adjust the output format to match. Level 1 runs faster than Level 2 because it is
only one level above the hardware.

Level 0 (hardware) works with generic devices such as serial ports and with specific I/O
devices produced by known manufacturers. Programs using this level must extend their coding
logic to handle variations in I/O devices. Real-mode game programs are prime examples
because they usually take control of the computer. Programs at this level execute as quickly as
the hardware will permit.

Suppose, for example, you wanted to play a WAV file using an audio controller device. At the
OS level, you would not have to know what type of device was installed, and you would not be
concerned with nonstandard features the card might have. At the BIOS level, you would query
the sound card (using its installed device driver software) and find out whether it belonged to a
certain class of sound cards having known features. At the hardware level, you would fine tune
the program for certain models of audio cards, taking advantage of each card’s special features.

General-purpose operating systems rarely permit application programs to directly access system
hardware, because to do so would make it nearly impossible for multiple programs to run simulta-
neously. Instead, hardware is accessed only by device drivers, in a carefully controlled manner. On the
other hand, smaller operating systems for specialized devices often do connect directly to hardware.
They do this in order to reduce the amount of memory taken up by operating system code, and they
almost always run just a single program at one time. The last Microsoft operating system to allow pro-
grams to directly access hardware was MS-DOS, and it was only able to run one program at a time.

2.5.2 Section Review
1. Of the four levels of input/output in a computer system, which is the most universal and

portable?

2. What characteristics distinguish BIOS-level input/output?

3. Why are device drivers necessary, given that the BIOS already has code that communicates
with the computer’s hardware?

ASM program

Level 0

Level 1

Level 2OS function

BIOS function

Hardware

Library Level 3

50 Chapter 2 • x86 Processor Architecture

4. In the example regarding displaying a string of characters, which level exists between the
operating system and the video controller card?

5. Is it likely that the BIOS for a computer running MS-Windows would be different from that
used by a computer running Linux?

2.6 Chapter Summary
The central processor unit (CPU) is where calculations and logic processing occur. It contains a
limited number of storage locations called registers, a high-frequency clock to synchronize its
operations, a control unit, and an arithmetic logic unit. The memory storage unit is where
instructions and data are held while a computer program is running. A bus is a series of parallel
wires that transmit data among various parts of the computer.

The execution of a single machine instruction can be divided into a sequence of individual
operations called the instruction execution cycle. The three primary operations are fetch, decode,
and execute. Each step in the instruction cycle takes at least one tick of the system clock, called
a clock cycle. The load and execute sequence describes how a program is located by the operat-
ing system, loaded into memory, and executed by the operating system.

x86 processors have three basic modes of operation: protected mode, real-address mode, and
system management mode. In addition, virtual-8086 mode is a special case of protected mode.
Intel64 processors have two basic modes of operation: compatibility mode and 64-bit mode.
In compatibility mode they can run 16-bit and 32-bit applications.

Registers are named locations within the CPU that can be accessed much more quickly than
conventional memory. Following are brief descriptions of register types:

• The general-purpose registers are primarily used for arithmetic, data movement, and logical
operations.

• The segment registers are used as base locations for preassigned memory areas called
segments.

• The instruction pointer register contains the address of the next instruction to be executed.
• The flags register consists of individual binary bits that control the operation of the CPU and

reflect the outcome of ALU operations.

The x86 has a floating-point unit (FPU) expressly used for the execution of high-speed floating-
point instructions.

The heart of any microcomputer is its motherboard, holding the computer’s CPU, supporting
processors, main memory, input–output connectors, power supply connectors, and expansion
slots. The PCI (Peripheral Component Interconnect) bus provides a convenient upgrade path for
Pentium processors. Most motherboards contain an integrated set of several microprocessors
and controllers, called a chipset. The chipset largely determines the capabilities of the computer.

Several basic types of memory are used in PCs: ROM, EPROM, Dynamic RAM (DRAM),
Static RAM (SRAM), Video RAM (VRAM), and CMOS RAM.

Input–output is accomplished via different access levels, similar to the virtual machine con-
cept. Library functions are at the highest level, and the operating system is at the next level

2.7 Key Terms 51

below. The BIOS (basic input–output system) is a collection of functions that communicate
directly with hardware devices. Programs can also directly access input–output devices.

2.7 Key Terms

32-bit mode

64-bit mode

address bus

application programming interface (API)

arithmetic logic unit (ALU)

auxiliary carry flag

basic program execution registers

BIOS (basic input–output system)

bus

cache

carry flag

central processor unit (CPU)

clock

clock cycle

clock generator

code cache

control flags

control unit

data bus

data cache

device drivers

direction flag

dynamic RAM

EFLAGS register

extended destination index

extended physical addressing

extended source index

extended stack pointer

fetch-decode-execute

flags register

floating-point unit

general-purpose registers

instruction decoder

instruction execution cycle

instruction queue

instruction pointer

interrupt flag

Level-1 cache

Level-2 cache

machine cycle

memory storage unit

MMX registers

motherboard

motherboard chipset

operating system (OS)

overflow flag

parity flag

PCI (peripheral component interconnect)

PCI express

process

process ID

programmable interrupt controller (PIC)

programmable interval timer/counter

programmable parallel port

protected mode

random access memory (RAM)

read-only memory (ROM)

real-address mode

registers

segment registers

sign flag

single-instruction, multiple-data (SIMD)

static RAM

status flags

system management mode (SMM)

Task Manager

virtual-8086 mode

wait states

XMM registers

zero flag

52 Chapter 2 • x86 Processor Architecture

2.8 Review Questions
1. In 32-bit mode, aside from the stack pointer (ESP), what other register points to variables on

the stack?

2. Name at least four CPU status flags.

3. Which flag is set when the result of an unsigned arithmetic operation is too large to fit into
the destination?

4. Which flag is set when the result of a signed arithmetic operation is either too large or too
small to fit into the destination?

5. (True/False): When a register operand size is 32 bits and the REX prefix is used, the R8D
register is available for programs to use.

6. Which flag is set when an arithmetic or logical operation generates a negative result?

7. Which part of the CPU performs floating-point arithmetic?

8. On a 32-bit processor, how many bits are contained in each floating-point data register?

9. (True/False): The x86-64 instruction set is backward-compatible with the x86 instruction set.

10. (True/False): In current 64-bit chip implementations, all 64 bits are used for addressing.

11. (True/False): The Itanium instruction set is completely different from the x86 instruction set.

12. (True/False): Static RAM is usually less expensive than dynamic RAM.

13. (True/False): The 64-bit RDI register is available when the REX prefix is used.

14. (True/False): In native 64-bit mode, you can use 16-bit real mode, but not the virtual-8086
mode.

15. (True/False): The x86-64 processors have 4 more general-purpose registers than the x86
processors.

16. (True/False): The 64-bit version of Microsoft Windows does not support virtual-8086 mode.

17. (True/False): DRAM can only be erased using ultraviolet light.

18. (True/False): In 64-bit mode, you can use up to eight floating-point registers.

19. (True/False): A bus is a plastic cable that is attached to the motherboard at both ends, but
does not sit directly on the motherboard.

20. (True/False): CMOS RAM is the same as static RAM, meaning that it holds its value with-
out any extra power or refresh cycles.

21. (True/False): PCI connectors are used for graphics cards and sound cards.

22. (True/False): The 8259A is a controller that handles external interrupts from hardware
devices.

23. (True/False): The acronym PCI stands for programmable component interface.

24. (True/False): VRAM stands for virtual random access memory.

25. At which level(s) can an assembly language program manipulate input/output?

26. Why do game programs often send their sound output directly to the sound card’s hardware
ports?

