
1

1
Basic Concepts

1.1 Welcome to Assembly Language
1.1.1 Questions You Might Ask
1.1.2 Assembly Language Applications
1.1.3 Section Review

1.2 Virtual Machine Concept
1.2.1 Section Review

1.3 Data Representation
1.3.1 Binary Integers
1.3.2 Binary Addition
1.3.3 Integer Storage Sizes
1.3.4 Hexadecimal Integers
1.3.5 Hexadecimal Addition
1.3.6 Signed Binary Integers

1.3.7 Binary Subtraction
1.3.8 Character Storage
1.3.9 Section Review

1.4 Boolean Expressions
1.4.1 Truth Tables for Boolean Functions
1.4.2 Section Review

1.5 Chapter Summary
1.6 Key Terms
1.7 Review Questions and Exercises

1.7.1 Short Answer
1.7.2 Algorithm Workbench

This chapter establishes some core concepts relating to assembly language programming. For
example, it shows how assembly language fits into the wide spectrum of languages and applica-
tions. We introduce the virtual machine concept, which is so important in understanding the rela-
tionship between software and hardware layers. A large part of the chapter is devoted to the
binary and hexadecimal numbering systems, showing how to perform conversions and do basic
arithmetic. Finally, this chapter introduces fundamental boolean operations (AND, OR, NOT,
XOR), which will prove to be essential in later chapters.

1.1 Welcome to Assembly Language
Assembly Language for x86 Processors focuses on programming microprocessors compatible
with Intel and AMD processors running under 32-bit and 64-bit versions of Microsoft Windows.

2 Chapter 1 • Basic Concepts

The latest version of Microsoft Macro Assembler (known as MASM) should be used with this
book. MASM is included with most versions of Microsoft Visual Studio (Pro, Ultimate,
Express, . . .). Please check our web site (asmirvine.com) for the latest details about support for
MASM in Visual Studio. We also include lots of helpful information about how to set up your
software and get started.

Some other well-known assemblers for x86 systems running under Microsoft Windows
include TASM (Turbo Assembler), NASM (Netwide Assembler), and MASM32 (a variant of
MASM). Two popular Linux-based assemblers are GAS (GNU assembler) and NASM. Of
these, NASM’s syntax is most similar to that of MASM.

Assembly language is the oldest programming language, and of all languages, bears the
closest resemblance to native machine language. It provides direct access to computer hard-
ware, requiring you to understand much about your computer’s architecture and operating
system.

Educational Value Why read this book? Perhaps you’re taking a college course whose title is
similar to one of the following courses that often use our book:

• Microcomputer Assembly Language
• Assembly Language Programming
• Introduction to Computer Architecture
• Fundamentals of Computer Systems
• Embedded Systems Programming

This book will help you learn basic principles about computer architecture, machine lan-
guage, and low-level programming. You will learn enough assembly language to test your
knowledge on today’s most widely used microprocessor family. You won’t be learning to pro-
gram a “toy” computer using a simulated assembler; MASM is an industrial-strength assembler,
used by practicing professionals. You will learn the architecture of the Intel processor family
from a programmer’s point of view.

If you are planning to be a C or C++ developer, you need to develop an understanding of how
memory, address, and instructions work at a low level. A lot of programming errors are not eas-
ily recognized at the high-level language level. You will often find it necessary to “drill down”
into your program’s internals to find out why it isn’t working.

If you doubt the value of low-level programming and studying details of computer software
and hardware, take note of the following quote from a leading computer scientist, Donald Knuth,
in discussing his famous book series, The Art of Computer Programming:

Some people [say] that having machine language, at all, was the great mistake that I made.
I really don’t think you can write a book for serious computer programmers unless you are
able to discuss low-level detail.1

Visit this book’s web site to get lots of supplemental information, tutorials, and exercises at
www.asmirvine.com

www.asmirvine.com

1.1 Welcome to Assembly Language 3

1.1.1 Questions You Might Ask

What Background Should I Have? Before reading this book, you should have programmed
in at least one structured high-level language, such as Java, C, Python, or C++. You should know
how to use IF statements, arrays, and functions to solve programming problems.

What Are Assemblers and Linkers? An assembler is a utility program that converts source
code programs from assembly language into machine language. A linker is a utility program that com-
bines individual files created by an assembler into a single executable program. A related utility, called a
debugger, lets you to step through a program while it’s running and examine registers and memory.

What Hardware and Software Do I Need? You need a computer that runs a 32-bit or 64-bit
version of Microsoft Windows, along with one of the recent versions of Microsoft Visual Studio.

What Types of Programs Can Be Created Using MASM?

• 32-Bit Protected Mode: 32-bit protected mode programs run under all 32-bit versions of
Microsoft Windows. They are usually easier to write and understand than real-mode pro-
grams. From now on, we will simply call this 32-bit mode.

• 64-Bit Mode: 64-bit programs run under all 64-bit versions of Microsoft Windows.
• 16-Bit Real-Address Mode: 16-bit programs run under 32-bit versions of Windows and on

embedded systems. Because they are not supported by 64-bit Windows, we will restrict dis-
cussions of this mode to Chapters 14 through 17. These chapters are in electronic form, avail-
able from the publisher’s web site.

What Supplements Are Supplied with This Book? The book’s web site (www.asmirvine.com)
has the following:

• Assembly Language Workbook, a collection of tutorials
• Irvine32, Irvine64, and Irvine16 subroutine libraries for 64-bit, 32-bit, and 16-bit program-

ming, with complete source code
• Example programs with all source code from the book
• Corrections to the book
• Getting Started, a detailed tutorial designed to help you set up Visual Studio to use the

Microsoft assembler
• Articles on advanced topics not included in the printed book for lack of space
• A link to an online discussion forum, where you can get help from other experts who use the book

What Will I Learn? This book should make you better informed about data representation,
debugging, programming, and hardware manipulation. Here’s what you will learn:

• Basic principles of computer architecture as applied to x86 processors
• Basic boolean logic and how it applies to programming and computer hardware
• How x86 processors manage memory, using protected mode and virtual mode
• How high-level language compilers (such as C++) translate statements from their language

into assembly language and native machine code

www.asmirvine.com

4 Chapter 1 • Basic Concepts

• How high-level languages implement arithmetic expressions, loops, and logical structures at
the machine level

• Data representation, including signed and unsigned integers, real numbers, and character data
• How to debug programs at the machine level. The need for this skill is vital when you work in

languages such as C and C++, which generate native machine code
• How application programs communicate with the computer’s operating system via interrupt

handlers and system calls
• How to interface assembly language code to C++ programs
• How to create assembly language application programs

How Does Assembly Language Relate to Machine Language? Machine language is a
numeric language specifically understood by a computer’s processor (the CPU). All x86 processors
understand a common machine language. Assembly language consists of statements written with
short mnemonics such as ADD, MOV, SUB, and CALL. Assembly language has a one-to-one rela-
tionship with machine language: Each assembly language instruction corresponds to a
single machine-language instruction.

How Do C++ and Java Relate to Assembly Language? High-level languages such as
Python, C++, and Java have a one-to-many relationship with assembly language and machine
language. A single statement in C++, for example, expands into multiple assembly language or
machine instructions. Most people cannot read raw machine code, so in this book, we examine
its closest relative, assembly language. For example, the following C++ code carries out two
arithmetic operations and assigns the result to a variable. Assume X and Y are integers:

int Y;
int X = (Y + 4) * 3;

Following is the equivalent translation to assembly language. The translation requires multiple
statements because each assembly language statement corresponds to a single machine instruction:

mov eax,Y ; move Y to the EAX register
add eax,4 ; add 4 to the EAX register
mov ebx,3 ; move 3 to the EBX register
imul ebx ; multiply EAX by EBX
mov X,eax ; move EAX to X

(Registers are named storage locations in the CPU that hold intermediate results of operations.)
The point of this example is not to claim that C++ is superior to assembly language or vice
versa, but to show their relationship.

Is Assembly Language Portable? A language whose source programs can be compiled and
run on a wide variety of computer systems is said to be portable. A C++ program, for example,
will compile and run on just about any computer, unless it makes specific references to library
functions that exist under a single operating system. A major feature of the Java language is that
compiled programs run on nearly any computer system.

Assembly language is not portable, because it is designed for a specific processor family. There
are a number of different assembly languages widely used today, each based on a processor family.

1.1 Welcome to Assembly Language 5

Some well-known processor families are Motorola 68x00, x86, SUN Sparc, Vax, and IBM-370.
The instructions in assembly language may directly match the computer’s architecture or they may
be translated during execution by a program inside the processor known as a microcode interpreter.

Why Learn Assembly Language? If you’re still not convinced that you should learn assembly
language, consider the following points:

• If you study computer engineering, you may likely be asked to write embedded programs.
They are short programs stored in a small amount of memory in single-purpose devices such
as telephones, automobile fuel and ignition systems, air-conditioning control systems, secu-
rity systems, data acquisition instruments, video cards, sound cards, hard drives, modems,
and printers. Assembly language is an ideal tool for writing embedded programs because of
its economical use of memory.

• Real-time applications dealing with simulation and hardware monitoring require precise
timing and responses. High-level languages do not give programmers exact control over
machine code generated by compilers. Assembly language permits you to precisely specify a
program’s executable code.

• Computer game consoles require their software to be highly optimized for small code size and fast
execution. Game programmers are experts at writing code that takes full advantage of hardware
features in a target system. They often use assembly language as their tool of choice because it
permits direct access to computer hardware, and code can be hand optimized for speed.

• Assembly language helps you to gain an overall understanding of the interaction between
computer hardware, operating systems, and application programs. Using assembly language,
you can apply and test theoretical information you are given in computer architecture and
operating systems courses.

• Some high-level languages abstract their data representation to the point that it becomes awk-
ward to perform low-level tasks such as bit manipulation. In such an environment, program-
mers will often call subroutines written in assembly language to accomplish their goal.

• Hardware manufacturers create device drivers for the equipment they sell. Device drivers
are programs that translate general operating system commands into specific references to
hardware details. Printer manufacturers, for example, create a different MS-Windows device
driver for each model they sell. Often these device drivers contain significant amounts of
assembly language code.

Are There Rules in Assembly Language? Most rules in assembly language are based on
physical limitations of the target processor and its machine language. The CPU, for example,
requires two instruction operands to be the same size. Assembly language has fewer rules than
C++ or Java because the latter use syntax rules to reduce unintended logic errors at the expense
of low-level data access. Assembly language programmers can easily bypass restrictions charac-
teristic of high-level languages. Java, for example, does not permit access to specific memory
addresses. One can work around the restriction by calling a C function using JNI (Java Native
Interface) classes, but the resulting program can be awkward to maintain. Assembly language,
on the other hand, can access any memory address. The price for such freedom is high: Assem-
bly language programmers spend a lot of time debugging!

6 Chapter 1 • Basic Concepts

1.1.2 Assembly Language Applications
In the early days of programming, most applications were written partially or entirely in assem-
bly language. They had to fit in a small area of memory and run as efficiently as possible on slow
processors. As memory became more plentiful and processors dramatically increased in speed,
programs became more complex. Programmers switched to high-level languages such as C,
FORTRAN, and COBOL that contained a certain amount of structuring capability. More
recently, object-oriented languages such as Python, C++, C#, and Java have made it possible to
write complex programs containing millions of lines of code.

It is rare to see large application programs coded completely in assembly language because
they would take too much time to write and maintain. Instead, assembly language is used to opti-
mize certain sections of application programs for speed and to access computer hardware.
Table 1-1 compares the adaptability of assembly language to high-level languages in relation to
various types of applications.

The C and C++ languages have the unique quality of offering a compromise between high-
level structure and low-level details. Direct hardware access is possible but completely nonport-
able. Most C and C++ compilers allow you to embed assembly language statements in their
code, providing access to hardware details.

1.1.3 Section Review
1. How do assemblers and linkers work together?

2. How will studying assembly language enhance your understanding of operating systems?

Table 1-1 Comparison of Assembly Language to High-Level Languages.

Type of Application High-Level Languages Assembly Language

Commercial or scientific appli-
cation, written for single plat-
form, medium to large size.

Formal structures make it easy to orga-
nize and maintain large sections of
code.

Minimal formal structure, so one
must be imposed by programmers
who have varying levels of experi-
ence. This leads to difficulties main-
taining existing code.

Hardware device driver. The language may not provide for direct
hardware access. Even if it does, awk-
ward coding techniques may be required,
resulting in maintenance difficulties.

Hardware access is straightforward and
simple. Easy to maintain when pro-
grams are short and well documented.

Commercial or scientific appli-
cation written for multiple
platforms (different operating
systems).

Usually portable. The source code can
be recompiled on each target operating
system with minimal changes.

Must be recoded separately for each
platform, using an assembler with a
different syntax. Difficult to maintain.

Embedded systems and com-
puter games requiring direct
hardware access.

May produce large executable files that
exceed the memory capacity of the
device.

Ideal, because the executable code is
small and runs quickly.

1.2 Virtual Machine Concept 7

3. What is meant by a one-to-many relationship when comparing a high-level language to
machine language?

4. Explain the concept of portability as it applies to programming languages.

5. Is the assembly language for x86 processors the same as those for computer systems such as
the Vax or Motorola 68x00?

6. Give an example of an embedded systems application.

7. What is a device driver?

8. Do you suppose type checking on pointer variables is stronger (stricter) in assembly lan-
guage, or in C and C++?

9. Name two types of applications that would be better suited to assembly language than a
high-level language.

10. Why would a high-level language not be an ideal tool for writing a program that directly
accesses a printer port?

11. Why is assembly language not usually used when writing large application programs?

12. Challenge: Translate the following C++ expression to assembly language, using the example
presented earlier in this chapter as a guide: X � (Y * 4) � 3.

1.2 Virtual Machine Concept
An effective way to explain how a computer’s hardware and software are related is called the
virtual machine concept. A well-known explanation of this model can be found in Andrew
Tanenbaum’s book, Structured Computer Organization. To explain this concept, let us begin
with the most basic function of a computer, executing programs.

A computer can usually execute programs written in its native machine language. Each
instruction in this language is simple enough to be executed using a relatively small number of
electronic circuits. For simplicity, we will call this language L0.

Programmers would have a difficult time writing programs in L0 because it is enormously
detailed and consists purely of numbers. If a new language, L1, could be constructed that was
easier to use, programs could be written in L1. There are two ways to achieve this:

• Interpretation: As the L1 program is running, each of its instructions could be decoded and
executed by a program written in language L0. The L1 program begins running immediately,
but each instruction has to be decoded before it can execute.

• Translation: The entire L1 program could be converted into an L0 program by an L0 program
specifically designed for this purpose. Then the resulting L0 program could be executed
directly on the computer hardware.

Virtual Machines
Rather than using only languages, it is easier to think in terms of a hypothetical computer, or vir-
tual machine, at each level. Informally, we can define a virtual machine as a software program
that emulates the functions of some other physical or virtual computer. The virtual machine

8 Chapter 1 • Basic Concepts

VM1, as we will call it, can execute commands written in language L1. The virtual machine
VM0 can execute commands written in language L0:

Each virtual machine can be constructed of either hardware or software. People can write pro-
grams for virtual machine VM1, and if it is practical to implement VM1 as an actual computer,
programs can be executed directly on the hardware. Or programs written in VM1 can be inter-
preted/translated and executed on machine VM0.

Machine VM1 cannot be radically different from VM0 because the translation or interpreta-
tion would be too time-consuming. What if the language VM1 supports is still not programmer-
friendly enough to be used for useful applications? Then another virtual machine, VM2, can be
designed that is more easily understood. This process can be repeated until a virtual machine
VMn can be designed to support a powerful, easy-to-use language.

The Java programming language is based on the virtual machine concept. A program written
in the Java language is translated by a Java compiler into Java byte code. The latter is a low-level
language quickly executed at runtime by a program known as a Java virtual machine (JVM). The
JVM has been implemented on many different computer systems, making Java programs rela-
tively system independent.

Specific Machines
Let us relate this to actual computers and languages, using names such as Level 2 for VM2 and Level 1
for VM1, shown in Figure 1-1. A computer’s digital logic hardware represents machine Level 1. Above
this is Level 2, called the instruction set Architecture (ISA). This is the first level at which users can typi-
cally write programs, although the programs consist of binary values called machine language.

Instruction Set Architecture (Level 2) Computer chip manufacturers design into the proces-
sor an instruction set to carry out basic operations, such as move, add, or multiply. This set of
instructions is also referred to as machine language. Each machine-language instruction is exe-
cuted either directly by the computer’s hardware or by a program embedded in the microprocessor
chip called a microprogram. A discussion of microprograms is beyond the scope of this book, but
you can refer to Tanenbaum for more details.

Assembly Language (Level 3) Above the ISA level, programming languages provide trans-
lation layers to make large-scale software development practical. Assembly language, which
appears at Level 3, uses short mnemonics such as ADD, SUB, and MOV, which are easily trans-
lated to the ISA level. Assembly language programs are translated (assembled) in their entirety
into machine language before they begin to execute.

Virtual Machine VM0

Virtual Machine VM1

1.3 Data Representation 9

Figure 1–1 Virtual machine levels.

High-Level Languages (Level 4) At Level 4 are high-level programming languages such as
C, C++, and Java. Programs in these languages contain powerful statements that translate into
multiple assembly language instructions. You can see such a translation, for example, by exam-
ining the listing file output created by a C++ compiler. The assembly language code is automati-
cally assembled by the compiler into machine language.

1.2.1 Section Review
1. In your own words, describe the virtual machine concept.

2. Why do you suppose translated programs often execute more quickly than interpreted ones?

3. (True/False): When an interpreted program written in language L1 runs, each of its instruc-
tions is decoded and executed by a program written in language L0.

4. Explain the importance of translation when dealing with languages at different virtual
machine levels.

5. At which level does assembly language appear in the virtual machine example shown in this
section?

6. What software utility permits compiled Java programs to run on almost any computer?

7. Name the four virtual machine levels named in this section, from lowest to highest.

8. Why don’t programmers write applications in machine language?

9. Machine language is used at which level of the virtual machine shown in Figure 1-1?

10. Statements at the assembly language level of a virtual machine are translated into state-
ments at which other level?

1.3 Data Representation
Assembly language programmers deal with data at the physical level, so they must be adept at
examining memory and registers. Often, binary numbers are used to describe the contents of
computer memory; at other times, decimal and hexadecimal numbers are used. You must develop

Assembly language

Instruction set
architecture (ISA)

Digital logicLevel 1

Level 2

Level 3

Level 4 High-level language

10 Chapter 1 • Basic Concepts

a certain fluency with number formats, so you can quickly translate numbers from one format to
another.

Each numbering format, or system, has a base, or maximum number of symbols that can be
assigned to a single digit. Table 1-2 shows the possible digits for the numbering systems used
most commonly in hardware and software manuals. In the last row of the table, hexadecimal
numbers use the digits 0 through 9 and continue with the letters A through F to represent deci-
mal values 10 through 15. It is quite common to use hexadecimal numbers when showing the
contents of computer memory and machine-level instructions.

1.3.1 Binary Integers
A computer stores instructions and data in memory as collections of electronic charges. Representing
these entities with numbers requires a system geared to the concepts of on and off or true and false.
Binary numbers are base 2 numbers, in which each binary digit (called a bit) is either 0 or 1. Bits are
numbered sequentially starting at zero on the right side and increasing toward the left. The bit on the
left is called the most significant bit (MSB), and the bit on the right is the least significant bit (LSB).
The MSB and LSB bit numbers of a 16-bit binary number are shown in the following figure:

0 Bit number15

1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0

MSB LSB

Binary integers can be signed or unsigned. A signed integer is positive or negative. An
unsigned integer is by default positive. Zero is considered positive. When writing down large
binary numbers, many people like to insert a dot every 4 bits or 8 bits to make the numbers eas-
ier to read. Examples are 1101.1110.0011.1000.0000 and 11001010.10101100.

Unsigned Binary Integers
Starting with the LSB, each bit in an unsigned binary integer represents an increasing power of
2. The following figure contains an 8-bit binary number, showing how powers of two increase
from right to left:

Table 1-3 lists the decimal values of 20 through 215.

Table 1-2 Binary, Octal, Decimal, and Hexadecimal Digits.

System Base Possible Digits

Binary 2 0 1

Octal 8 0 1 2 3 4 5 6 7

Decimal 10 0 1 2 3 4 5 6 7 8 9

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

1 1 1 1 1 1 1

26 25 24 23 22 21 20

1

27

1.3 Data Representation 11

Translating Unsigned Binary Integers to Decimal
Weighted positional notation represents a convenient way to calculate the decimal value of an
unsigned binary integer having n digits:

dec � (Dn�1 � 2n�1) � (Dn�2 � 2n�2) � ��� � (D1 � 21) � (D0 � 20)

D indicates a binary digit. For example, binary 00001001 is equal to 9. We calculate this value
by leaving out terms equal to zero:

(1 � 23) � (1 � 20) � 9

The same calculation is shown by the following figure:

Translating Unsigned Decimal Integers to Binary
To translate an unsigned decimal integer into binary, repeatedly divide the integer by 2, saving each
remainder as a binary digit. The following table shows the steps required to translate decimal 37 to
binary. The remainder digits, starting from the top row, are the binary digits D0, D1, D2, D3, D4, and D5:

Table 1-3 Binary Bit Position Values.

 2n Decimal Value 2n Decimal Value

20 1 28 256

21 2 29 512

22 4 210 1024

23 8 211 2048

24 16 212 4096

25 32 213 8192

26 64 214 16384

27 128 215 32768

Division Quotient Remainder

37 / 2 18 1

18 / 2 9 0

9 / 2 4 1

4 / 2 2 0

2 / 2 1 0

1 / 2 0 1

8

� 1

9

10010000

12 Chapter 1 • Basic Concepts

We can concatenate the binary bits from the remainder column of the table in reverse order
(D5, D4, . . .) to produce binary 100101. Because computer storage always consists of binary
numbers whose lengths are multiples of 8, we fill the remaining two digit positions on the left
with zeros, producing 00100101.

1.3.2 Binary Addition
When adding two binary integers, proceed bit by bit, starting with the low-order pair of bits (on
the right) and add each subsequent pair of bits. There are four ways to add two binary digits, as
shown here:

When adding 1 to 1, the result is 10 binary (think of it as the decimal value 2). The extra
digit generates a carry to the next-highest bit position. In the following figure, we add binary
00000100 to 00000111:

Beginning with the lowest bit in each number (bit position 0), we add 0 � 1, producing a 1 in
the bottom row. The same happens in the next highest bit (position 1). In bit position 2, we add
1 � 1, generating a sum of zero and a carry of 1. In bit position 3, we add the carry bit to 0 � 0,
producing 1. The rest of the bits are zeros. You can verify the addition by adding the decimal
equivalents shown on the right side of the figure (4 � 7 � 11).

Sometimes a carry is generated out of the highest bit position. When that happens, the size
of the storage area set aside becomes important. If we add 11111111 to 00000001, for exam-
ple, a 1 carries out of the highest bit position, and the lowest 8 bits of the sum equal all zeros.
If the storage location for the sum is at least 9 bits long, we can represent the sum as
100000000. But if the sum can only store 8 bits, it will equal to 00000000, the lowest 8 bits of
the calculated value.

Tip: How many bits? There’s a simple formula to find b, the number of binary bits you need to
represent the unsigned decimal value n. It is b = ceiling (log2 n). If n = 17, for example, log2 17 =
4.087463, which when raised to the smallest following integer, equals 5. Most calculators don’t
have a log base 2 operation, but you can find web pages that will calculate it for you.

0 � 0 � 0 0 � 1 � 1

1 � 0 � 1 1 � 1 � 10

0 0 0 0 1 1

0 0 0 0 1 0

�

0 0 0 1 0 1

1

(4)

(7)

(11)

Carry:

1

0

1

01234Bit position: 56

0

0

0

7

1.3 Data Representation 13

1.3.3 Integer Storage Sizes
The basic storage unit for all data in an x86 computer is a byte, containing 8 bits. Other
storage sizes are word (2 bytes), doubleword (4 bytes), and quadword (8 bytes). In the following
figure, the number of bits is shown for each size:

Table 1-4 shows the range of possible values for each type of unsigned integer.

Large Measurements A number of large measurements are used when referring to both
memory and disk space:

• One kilobyte is equal to 210, or 1024 bytes.
• One megabyte (1 MByte) is equal to 220, or 1,048,576 bytes.
• One gigabyte (1 GByte) is equal to 230, or 10243, or 1,073,741,824 bytes.
• One terabyte (1 TByte) is equal to 240, or 10244, or 1,099,511,627,776 bytes.

• One petabyte is equal to 250, or 1,125,899,906,842,624 bytes.
• One exabyte is equal to 260, or 1,152,921,504,606,846,976 bytes.
• One zettabyte is equal to 270 bytes.
• One yottabyte is equal to 280 bytes.

1.3.4 Hexadecimal Integers
Large binary numbers are cumbersome to read, so hexadecimal digits offer a convenient way to
represent binary data. Each digit in a hexadecimal integer represents four binary bits, and two
hexadecimal digits together represent a byte. A single hexadecimal digit represents decimal 0 to
15, so letters A to F represent decimal values in the range 10 through 15. Table 1-5 shows how
each sequence of four binary bits translates into a decimal or hexadecimal value.

Table 1-4 Ranges and Sizes of Unsigned Integer Types.

Type Range
Storage Size

in Bits

Unsigned byte 0 to 28 − 1 8

Unsigned word 0 to 216 − 1 16

Unsigned doubleword 0 to 232 − 1 32

Unsigned quadword 0 to 264 − 1 64

Unsigned double quadword 0 to 2128− 1 128

Byte

16

8

32

Word

Doubleword

64Quadword

128Double quadword

14 Chapter 1 • Basic Concepts

The following example shows how binary 0001 0110 1010 0111 1001 0100 is equivalent to
hexadecimal 16A794:

Converting Unsigned Hexadecimal to Decimal
In hexadecimal, each digit position represents a power of 16. This is helpful when calculating the
decimal value of a hexadecimal integer. Suppose we number the digits in a four-digit hexadecimal
integer with subscripts as D3D2D1D0. The following formula calculates the integer’s decimal value:

dec � (D3 � 163) � (D2 � 162) � (D1 � 161) � (D0 � 160)

The formula can be generalized for any n-digit hexadecimal integer:

dec � (Dn�1 � 16n�1) � (Dn�2 � 16n�2) � � � � � (D1 � 161) � (D0 � 160)

For example, hexadecimal 1234 is equal to (1 � 163) � (2 � 162) � (3 � 161) � (4 � 160), or
decimal 4660. Similarly, hexadecimal 3BA4 is equal to (3 � 163) � (11 � 162) � (10 � 161) �

(4 � 160), or decimal 15,268. The following figure shows this last calculation:

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary Decimal Hexadecimal Binary Decimal Hexadecimal

0000 0 0 1000 8 8

0001 1 1 1001 9 9

0010 2 2 1010 10 A

0011 3 3 1011 11 B

0100 4 4 1100 12 C

0101 5 5 1101 13 D

0110 6 6 1110 14 E

0111 7 7 1111 15 F

1 6 A 7 9 4

0001 0110 1010 0111 1001 0100

In general, you can convert an n-digit integer in any base B to decimal using the following
formula: dec = (Dn�1 � Bn�1) � (Dn�2 � Bn�2) � � � � � (D1 × B1) � (D0 � B0).

Total: 15,2684AB3

 3 × 163 � 12,288

11 × 162 � 2,816

10 × 161 � 160

 4 × 160 � � 4

1.3 Data Representation 15

Table 1-6 lists the powers of 16 from 160 to 167.

Converting Unsigned Decimal to Hexadecimal
To convert an unsigned decimal integer to hexadecimal, repeatedly divide the decimal value by
16 and retain each remainder as a hexadecimal digit. For example, the following table lists the
steps when converting decimal 422 to hexadecimal:

The resulting hexadecimal number is assembled from the digits in the remainder column, start-
ing from the last row and working upward to the top row. In this example, the hexadecimal rep-
resentation is 1A6. The same algorithm was used for binary integers in Section 1.3.1. To convert
from decimal into some other number base other than hexadecimal, replace the divisor (16) in
each calculation with the desired number base.

1.3.5 Hexadecimal Addition
Debugging utility programs (known as debuggers) usually display memory addresses in hexa-
decimal. It is often necessary to add two addresses in order to locate a new address. Fortu-
nately, hexadecimal addition works the same way as decimal addition, if you just change the
number base.

Suppose we want to add two numbers X and Y, using numbering base b. We will number
their digits from the lowest position (x0) to the highest. If we add digits xi and yi in X and
Y, we produce the value si. If , we recalculate si � (si MOD b) and generate a carry
value of 1. When we move to the next pair of digits xi+1 and yi+1, we add the carry value to
their sum.

For example, let’s add the hexadecimal values 6A2 and 49A. In the lowest digit position,
2 � A � decimal 12, so there is no carry and we use C to indicate the hexadecimal sum
digit. In the next position, A � 9 � decimal 19, so there is a carry because , the num-
ber base. We calculate 19 MOD 16 � 3, and carry a 1 into the third digit position. Finally,
we add 1 � 6 � 4 � decimal 11, which is shown as the letter B in the third position of the
sum. The hexadecimal sum is B3C.

Table 1-6 Powers of 16 in Decimal.

16n Decimal Value 16n Decimal Value

160 1 164 65,536

161 16 165 1,048,576

162 256 166 16,777,216

163 4096 167 268,435,456

Division Quotient Remainder

422 / 16 26 6

26 / 16 1 A

1 / 16 0 1

si b≥

19 16≥

16 Chapter 1 • Basic Concepts

1.3.6 Signed Binary Integers
Signed binary integers are positive or negative. For x86 processors, the MSB indicates the
sign: 0 is positive and 1 is negative. The following figure shows examples of 8-bit negative
and positive integers:

Two’s-Complement Representation
Negative integers use two’s-complement representation, using the mathematical principle that
the two’s complement of an integer is its additive inverse. (If you add a number to its additive
inverse, the sum is zero.)

Two’s-complement representation is useful to processor designers because it removes the need
for separate digital circuits to handle both addition and subtraction. For example, if presented with
the expression A � B, the processor can simply convert it to an addition expression: A � (�B).

The two’s complement of a binary integer is formed by inverting (complementing) its bits
and adding 1. Using the 8-bit binary value 00000001, for example, its two’s complement turns
out to be 11111111, as can be seen as follows:

11111111 is the two’s-complement representation of �1. The two’s-complement operation is
reversible, so the two’s complement of 11111111 is 00000001.

Hexadecimal Two’s Complement To create the two’s complement of a hexadecimal integer,
reverse all bits and add 1. An easy way to reverse the bits of a hexadecimal digit is to subtract the
digit from 15. Here are examples of hexadecimal integers converted to their two’s complements:

6A3D --> 95C2 + 1 --> 95C3
95C3 --> 6A3C + 1 --> 6A3D

Carry 1

X 6 A 2

Y 4 9 A

S B 3 C

Starting value 00000001

Step 1: Reverse the bits 11111110

Step 2: Add 1 to the value from Step 1 11111110
+00000001

Sum: Two’s-complement representation 11111111

1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

Sign bit

Negative

Positive

1

1.3 Data Representation 17

Converting Signed Binary to Decimal Use the following algorithm to calculate the decimal
equivalent of a signed binary integer:

• If the highest bit is a 1, the number is stored in two’s-complement notation. Create its two’s
complement a second time to get its positive equivalent. Then convert this new number to
decimal as if it were an unsigned binary integer.

• If the highest bit is a 0, you can convert it to decimal as if it were an unsigned binary integer.

For example, signed binary 11110000 has a 1 in the highest bit, indicating that it is a negative
integer. First we create its two’s complement, and then convert the result to decimal. Here are the
steps in the process:

Because the original integer (11110000) was negative, we know that its decimal value is −16.

Converting Signed Decimal to Binary To create the binary representation of a signed deci-
mal integer, do the following:

1. Convert the absolute value of the decimal integer to binary.
2. If the original decimal integer was negative, create the two’s complement of the binary num-

ber from the previous step.

For example, −43 decimal is translated to binary as follows:

1. The binary representation of unsigned 43 is 00101011.
2. Because the original value was negative, we create the two’s complement of 00101011,

which is 11010101. This is the representation of −43 decimal.

Converting Signed Decimal to Hexadecimal To convert a signed decimal integer to hexa-
decimal, do the following:

1. Convert the absolute value of the decimal integer to hexadecimal.
2. If the decimal integer was negative, create the two’s complement of the hexadecimal number

from the previous step.

Converting Signed Hexadecimal to Decimal To convert a signed hexadecimal integer to
decimal, do the following:

1. If the hexadecimal integer is negative, create its two’s complement; otherwise, retain the
integer as is.

2. Using the integer from the previous step, convert it to decimal. If the original value was nega-
tive, attach a minus sign to the beginning of the decimal integer.

Starting value 11110000

Step 1: Reverse the bits 00001111

Step 2: Add 1 to the value from Step 1 00001111
+ 1

Step 3: Create the two’s complement 00010000

Step 4: Convert to decimal 16

You can tell whether a hexadecimal integer is positive or negative by inspecting its most signifi-
cant (highest) digit. If the digit is ≥ 8, the number is negative; if the digit is ≤ 7, the number is pos-
itive. For example, hexadecimal 8A20 is negative and 7FD9 is positive.

18 Chapter 1 • Basic Concepts

Maximum and Minimum Values
A signed integer of n bits uses only n � 1 bits to represent the number’s magnitude. Table 1-7
shows the minimum and maximum values for signed bytes, words, doublewords, and quadwords.

1.3.7 Binary Subtraction
Subtracting a smaller unsigned binary number from a large one is easy if you go about it in the
same way you handle decimal subtraction. Here’s an example:

 0 1 1 0 1 (decimal 13)
- 0 0 1 1 1 (decimal 7)

Subtracting the bits in position 0 is straightforward:

 0 1 1 0 1
- 0 0 1 1 1

 0

In the next position (0 – 1), we are forced to borrow a 1 from the next position to the left. Here’s
the result of subtracting 1 from 2:

 0 1 0 0 1
- 0 0 1 1 1

 1 0

In the next bit position, we again have to borrow a bit from the column just to the left and sub-
tract 1 from 2:

 0 0 0 1 1
- 0 0 1 1 1

 1 1 0

Finally, the two high-order bits are zero minus zero:

 0 0 0 1 1
- 0 0 1 1 1

 0 0 1 1 0 (decimal 6)

Table 1-7 Ranges and Sizes of Signed Integer Types.

Type Range Storage Size in Bits

Signed byte –27 to +27– 1 8

Signed word –215 to +215– 1 16

Signed doubleword –231 to +231– 1 32

Signed quadword –263 to +263– 1 64

Signed double quadword –2127 to +2127– 1 128

1.3 Data Representation 19

A simpler way to approach binary subtraction is to reverse the sign of the value being subtracted,
and then add the two values. This method requires you to have an extra empty bit to hold the
number’s sign. Let’s try it with the same problem we just calculated: (01101 minus 00111).
First, we negate 00111 by inverting its bits (11000) and adding 1, producing 11001. Next, we
add the binary values and ignore the carry out of the highest bit:

0 1 1 0 1 (+13)
1 1 0 0 1 (-7)

0 0 1 1 0 (+6)

The result, +6, is exactly what we expected.

1.3.8 Character Storage
If computers only store binary data, how do they represent characters? They use a character set,
which is a mapping of characters to integers. In earlier times, character sets used only 8 bits. Even
now, when running in character mode (such as MS-DOS), IBM-compatible microcomputers use
the ASCII (pronounced “askey”) character set. ASCII is an acronym for American Standard Code
for Information Interchange. In ASCII, a unique 7-bit integer is assigned to each character.
Because ASCII codes use only the lower 7 bits of every byte, the extra bit is used on various com-
puters to create a proprietary character set. On IBM-compatible microcomputers, for example,
values 128 through 255 represent graphic symbols and Greek characters.

ANSI Character Set The American National Standards Institute (ANSI) defines an 8-bit
character set that represents up to 256 characters. The first 128 characters correspond to the
letters and symbols on a standard U.S. keyboard. The second 128 characters represent spe-
cial characters such as letters in international alphabets, accents, currency symbols, and
fractions. Early version of Microsoft Windows used the ANSI character set.

Unicode Standard Today, computers must be able to represent a wide variety of international
languages in computer software. As a result, the Unicode standard was created as a universal
way of defining characters and symbols. It defines numeric codes (called code points) for char-
acters, symbols, and punctuation used in all major languages, as well as European alphabetic
scripts, Middle Eastern right-to-left scripts, and many scripts of Asia. Three transformation for-
mats are used to transform code points into displayable characters:

• UTF-8 is used in HTML, and has the same byte values as ASCII.
• UTF-16 is used in environments that balance efficient access to characters with economical

use of storage. Recent versions of Microsoft Windows, for example, use UTF-16 encoding.
Each character is encoded in 16 bits.

• UTF-32 is used in environments where space is no concern and fixed-width characters are
required. Each character is encoded in 32 bits.

ASCII Strings A sequence of one or more characters is called a string. More specifically, an ASCII
string is stored in memory as a succession of bytes containing ASCII codes. For example, the numeric
codes for the string “ABC123” are 41h, 42h, 43h, 31h, 32h, and 33h. A null-terminated string is a string
of characters followed by a single byte containing zero. The C and C++ languages use null-terminated
strings, and many Windows operating system functions require strings to be in this format.

20 Chapter 1 • Basic Concepts

Using the ASCII Table A table on the inside back cover of this book lists ASCII codes used
when running in Windows Console mode. To find the hexadecimal ASCII code of a character, look
along the top row of the table and find the column containing the character you want to translate.
The most significant digit of the hexadecimal value is in the second row at the top of the table; the
least significant digit is in the second column from the left. For example, to find the ASCII code of
the letter a, find the column containing the a and look in the second row: The first hexadecimal digit
is 6. Next, look to the left along the row containing a and note that the second column contains the
digit 1. Therefore, the ASCII code of a is 61 hexadecimal. This is shown as follows in simplified
form:

ASCII Control Characters Character codes in the range 0 through 31 are called ASCII
control characters. If a program writes these codes to standard output (as in C++), the con-
trol characters will carry out predefined actions. Table 1-8 lists the most commonly used
characters in this range, and a complete list may be found in the inside front cover of this
book.

a

6

1

Terminology for Numeric Data Representation It is important to use precise terminology
when describing the way numbers and characters are represented in memory and on the display
screen. Decimal 65, for example, is stored in memory as a single binary byte as 01000001.
A debugging program would probably display the byte as “41,” which is the number’s hexadeci-
mal representation. If the byte were copied to video memory, the letter “A” would appear on the
screen because 01000001 is the ASCII code for the letter A. Because a number’s interpretation
can depend on the context in which it appears, we assign a specific name to each type of data
representation to clarify future discussions:

• A binary integer is an integer stored in memory in its raw format, ready to be used in a calcu-
lation. Binary integers are stored in multiples of 8 bits (such as 8, 16, 32, or 64).

Table 1-8 ASCII Control Characters.

ASCII Code (Decimal) Description

8 Backspace (moves one column to the left)

9 Horizontal tab (skips forward n columns)

10 Line feed (moves to next output line)

12 Form feed (moves to next printer page)

13 Carriage return (moves to leftmost output column)

27 Escape character

1.3 Data Representation 21

• A digit string is a string of ASCII characters, such as “123” or “65.” This is simply a repre-
sentation of the number and can be in any of the formats shown for the decimal number 65 in
Table 1-9:

1.3.9 Section Review
1. Explain the term least significant bit (LSB).

2. What is the decimal representation of each of the following unsigned binary integers?

a. 11111000
b. 11001010
c. 11110000

3. What is the sum of each pair of binary integers?

a. 00001111 � 00000010
b. 11010101 � 01101011
c. 00001111 � 00001111

4. How many bytes are contained in each of the following data types?

a. word
b. doubleword
c. quadword

d. double quadword

5. What is the minimum number of binary bits needed to represent each of the following
unsigned decimal integers?

a. 65
b. 409
c. 16385

6. What is the hexadecimal representation of each of the following binary numbers?

a. 0011 0101 1101 1010
b. 1100 1110 1010 0011
c. 1111 1110 1101 1011

7. What is the binary representation of the following hexadecimal numbers?

a. A4693FBC
b. B697C7A1
c. 2B3D9461

Table 1-9 Types of Digit Strings.

Format Value

Binary digit string “01000001”

Decimal digit string “65”

Hexadecimal digit string “41”

Octal digit string “101”

22 Chapter 1 • Basic Concepts

1.4 Boolean Expressions
Boolean algebra defines a set of operations on the values true and false. It was invented by George
Boole, a mid-nineteenth-century mathematician. When early digital computers were invented, it
was found that Boole’s algebra could be used to describe the design of digital circuits. At the same
time, boolean expressions are used in computer programs to express logical operations.

A boolean expression involves a boolean operator and one or more operands. Each boolean
expression implies a value of true or false. The set of operators includes the following:

• NOT: notated as ¬ or ~ or ’
• AND: notated as ∧ or •
• OR: notated as ∨ or �

The NOT operator is unary, and the other operators are binary. The operands of a boolean
expression can also be boolean expressions. The following are examples:

NOT The NOT operation reverses a boolean value. It can be written in mathematical notation
as ¬X, where X is a variable (or expression) holding a value of true (T) or false (F). The follow-
ing truth table shows all the possible outcomes of NOT using a variable X. Inputs are on the left
side and outputs (shaded) are on the right side:

A truth table can use 0 for false and 1 for true.

AND The Boolean AND operation requires two operands, and can be expressed using the notation
X ∧ Y. The following truth table shows all the possible outcomes (shaded) for the values of X and Y:

Expression Description

¬X NOT X

X ∧ Y X AND Y

X ∨ Y X OR Y

¬X ∨ Y (NOT X) OR Y

¬(X ∧ Y) NOT (X AND Y)

X ∧ ¬Y X AND (NOT Y)

X ¬X

F T

T F

X Y X ∧ Y

F F F

F T F

T F F

T T T

1.4 Boolean Expressions 23

The output is true only when both inputs are true. This corresponds to the logical AND used
in compound boolean expressions in C++ and Java.

The AND operation is often carried out at the bit level in assembly language. In the following
example, each bit in X is ANDed with its corresponding bit in Y:

X: 11111111
Y: 00011100
X ∧ Y: 00011100

As Figure 1-2 shows, each bit of the resulting value, 00011100, represents the result of ANDing
the corresponding bits in X and Y.

Figure 1–2 ANDing the bits of two binary integers.

OR The Boolean OR operation requires two operands, and is often expressed using the nota-
tion X ∨ Y. The following truth table shows all the possible outcomes (shaded) for the values of
X and Y:

The output is false only when both inputs are false. This truth table corresponds to the
logical OR used in compound boolean expressions in C++ and Java.

The OR operation is often carried out at the bit level. In the following example, each bit in X
is ORed with its corresponding bit in Y, producing 11111100:

X: 11101100
Y: 00011100
X ∨ Y: 11111100

X Y X ∨ Y

F F F

F T T

T F T

T T T

1 1 1 1 1 1 1 1

0 0 0 1 1 1 0 0

0

X:

Y:

X^Y: 0 0 1 1 1 0 0

AND AND AND AND AND AND AND AND

24 Chapter 1 • Basic Concepts

As shown in Figure 1-3, the bits are ORed individually, producing a corresponding bit in the
result.

Figure 1–3 ORing the bits in two binary integers.

Operator Precedence Operator precedence rules are used to indicate which operators exe-
cute first in expressions involving multiple operators. In a boolean expression involving more
than one operator, precedence is important. As shown in the following table, the NOT operator
has the highest precedence, followed by AND and OR. You can use parentheses to force the ini-
tial evaluation of an expression:

1.4.1 Truth Tables for Boolean Functions
A boolean function receives boolean inputs and produces a boolean output. A truth table can be
constructed for any boolean function, showing all possible inputs and outputs. The following are
truth tables representing boolean functions having two inputs named X and Y. The shaded col-
umn on the right is the function’s output:

Expression Order of Operations

¬X ∨ Y NOT, then OR

¬(X ∨ Y) OR, then NOT

X ∨ (Y ∧ Z) AND, then OR

1 1 1 0 1 1 0 0

0 0 0 1 1 1 0 0

1 1 1 1 1 1 0 0

OR OR OR OR OR OR OR OR

X:

Y:

X Y:

^

1.4 Boolean Expressions 25

Example 1: ¬X ∨ Y

Example 2: X ∧ ¬Y

Example 3: (Y ∧ S) ∨ (X ∧ ¬S)

X ¬X Y ¬X ∨ Y

F T F T

F T T T

T F F F

T F T T

X Y ¬Y X ∧¬Y

F F T F

F T F F

T F T T

T T F F

X Y S Y ∧ S ¬S X ∧¬S (Y ∧ S) ∨ (X ∧ ¬S)

F F F F T F F

F T F F T F F

T F F F T T T

T T F F T T T

F F T F F F F

F T T T F F T

T F T F F F F

T T T T F F T

26 Chapter 1 • Basic Concepts

The boolean function in Example 3 describes a multiplexer, a digital component that uses
a selector bit (S) to select one of two outputs (X or Y). If S � false, the function output (Z) is
the same as X. If S � true, the function output is the same as Y. Here is a block diagram of a
multiplexer:

1.4.2 Section Review
1. Describe the following boolean expression: ¬X ∨ Y.

2. Describe the following boolean expression: (X ∧ Y).

3. What is the value of the boolean expression (T ∧ F) ∨ T ?

4. What is the value of the boolean expression ¬(F ∨ T) ?

5. What is the value of the boolean expression ¬F ∨ ¬T ?

1.5 Chapter Summary
This book focuses on programming x86 processors, using the MS-Windows platform. We cover
basic principles about computer architecture, machine language, and low-level programming.
You will learn enough assembly language to test your knowledge on today’s most widely used
microprocessor family.

Before reading this book, you should have completed a single college course or equivalent in
computer programming.

An assembler is a program that converts source-code programs from assembly language into
machine language. A companion program, called a linker, combines individual files created by
an assembler into a single executable program. A third program, called a debugger, provides a
way for a programmer to trace the execution of a program and examine the contents of memory.

You will create 32-bit and 64-bit programs for the most part, and 16-bit programs if you focus
on the last four chapters.

You will learn the following concepts from this book: basic computer architecture applied to
x86 (and Intel 64) processors; elementary boolean logic; how x86 processors manage memory;
how high-level language compilers translate statements from their language into assembly lan-
guage and native machine code; how high-level languages implement arithmetic expressions,
loops, and logical structures at the machine level; and the data representation of signed and
unsigned integers, real numbers, and character data.

Assembly language has a one-to-one relationship with machine language, in which a single
assembly language instruction corresponds to one machine language instruction. Assembly lan-
guage is not portable because it is tied to a specific processor family.

mux
X

Y

S

Z

1.6 Key Terms 27

Programming languages are tools that you can use to create individual applications or parts of
applications. Some applications, such as device drivers and hardware interface routines, are
more suited to assembly language. Other applications, such as multiplatform commercial and
scientific applications, are more easily written in high-level languages.

The virtual machine concept is an effective way of showing how each layer in a computer
architecture represents an abstraction of a machine. Layers can be constructed of hardware or
software, and programs written at any layer can be translated or interpreted by the next-lowest
layer. The virtual machine concept can be related to real-world computer layers, including digi-
tal logic, instruction set architecture, assembly language, and high-level languages.

Binary and hexadecimal numbers are essential notational tools for programmers working at
the machine level. For this reason, you must understand how to manipulate and translate
between number systems and how character representations are created by computers.

The following boolean operators were presented in this chapter: NOT, AND, and OR. A bool-
ean expression combines a boolean operator with one or more operands. A truth table is an
effective way to show all possible inputs and outputs of a boolean function.

1.6 Key Terms
ASCII

ASCII control characters

ASCII digit string

assembler

assembly language

binary digit string

binary integer

bit

boolean algebra

boolean expression

boolean function

character set

code interpretation

code point (Unicode)

code translation

debugger

device driver

digit string

embedded systems application

exabyte

gigabyte

hexadecimal digit string

hexadecimal integer

high-level language

instruction set architecture (ISA)

Java Native Interface (JNI)

kilobyte

language portability

least significant bit (LSB)

machine language

megabyte

microcode interpreter

microprogram

Microsoft Macro Assembler (MASM)

most significant bit (MSB)

multiplexer

null-terminated string

octal digit string

one-to-many relationship

operator precedence

petabyte

registers

signed binary integer

terabyte

Unicode

Unicode Transformation Format (UTF)

28 Chapter 1 • Basic Concepts

unsigned binary integer

UTF-8

UTF-16

UTF-32

virtual machine (VM)

virtual machine concept

Visual Studio

yottabyte

zettabyte

1.7 Review Questions and Exercises

1.7.1 Short Answer
1. In an 8-bit binary number, which is the most significant bit (MSB)?

2. What is the decimal representation of each of the following unsigned binary integers?

a. 00110101
b. 10010110
c. 11001100

3. What is the sum of each pair of binary integers?

a. 10101111 + 11011011
b. 10010111 + 11111111
c. 01110101 + 10101100

4. Calculate binary 00001101 minus 00000111.

5. How many bits are used by each of the following data types?

a. word
b. doubleword
c. quadword
d. double quadword

6. What is the minimum number of binary bits needed to represent each of the following
unsigned decimal integers?

a. 4095
b. 65534
c. 42319

7. What is the hexadecimal representation of each of the following binary numbers?

a. 0011 0101 1101 1010
b. 1100 1110 1010 0011
c. 1111 1110 1101 1011

8. What is the binary representation of the following hexadecimal numbers?

a. 0126F9D4
b. 6ACDFA95
c. F69BDC2A

9. What is the unsigned decimal representation of each of the following hexadecimal integers?

a. 3A
b. 1BF
c. 1001

1.7 Review Questions and Exercises 29

10. What is the unsigned decimal representation of each of the following hexadecimal integers?

a. 62
b. 4B3
c. 29F

11. What is the 16-bit hexadecimal representation of each of the following signed decimal integers?

a.
b.

12. What is the 16-bit hexadecimal representation of each of the following signed decimal integers?

a.
b.

13. The following 16-bit hexadecimal numbers represent signed integers. Convert each to
decimal.

a. 6BF9
b. C123

14. The following 16-bit hexadecimal numbers represent signed integers. Convert each to
decimal.

a. 4CD2
b. 8230

15. What is the decimal representation of each of the following signed binary numbers?

a. 10110101
b. 00101010
c. 11110000

16. What is the decimal representation of each of the following signed binary numbers?

a. 10000000
b. 11001100
c. 10110111

17. What is the 8-bit binary (two’s-complement) representation of each of the following signed
decimal integers?

a.
b.
c.

18. What is the 8-bit binary (two’s-complement) representation of each of the following signed
decimal integers?

a.
b.
c.

19. What is the sum of each pair of hexadecimal integers?

a. 6B4 + 3FE
b. A49 + 6BD

24–

331–

21–

45–

5–

42–

16–

72–

98–

26–

30 Chapter 1 • Basic Concepts

20. What is the sum of each pair of hexadecimal integers?

a. 7C4 � 3BE
b. B69 � 7AD

21. What are the hexadecimal and decimal representations of the ASCII character capital B?

22. What are the hexadecimal and decimal representations of the ASCII character capital G?

23. Challenge: What is the largest decimal value you can represent, using a 129-bit unsigned
integer?

24. Challenge: What is the largest decimal value you can represent, using a 86-bit signed
integer?

25. Create a truth table to show all possible inputs and outputs for the boolean function
described by ¬().

26. Create a truth table to show all possible inputs and outputs for the boolean function
described by (). How would you describe the rightmost column of this table in
relation to the table from question number 25? Have you heard of De Morgan’s Theorem?

27. If a boolean function has four inputs, how many rows are required for its truth table?

28. How many selector bits are required for a four-input multiplexer?

1.7.2 Algorithm Workbench
Use any high-level programming language you wish for the following programming exercises.
Do not call built-in library functions that accomplish these tasks automatically. (Examples are
sprintf and sscanf from the Standard C library.)

1. Write a function that receives a string containing a 16-bit binary integer. The function must
return the string’s integer value.

2. Write a function that receives a string containing a 32-bit hexadecimal integer. The function
must return the string’s integer value.

3. Write a function that receives an integer. The function must return a string containing the
binary representation of the integer.

4. Write a function that receives an integer. The function must return a string containing the
hexadecimal representation of the integer.

5. Write a function that adds two digit strings in base b, where . Each string may
contain as many as 1,000 digits. Return the sum in a string that uses the same number base.

6. Write a function that adds two hexadecimal strings, each as long as 1,000 digits. Return a
hexadecimal string that represents the sum of the inputs.

7. Write a function that multiplies a single hexadecimal digit by a hexadecimal digit string as
long as 1,000 digits. Return a hexadecimal string that represents the product.

A B∨

A¬ B¬∧

2 b 10≤ ≤

1.7 Review Questions and Exercises 31

8. Write a Java program that contains the calculation shown below. Then, use the javap –c
command to disassemble your code. Add comments to each line that provide your best
guess as to its purpose.

int Y;
int X = (Y + 4) * 3;

9. Devise a way of subtracting unsigned binary integers. Test your technique by subtracting binary
00000101 from binary 10001000, producing 10000011. Test your technique with at least two
other sets of integers, in which a smaller value is always subtracted from a larger one.

Chapter End Notes
1. Donald Knuth, MMIX, A RISC Computer for the New Millennium, Transcript of a lecture given at the Mas-

sachusetts Institute of Technology, December 30, 1999.

