Principles of Electronic Communication Systems

Third Edition

Louis E. Frenzel, Jr.

Chapter 14

Antennas and Wave Propagation

Topics Covered in Chapter 14

- 14-1: Antenna Fundamentals
- 14-2: Common Antenna Types
- 14-3: Radio-Wave Propagation

- The interface between the transmitter and free space and between free space and the receiver is the antenna.
- At the transmitting end the antenna converts the transmitter RF power into electromagnetic signals; at the receiving end the antenna picks up the electromagnetic signals and converts them into signals for the receiver.

Radio Waves

- A radio signal is called an electromagnetic wave because it is made up of both electric and magnetic fields.
- Whenever voltage is applied to the antenna, an electric field is set up.
- This voltage causes current to flow in the antenna, producing a magnetic field.
- These fields are emitted from the antenna and propagate through space at the speed of light.

Radio Waves: Magnetic Fields

- A magnetic field is an invisible force field created by a magnet.
- An antenna is a type of electromagnet.
- A magnetic field is generated around a conductor when current flows through it.
- The strength and direction of the magnetic field depend upon the magnitude and direction of the current flow.
- The SI unit for magnetic field strength is ampere-turns per meter.

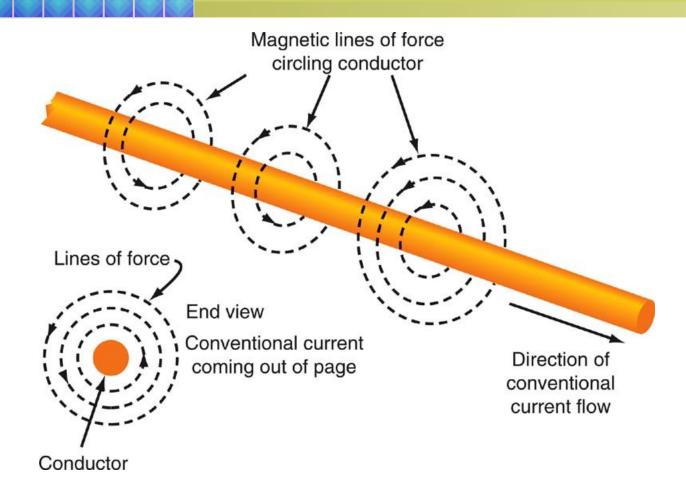


Figure 14-1: Magnetic field around a current-carrying conductor. Magnetic field strength *H* in ampere-turns per meter = $H = I I(2 \pi d)$.

Radio Waves: Electric Field

- An electric field is an invisible force field produced by the presence of a potential difference between two conductors.
- For example, an electric field is produced between the plates of a charged capacitor.
- An electric field exists between any two points across which a potential difference exists.
- The SI unit for electric field strength is volts per meter.
- Permittivity is the dielectric constant of the material between the two conductors.

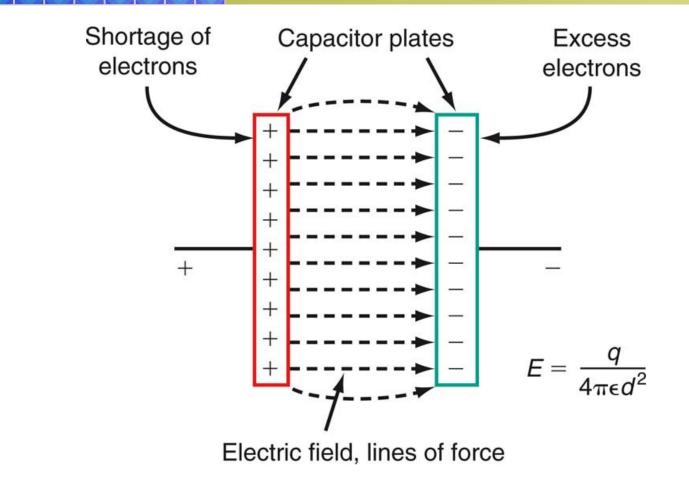


Figure 14-2: Electric field across the plates of a capacitor.

Radio Waves: Magnetic and Electric Fields in a Transmission Line

- At any given time in a two-wire transmission line, the wires have opposite polarities.
- During one-half cycle of the ac input, one wire is positive and the other is negative.
- During the negative half-cycle, the polarity reverses.
- The direction of the electric field between the wires reverses once per cycle.
- The direction of current flow in one wire is always opposite that in the other wire. Therefore, the magnetic fields combine.

Radio Waves: Magnetic and Electric Fields in a Transmission Line

- A transmission line is made up of a conductor or conductors.
- Transmission lines do not radiate signals efficiently.
- The closeness of the conductors keeps the electric field concentrated in the transmission line dielectric.
- The magnetic fields mostly cancel one another.
- The electric and magnetic fields do extend outward from the transmission line, but the small amount of radiation that does occur is extremely inefficient.

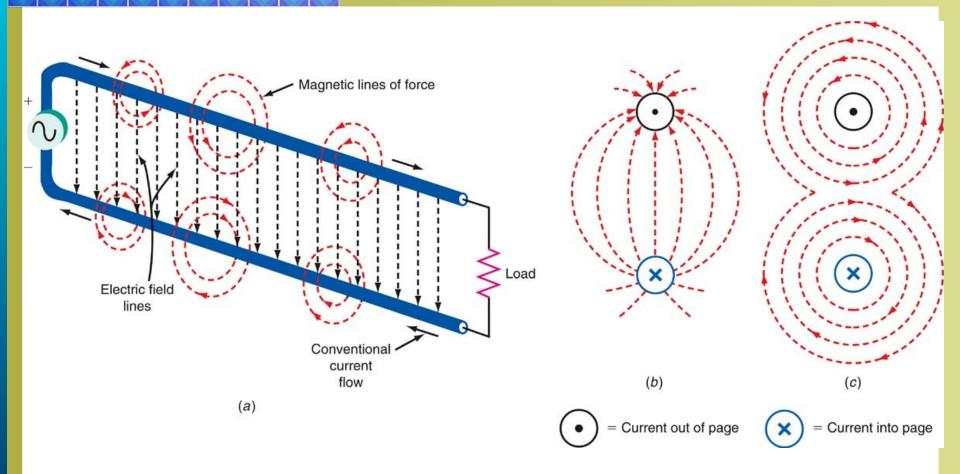


Figure 14-3: (*a*) Magnetic and electric fields around a transmission line. (*b*) Electric field. (*c*) Magnetic fields.

© 2008 The McGraw-Hill Companies

12

Antenna Operation: The Nature of an Antenna

- If a parallel-wire transmission line is left open, the electric and magnetic fields escape from the end of the line and radiate into space.
- This radiation is inefficient and unsuitable for reliable transmission or reception.
- The radiation from a transmission line can be greatly improved by bending the transmission-line conductors so they are at a right angle to the transmission line.

Antenna Operation: The Nature of an Antenna

- The magnetic fields no longer cancel; they now aid one another.
- The electric field spreads out from conductor to conductor.
- Optimum radiation occurs if the segment of transmission wire converted into an antenna is one quarter wavelength long at the operating frequency.
- This makes an antenna that is one-half wavelength long.

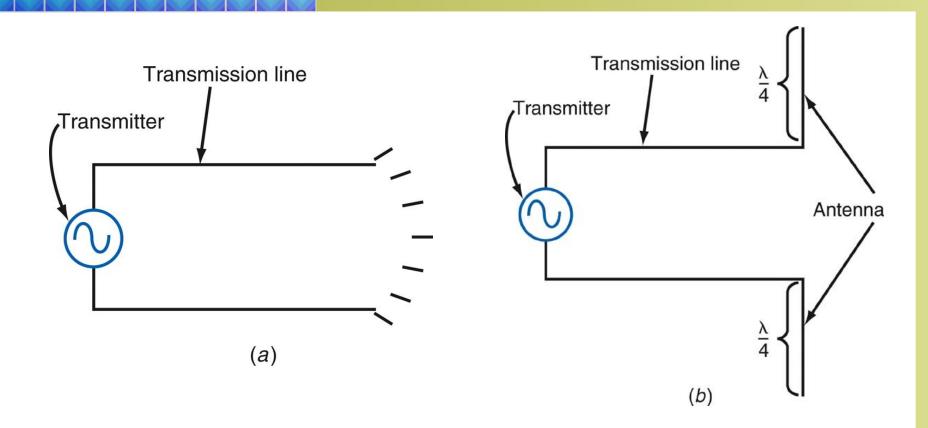


Figure 14-5: Converting a transmission line into an antenna. (*a*) An open transmission line radiates a little. (*b*) Bending the open transmission line at right angles creates an efficient radiation pattern.

© 2008 The McGraw-Hill Companies

15

Antenna Operation

- The ratio of the electric field strength of a radiated wave to the magnetic field strength is a constant and is called the impedance of space, or the wave impedance.
- The electric and magnetic fields produced by the antenna are at right angles to one another, and are both perpendicular to the direction of propagation of the wave.

Th

Antenna Operation

- Antennas produce two sets of fields, the near field and the far field.
 - The near field describes the region directly around the antenna where the electric and magnetic fields are distinct.
 - The far field is approximately 10 wavelengths from the antenna. It is the radio wave with the composite electric and magnetic fields.
- Polarization refers to the orientation of magnetic and electric fields with respect to the earth.

Antenna Reciprocity

- Antenna reciprocity means that the characteristics and performance of an antenna are the same whether the antenna is radiating or intercepting an electromagnetic signal.
- A transmitting antenna takes a voltage from the transmitter and converts it into an electromagnetic signal.
- A receiving antenna has a voltage induced into it by the electromagnetic signal that passes across it.

TX

The Basic Antenna

- An antenna can be a length of wire, a metal rod, or a piece of tubing.
- Antennas radiate most effectively when their length is directly related to the wavelength of the transmitted signal.
- Most antennas have a length that is some fraction of a wavelength.
- One-half and one-quarter wavelengths are most common.