
1

3.1 Computer Components

3.2 Computer Function
Instruction Fetch and Execute
Interrupts
I/O Function

Computer Architecture
Lecture 5

Lecture Outlines

3.1 Computer Components

Virtually all contemporary computer designs are based on concepts developed by
John von Neumann at the Institute for Advanced Studies, Princeton. Such a design
is referred to as the von Neumann architecture and is based on three key concepts:

■ Data and instructions are stored in a single read–write memory.
■ The contents of this memory are addressable by location, without regard to

the type of dat a contained there.

■ Execution occurs in a sequential fashion (unless explicitly modified) from one
instruction to the next.

There is a small set of basic logic components that can be com-bined in
various ways to store binary data and perform arithmetic and logical
operations on that data. If there is a particular computation to be performed, a con-
figuration of logic components designed specifically for that computation could be
constructed. We can think of the process of connecting the various components in
the desired configuration as a form of programming. The resulting “program” is in
the form of hardware and is termed a hardwired program.

Now consider this alternative. Suppose we construct a general-purpose con-
figuration of arithmetic and logic functions. This set of hardware will perform vari-
ous functions on data depending on control signals applied to the hardware. In the
original case of customized hardware, the system accepts data and produces results
(Figure 3.1a). With general-purpose hardware, the system accepts data and control
signals and produces results. Thus, instead of rewiring the hardware for each new
program, the programmer merely needs to supply a new set of control signals.

2

How shall control signals be supplied? The answer is simple but subtle. The
entire program is actually a sequence of steps. At each step, some arithmetic or
logical operation is performed on some data. For each step, a new set of control sig-
nals is needed. Let us provide a unique code for each possible set of control signals,

Sequence of
arithmetic
and logic
functions

Data Results

(a) Programming in hardware

Data Results

Instruction
codes

General-purpose
arithmetic
and logic
functions

Control
signals

(b) Programming in software

Instruction
interpreter

Figure 3.1 Hardware and Software Approaches

and let us add to the general-purpose hardware a segment that can accept a code
and generate control signals (Figure 3.1b).

Programming is now much easier. Instead of rewiring the hardware for each
new program, all we need to do is provide a new sequence of codes. Each code is, in
effect, an instruction, and part of the hardware interprets each instruction and gen-
erates control signals. To distinguish this new method of programming, a sequence
of codes or instructions is called software.

Figure 3.1b indicates two major components of the system: an instruction
interpreter and a module of general-purpose arithmetic and logic functions. These
two constitute the CPU. Several other components are needed to yield a function-
ing computer. Data and instructions must be put into the system. For this we need
some sort of input module. This module contains basic components for accepting
data and instructions in some form and converting them into an internal form
of signals usable by the system. A means of reporting results is needed, and this
is in the form of an output module. Taken together, these are referred to as I/O
components.

3

One more component is needed. An input device will bring instructions and
data in sequentially. But a program is not invariably executed sequentially; it may
jump around (e.g., the IAS jump instruction). Similarly, operations on data may
require access to more than just one element at a time in a predetermined sequence.
Thus, there must be a place to temporarily store both instructions and data. That
module is called memory, or main memory, to distinguish it from external storage or
peripheral devices. Von Neumann pointed out that the same memory could be used
to store both instructions and data.

Figure 3.2 illustrates these top-level components and suggests the interac-
tions among them. The CPU exchanges data with memory. For this purpose, it typ-
ically makes use of two internal (to the CPU) registers: a memory address register
(MAR), which specifies the address in memory for the next read or write, and a
memory buffer register (MBR), which contains the data to be written into memory
or receives the data read from memory. Similarly, an I/O address register (I/OAR)
specifies a particular I/O device. An I/O buffer register (I/OBR) is used for the
exchange of data between an I/O module and the CPU.

A memory module consists of a set of locations, defined by sequentially num-
bered addresses. Each location contains a binary number that can be interpreted as
either an instruction or data. An I/O module transfers data from external devices to
CPU and memory, and vice versa. It contains internal buffers for temporarily hold-
ing these data until they can be sent on.

Having looked briefly at these major components, we now turn to an overview
of how these components function together to execute programs.

3.2 Computer FunCtion

The basic function performed by a computer is execution of a program, which con-
sists of a set of instructions stored in memory. The processor does the actual work by
executing instructions specified in the program. This section provides an overview of

the key elements of program execution. In its simplest form, instruction processing
consists of two steps: The processor reads (fetches) instructions from memory one
at a time and executes each instruction. Program execution consists of repeating
the process of instruction fetch and instruction execution. The instruction execution
may involve several operations and depends on the nature of the instruction (see, for
example, the lower portion of Figure 2.4).

The processing required for a single instruction is called an instruction cycle.
Using the simplified two-step description given previously, the instruction cycle is
depicted in Figure 3.3. The two steps are referred to as the fetch cycle and the execute
cycle. Program execution halts only if the machine is turned off, some sort of unrecov-
erable error occurs, or a program instruction that halts the computer is encountered.

4

Instruction Fetch and Execute

At the beginning of each instruction cycle, the processor fetches an instruction from
memory. In a typical processor, a register called the program counter (PC) holds the
address of the instruction to be fetched next. Unless told otherwise, the processor

PC MAR

IR MBR

I/O AR

I/O BR

CPU Main memory

System
bus

I/O Module

Buffers

Instruction

0
1
2

n – 2
n – 1

Data

Data

Data

Data

Instruction

Instruction

PC = Program counter
IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
I/O AR = Input/output address register
I/O BR = Input/output buffer register

Execution
unit

Figure 3.2 Computer Components: Top-Level View

START HALTFetch next
instruction

Fetch cycle Execute cycle

Execute
instruction

Figure 3.3 Basic Instruction Cycle

always increments the PC after each instruction fetch so that it will fetch the next
instruction in sequence (i.e., the instruction located at the next higher memory
address). So, for example, consider a computer in which each instruction occupies
one 16-bit word of memory. Assume that the program counter is set to memory loca-
tion 300, where the location address refers to a 16-bit word. The processor will next
fetch the instruction at location 300. On succeeding instruction cycles, it will fetch
instructions from locations 301, 302, 303, and so on. This sequence may be altered, as
explained presently.

The fetched instruction is loaded into a register in the processor known as
the instruction register (IR). The instruction contains bits that specify the action
the processor is to take. The processor interprets the instruction and performs the
required action. In general, these actions fall into four categories:

■ Processor-memory: Data may be transferred from processor to memory or
from memory to processor.

■ Processor-I/O: Data may be transferred to or from a peripheral device by
transferring between the processor and an I/O module.

■ Data processing: The processor may perform some arithmetic or logic oper-
ation on data.

■ Control: An instruction may specify that the sequence of execution be altered.
For example, the processor may fetch an instruction from location 149, which
specifies that the next instruction be from location 182. The processor will
remember this fact by setting the program counter to 182. Thus, on the next
fetch cycle, the instruction will be fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.
Consider a simple example using a hypothetical machine that includes the

characteristics listed in Figure 3.4. The processor contains a single data register,
called an accumulator (AC). Both instructions and data are 16 bits long. Thus, it is
convenient to organize memory using 16-bit words. The instruction format provides
4 bits for the opcode, so that there can be as many as 24 = 16 different opcodes, and
up to 212 = 4096 (4K) words of memory can be directly addressed.

Figure 3.5 illustrates a partial program execution, showing the relevant por-
tions of memory and processor registers.1 The program fragment shown adds the
contents of the memory word at address 940 to the contents of the memory word at
address 941 and stores the result in the latter location. Three instructions, which can

be described as three fetch and three execute cycles, are required:

1. The PC contains 300, the address of the first instruction. This instruction (the
value 1940 in hexadecimal) is loaded into the instruction register IR, and
the PC is incremented. Note that this process involves the use of a memory
address register and a memory buffer register. For simplicity, these intermedi-
ate registers are ignored.

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be
loaded. The remaining 12 bits (three hexadecimal digits) specify the address
(940) from which data are to be loaded.

5

6

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(a) Instruction format

Opcode Address

(b) Integer format

(c) Internal CPU registers

Magnitude

0 1543

10 15

(d) Partial list of opcodes

Figure 3.4 Characteristics of a Hypothetical Machine

2

PC300

CPU registersMemory

3 0 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

Step 1

•
•

•
•

•
•

•
•

•
•

•
•

PC300

CPU registersMemory

3 0 11 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

0 0 0 3

Step 2

PC300

CPU registersMemory

3 0 1
0 0 0 5

0 0 0 5

0 0 0 3

0 0 0 5

1 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 3

PC300

CPU registersMemory

3 0 21 9 4 0
301 5 9 4 1
302 2 9 4 1

1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 4

PC300

CPU registersMemory
3 01 9 4 0

301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR2 9 4 1

Step 5

PC300

CPU registersMemory
3 0 31 9 4 0

301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 5

AC
IR2 9 4 1

Step 6

3 + 2 = 5

Figure 3.5 Example of Program Execution (contents of memory
and registers in hexadecimal)

3. The next instruction (5941) is fetched from location 301, and the PC is
incremented.

4. The old contents of the AC and the contents of location 941 are added, and
the result is stored in the AC.

5. The next instruction (2941) is fetched from location 302, and the PC is
incremented.

6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch cycle and an
execute cycle, are needed to add the contents of location 940 to the contents of 941.
With a more complex set of instructions, fewer cycles would be needed. Some older
processors, for example, included instructions that contain more than one memory
address. Thus, the execution cycle for a particular instruction on such processors
could involve more than one reference to memory. Also, instead of memory refer-
ences, an instruction may specify an I/O operation.

For example, the PDP-11 processor includes an instruction, expressed symboli-
cally as ADD B,A, that stores the sum of the contents of memory locations B and A
into memory location A. A single instruction cycle with the following steps occurs:

■ Fetch the ADD instruction.
■ Read the contents of memory location A into the processor.
■ Read the contents of memory location B into the processor. In order that the

contents of A are not lost, the processor must have at least two registers for
storing memory values, rather than a single accumulator.

■ Add the two values.
■ Write the result from the processor to memory location A.

Thus, the execution cycle for a particular instruction may involve more than one
reference to memory. Also, instead of memory references, an instruction may specify
an I/O operation. With these additional considerations in mind, Figure 3.6 provides a
more detailed look at the basic instruction cycle of Figure 3.3. The figure is in the form
of a state diagram. For any given instruction cycle, some states may be null and others
may be visited more than once. The states can be described as follows:

■ Instruction address calculation (iac): Determine the address of the next
instruction to be executed. Usually, this involves adding a fixed number to

the address of the previous instruction. For example, if each instruction is 16
bits long and memory is organized into 16-bit words, then add 1 to the previ-
ous address. If, instead, memory is organized as individually addressable 8-bit
bytes, then add 2 to the previous address.

■ Instruction fetch (if): Read instruction from its memory location into the
processor.

■ Instruction operation decoding (iod): Analyze instruction to determine type
of operation to be performed and operand(s) to be used.

7

8

■ Operand address calculation (oac): If the operation involves reference to an
operand in memory or available via I/O, then determine the address of the
operand.

■ Operand fetch (of): Fetch the operand from memory or read it in from I/O.
■ Data operation (do): Perform the operation indicated in the instruction.
■ Operand store (os): Write the result into memory or out to I/O.

States in the upper part of Figure 3.6 involve an exchange between the pro-
cessor and either memory or an I/O module. States in the lower part of the diagram
involve only internal processor operations. The oac state appears twice, because
an instruction may involve a read, a write, or both. However, the action performed
during that state is fundamentally the same in both cases, and so only a single state
identifier is needed.

Also note that the diagram allows for multiple operands and multiple results,
because some instructions on some machines require this. For example, the PDP-11
instruction ADD A,B results in the following sequence of states: iac, if, iod, oac, of,
oac, of, do, oac, os.

Finally, on some machines, a single instruction can specify an operation to be per-
formed on a vector (one-dimensional array) of numbers or a string (one-dimensional

Instruction
address

calculation

Instruction
operation
decoding

Operand
address

calculation

Data
operation

Operand
address

calculation

Instruction
fetch

Instruction complete,

Multiple
operands

Return for string
or vector data

Operand
fetch

Operand
store

Multiple
results

fetch next instruction

Figure 3.6 Instruction Cycle State Diagram

array) of characters. As Figure 3.6 indicates, this would involve repetitive operand
fetch and/or store operations.

9

Interrupts

Virtually all computers provide a mechanism by which other modules (I/O, memory)
may interrupt the normal processing of the processor. Table 3.1 lists the most com-
mon classes of interrupts. The specific nature of these interrupts is examined later in
this book, especially in Chapters 7 and 14. However, we need to introduce the concept
now to understand more clearly the nature of the instruction cycle and the impli-
cations of interrupts on the interconnection structure. The reader need not be con-
cerned at this stage about the details of the generation and processing of interrupts,
but only focus on the communication between modules that results from interrupts.

Interrupts are provided primarily as a way to improve processing efficiency.
For example, most external devices are much slower than the processor. Suppose
that the processor is transferring data to a printer using the instruction cycle scheme
of Figure 3.3. After each write operation, the processor must pause and remain
idle until the printer catches up. The length of this pause may be on the order of
many hundreds or even thousands of instruction cycles that do not involve memory.
Clearly, this is a very wasteful use of the processor.

Figure 3.7a illustrates this state of affairs. The user program performs a ser-
ies of WRITE calls interleaved with processing. Code segments 1, 2, and 3 refer to
sequences of instructions that do not involve I/O. The WRITE calls are to an I/O
program that is a system utility and that will perform the actual I/O operation. The
I/O program consists of three sections:

■ A sequence of instructions, labeled 4 in the figure, to prepare for the actual I/
 operation. This may include copying the data to be output into a special buffer and
 preparing the parameters for a device command.O

■ The actual I/O command. Without the use of interrupts, once this command is
issued, the program must wait for the I/O device to perform the requested
function (or periodically poll the device). The program might wait by simply

repeatedly performing a test operation to determine if the I/O operation is done.
■ A sequence of instructions, labeled 5 in the figure, to complete the operation.

This may include setting a flag indicating the success or failure of the operation.

Table 3.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to exe-
cute an illegal machine instruction, or reference outside a user’s allowed
memory space.

Timer Generated by a timer within the processor. This allows the operating
system to perform certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an
operation, request service from the processor, or to signal a variety of
error conditions.

Hardware Failure Generated by a failure such as power failure or memory parity error.

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

END

1

2

3

2

3

4

5

(a) No interrupts

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1

2a

2b

3a

3b

4

5

(b) Interrupts; short I/O wait

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1 4

5

(c) Interrupts; long I/O wait

= interrupt occurs during course of execution of user program

Figure 3.7 Program Flow of Control without and with Interrupts

10

11

Because the I/O operation may take a relatively long time to complete, the I/O
program is hung up waiting for the operation to complete; hence, the user program
is stopped at the point of the WRITE call for some considerable period of time.

interrupts and the instruction cycle With interrupts, the processor can
be engaged in executing other instructions while an I/O operation is in progress.
Consider the flow of control in Figure 3.7b. As before, the user program reaches a
point at which it makes a system call in the form of a WRITE call. The I/O program
that is invoked in this case consists only of the preparation code and the actual I/O
command. After these few instructions have been executed, control returns to the
user program. Meanwhile, the external device is busy accepting data from computer
memory and printing it. This I/O operation is conducted concurrently with the
execution of instructions in the user program.

When the external device becomes ready to be serviced—that is, when it is
ready to accept more data from the processor—the I/O module for that external
device sends an interrupt request signal to the processor. The processor responds by
suspending operation of the current program, branching off to a program to service
that particular I/O device, known as an interrupt handler, and resuming the original
execution after the device is serviced. The points at which such interrupts occur are
indicated by an asterisk in Figure 3.7b.

Let us try to clarify what is happening in Figure 3.7. We have a user program
that contains two WRITE commands. There is a segment of code at the beginning,
then one WRITE command, then a second segment of code, then a second WRITE
command, then a third and final segment of code. The WRITE command invokes
the I/O program provided by the OS. Similarly, the I/O program consists of a seg-
ment of code, followed by an I/O command, followed by another segment of code.
The I/O command invokes a hardware I/O operation.

12

From the point of view of the user program, an interrupt is just that: an interrup-
tion of the normal sequence of execution. When the interrupt processing is completed,
execution resumes (Figure 3.8). Thus, the user program does not have to contain any
special code to accommodate interrupts; the processor and the operating system are
responsible for suspending the user program and then resuming it at the same point.

To accommodate interrupts, an interrupt cycle is added to the instruction
cycle, as shown in Figure 3.9. In the interrupt cycle, the processor checks to see if
any interrupts have occurred, indicated by the presence of an interrupt signal. If no
interrupts are pending, the processor proceeds to the fetch cycle and fetches the
next instruction of the current program. If an interrupt is pending, the processor
does the following:

■ It suspends execution of the current program being executed and saves its
 context. This means saving the address of the next instruction to be executed

1

2

i

i + 1

•
•
•

•
•
•

•
•
•

Interrupt
occurs here

User program Interrupt handler

M

Figure 3.8 Transfer of Control via Interrupts

Fetch cycle Execute cycle Interrupt cycle

Interrupts
disabled

Interrupts
enabled

START

HALT

Fetch next
instruction

Execute
instruction

Check for
interrupt;

process interrupt

Figure 3.9 Instruction Cycle with Interrupts

13

(current contents of the program counter) and any other data relevant to the
processor’s current activity.

■ It sets the program counter to the starting address of an interrupt handler routine.

The processor now proceeds to the fetch cycle and fetches the first instruction
in the interrupt handler program, which will service the interrupt. The interrupt
handler program is generally part of the operating system. Typically, this program
determines the nature of the interrupt and performs whatever actions are needed.
In the example we have been using, the handler determines which I/O module gen-
erated the interrupt and may branch to a program that will write more data out to
that I/O module. When the interrupt handler routine is completed, the processor
can resume execution of the user program at the point of interruption.

It is clear that there is some overhead involved in this process. Extra instruc-
tions must be executed (in the interrupt handler) to determine the nature of the inter-
rupt and to decide on the appropriate action. Nevertheless, because of the relatively
large amount of time that would be wasted by simply waiting on an I/O operation,
the processor can be employed much more efficiently with the use of interrupts.

To appreciate the gain in efficiency, consider Figure 3.10, which is a timing
diagram based on the flow of control in Figures 3.7a and 3.7b. In this figure, user
program code segments are shaded green, and I/O program code segments are

4

1

5 5

2

5

3

4

Time

I/O operation;
processor waits

I/O operation
concurrent with
processor executing

I/O operation
concurrent with
processor executing

I/O operation;
processor waits

4

2a

1

2b

4

3a

5

3b

(b) With interrupts

(a) Without interrupts

Figure 3.10 Program Timing: Short I/O Wait

14

shaded gray. Figure 3.10a shows the case in which interrupts are not used. The pro-
cessor must wait while an I/O operation is performed.

Figures 3.7b and 3.10b assume that the time required for the I/O operation is rela-
tively short: less than the time to complete the execution of instructions between write
operations in the user program. In this case, the segment of code labeled code segment 2
is interrupted. A portion of the code (2a) executes (while the I/O operation is performed)
and then the interrupt occurs (upon the completion of the I/O operation). After the inter-
rupt is serviced, execution resumes with the remainder of code segment 2 (2b).

The more typical case, especially for a slow device such as a printer, is that the
I/O operation will take much more time than executing a sequence of user instruc-
tions. Figure 3.7c indicates this state of affairs. In this case, the user program reaches
the second WRITE call before the I/O operation spawned by the first call is com-
plete. The result is that the user program is hung up at that point. When the preced-
ing I/O operation is completed, this new WRITE call may be processed, and a new
I/O operation may be started. Figure 3.11 shows the timing for this situation with

4

1

5

2

5

3

4

Time

4

2

1

5

4

(b) With interrupts

3

5

I/O operation;
processor waits

I/O operation;
processor waits

I/O operation
concurrent with
processor executing;
then processor
waits

I/O operation
concurrent with
processor executing;
then processor
waits

(a) Without interrupts

Figure 3.11 Program Timing: Long I/O Wait

15

and without the use of interrupts. We can see that there is still a gain in efficiency
because part of the time during which the I/O operation is under way overlaps with
the execution of user instructions.

Figure 3.12 shows a revised instruction cycle state diagram that includes inter-
rupt cycle processing.

multiple interrupts The discussion so far has focused only on the occurrence
of a single interrupt. Suppose, however, that multiple interrupts can occur. For
example, a program may be receiving data from a communications line and
printing results. The printer will generate an interrupt every time it completes
a print operation. The communication line controller will generate an interrupt
every time a unit of data arrives. The unit could either be a single character or a
block, depending on the nature of the communications discipline. In any case, it is
possible for a communications interrupt to occur while a printer interrupt is being
processed.

Two approaches can be taken to dealing with multiple interrupts. The first
is to disable interrupts while an interrupt is being processed. A disabled interrupt
simply means that the processor can and will ignore that interrupt request signal.
If an interrupt occurs during this time, it generally remains pending and will be
checked by the processor after the processor has enabled interrupts. Thus, when a
user program is executing and an interrupt occurs, interrupts are disabled immedi-
ately. After the interrupt handler routine completes, interrupts are enabled before
resuming the user program, and the processor checks to see if additional interrupts
have occurred. This approach is nice and simple, as interrupts are handled in strict
sequential order (Figure 3.13a).

The drawback to the preceding approach is that it does not take into account
relative priority or time-critical needs. For example, when input arrives from the
communications line, it may need to be absorbed rapidly to make room for more
input. If the first batch of input has not been processed before the second batch
arrives, data may be lost.

A second approach is to define priorities for interrupts and to allow an interrupt
of higher priority to cause a lower-priority interrupt handler to be itself interrupted
(Figure 3.13b). As an example of this second approach, consider a system with three
I/O devices: a printer, a disk, and a communications line, with increasing priori-
ties of 2, 4, and 5, respectively. Figure 3.14 illustrates a possible sequence. A user
program begins at t = 0. At t = 10, a printer interrupt occurs; user information is
placed on the system stack and execution continues at the printer interrupt service
routine (ISR). While this routine is still executing, at t = 15, a communications inter-
rupt occurs. Because the communications line has higher priority than the printer,
the interrupt is honored. The printer ISR is interrupted, its state is pushed onto the
stack, and execution continues at the communications ISR. While this routine is exe-
cuting, a disk interrupt occurs (t = 20). Because this interrupt is of lower priority, it
is simply held, and the communications ISR runs to completion.

When the communications ISR is complete (t = 25), the previous proces-
sor state is restored, which is the execution of the printer ISR. However, before
even a single instruction in that routine can be executed, the processor honors the
higher-priority disk interrupt and control transfers to the disk ISR. Only when that

No
interrupt

Interrupt
check

Interrupt
Instruction

address
calculation

Instruction
operation
decoding

Operand
address

calculation

Data
operation

Operand
address

calculation

Instruction
fetch

Instruction complete,
fetch next instruction

Multiple
operands

Return for string
or vector data

Operand
fetch

Operand
store

Multiple
results

Figure 3.12 Instruction Cycle State Diagram, with Interrupts

16

User program
Interrupt
handler X

Interrupt
handler Y

(a) Sequential interrupt processing

User program
Interrupt
handler X

Interrupt
handler Y

(b) Nested interrupt processing
Figure 3.13 Transfer of Control with Multiple Interrupts

17

18

routine is complete (t = 35) is the printer ISR resumed. When that routine com-
pletes (t = 40), control finally returns to the user program.

I/O Function

Thus far, we have discussed the operation of the computer as controlled by the pro-
cessor, and we have looked primarily at the interaction of processor and memory.
The discussion has only alluded to the role of the I/O component. This role is dis-
cussed in detail in Chapter 7, but a brief summary is in order here.

An I/O module (e.g., a disk controller) can exchange data directly with the
processor. Just as the processor can initiate a read or write with memory, desig-
nating the address of a specific location, the processor can also read data from or
write data to an I/O module. In this latter case, the processor identifies a specific
device that is controlled by a particular I/O module. Thus, an instruction sequence
similar in form to that of Figure 3.5 could occur, with I/O instructions rather than
 memory-referencing instructions.

In some cases, it is desirable to allow I/O exchanges to occur directly with
memory. In such a case, the processor grants to an I/O module the authority to read
from or write to memory, so that the I/O-memory transfer can occur without tying
up the processor. During such a transfer, the I/O module issues read or write com-
mands to memory, relieving the processor of responsibility for the exchange. This
operation is known as direct memory access (DMA) and is examined later.

User program

Printer
interrupt

service routine

Communication
interrupt

service routine

Disk
interrupt

service routine

t = 0

t =
 10

t = 40

t =
 15

t = 25

t = 25

t = 35

Figure 3.14 Example Time Sequence of Multiple Interrupts

