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1.4 the evOlutiOn OF the intel x86 architecture

Throughout this book, we rely on many concrete examples of computer design and 
implementation to illustrate concepts and to illuminate  trade-  offs. Numerous sys-
tems, both contemporary and historical, provide examples of important computer 
architecture design features. But the book relies principally on examples from two 
processor families: the Intel x86 and the ARM architectures. The current x86 offer-
ings represent the results of decades of design effort on complex instruction set com-
puters (CISCs). The x86 incorporates the sophisticated design principles once found 
only on mainframes and supercomputers and serves as an excellent example of CISC 
design. An alternative approach to processor design is the reduced instruction set 
computer (RISC). The ARM architecture is used in a wide variety of embedded sys-
tems and is one of the most powerful and  best-  designed  RISC-  based systems on the 
market. In this section and the next, we provide a brief overview of these two systems.

In terms of market share, Intel has ranked as the number one maker of micro-
processors for  non-  embedded systems for decades, a position it seems unlikely to 
yield. The evolution of its flagship microprocessor product serves as a good indica-
tor of the evolution of computer technology in general.

Table 1.3 shows that evolution. Interestingly, as microprocessors have grown 
faster and much more complex, Intel has actually picked up the pace. Intel used 
to develop microprocessors one after another, every four years. But Intel hopes 
to keep rivals at bay by trimming a year or two off this development time, and has 
done so with the most recent x86 generations.
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Table 1.3 Evolution of Intel Microprocessors

(a) 1970s Processors

4004 8008 8080 8086 8088

Introduced 1971 1972 1974 1978 1979

Clock speeds 108 kHz 108 kHz 2 MHz 5 MHz, 8 MHz, 10 MHz 5 MHz, 8 MHz

Bus width 4 bits 8 bits 8 bits 16 bits 8 bits

Number of transistors 2,300 3,500 6,000 29,000 29,000

Feature size (mm) 10 8 6 3 6

Addressable memory 640 bytes 16 KB 64 KB 1 MB 1 MB

(b) 1980s Processors

80286 386TM DX 386TM SX 486TM DX CPU

Introduced 1982 1985 1988 1989

Clock speeds 6–12.5 MHz 16–33 MHz 16–33 MHz 25–50 MHz

Bus width 16 bits 32 bits 16 bits 32 bits

Number of transistors 134,000 275,000 275,000 1.2 million

Feature size ( µm) 1.5 1 1 0.8–1

Addressable memory 16 MB 4 GB 16 MB 4 GB

Virtual memory 1 GB 64 TB 64 TB 64 TB

Cache — — — 8 kB

(c) 1990s Processors

486TM SX Pentium Pentium Pro Pentium II

Introduced 1991 1993 1995 1997

Clock speeds 16–33 MHz 60–166 MHz, 150–200 MHz 200–300 MHz

Bus width 32 bits 32 bits 64 bits 64 bits

Number of transistors 1.185 million 3.1 million 5.5 million 7.5 million

Feature size ( µm) 1 0.8 0.6 0.35

Addressable memory 4 GB 4 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 8 kB 8 kB 512 kB L1 and  
1 MB L2

512 kB L2

(d) Recent Processors

Pentium III Pentium 4 Core 2 Duo Core i7 EE 4960X

Introduced 1999 2000 2006 2013

Clock speeds 450–660 MHz 1.3–1.8 GHz 1.06–1.2 GHz 4 GHz

Bus width 64 bits 64 bits 64 bits 64 bits

Number of transistors 9.5 million 42 million 167 million 1.86 billion

Feature size (nm) 250 180 65 22

Addressable memory 64 GB 64 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 512 kB L2 256 kB L2 2 MB L2 1.5 MB L2/15 MB L3

Number of cores 1 1 2 6
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It is worthwhile to list some of the highlights of the evolution of the Intel prod-
uct line:

 ■ 8080: The world’s first  general-  purpose microprocessor. This was an 8-bit 
machine, with an 8-bit data path to memory. The 8080 was used in the first 
personal computer, the Altair.

 ■ 8086: A far more powerful, 16-bit machine. In addition to a wider data path 
and larger registers, the 8086 sported an instruction cache, or queue, that 
prefetches a few instructions before they are executed. A variant of this pro-
cessor, the 8088, was used in IBM’s first personal computer, securing the suc-
cess of Intel. The 8086 is the first appearance of the x86 architecture.

 ■ 80286: This extension of the 8086 enabled addressing a 16-MB memory instead 
of just 1 MB.

 ■ 80386: Intel’s first 32-bit machine, and a major overhaul of the product. With 
a 32-bit architecture, the 80386 rivaled the complexity and power of minicom-
puters and mainframes introduced just a few years earlier. This was the first 
Intel processor to support multitasking, meaning it could run multiple pro-
grams at the same time.

 ■ 80486: The 80486 introduced the use of much more sophisticated and power-
ful cache technology and sophisticated instruction pipelining. The 80486 also 
offered a  built-  in math coprocessor, offloading complex math operations from 
the main CPU.

 ■ Pentium: With the Pentium, Intel introduced the use of superscalar tech-
niques, which allow multiple instructions to execute in parallel.

 ■ Pentium Pro: The Pentium Pro continued the move into superscalar organiza-
tion begun with the Pentium, with aggressive use of register renaming, branch 
prediction, data flow analysis, and speculative execution.

 ■ Pentium II: The Pentium II incorporated Intel MMX technology, which is 
designed specifically to process video, audio, and graphics data efficiently.

 ■ Pentium III: The Pentium III incorporates additional  floating-  point instruc-
tions: The Streaming SIMD Extensions (SSE) instruction set extension added 
70 new instructions designed to increase performance when exactly the same 
operations are to be performed on multiple data objects. Typical applications 
are digital signal processing and graphics processing.

 ■ Pentium 4: The Pentium 4 includes additional  floating-  point and other 
enhancements for multimedia.

 ■ Core: This is the first Intel x86 microprocessor with a dual core, referring to 
the implementation of two cores on a single chip.

 ■ Core 2: The Core 2 extends the Core architecture to 64 bits. The Core 2 Quad 
provides four cores on a single chip. More recent Core offerings have up to 10 
cores per chip. An important addition to the architecture was the Advanced 
Vector Extensions instruction set that provided a set of 256-bit, and then 512-
bit, instructions for efficient processing of vector data.
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Almost 40 years after its introduction in 1978, the x86 architecture continues to 
dominate the processor market outside of embedded systems. Although the organiza-
tion and technology of the x86 machines have changed dramatically over the decades, 
the instruction set architecture has evolved to remain backward compatible with ear-
lier versions. Thus, any program written on an older version of the x86 architecture 
can execute on newer versions. All changes to the instruction set architecture have 
involved additions to the instruction set, with no subtractions. The rate of change has 
been the addition of roughly one instruction per month added to the architecture 
[ANTH08], so that there are now thousands of instructions in the instruction set.

The x86 provides an excellent illustration of the advances in computer hard-
ware over the past 35 years. The 1978 8086 was introduced with a clock speed of 
5 MHz and had 29,000 transistors. A  six-  core Core i7 EE 4960X introduced in 2013 
operates at 4 GHz, a speedup of a factor of 800, and has 1.86 billion transistors, 
about 64,000 times as many as the 8086. Yet the Core i7 EE 4960X is in only a 
slightly larger package than the 8086 and has a comparable cost.

1.5 emBedded SyStemS

The term embedded system refers to the use of electronics and software within a 
product, as opposed to a  general-  purpose computer, such as a laptop or desktop sys-
tem. Millions of computers are sold every year, including laptops, personal comput-
ers, workstations, servers, mainframes, and supercomputers. In contrast, billions of 
computer systems are produced each year that are embedded within larger devices. 
Today, many, perhaps most, devices that use electric power have an embedded com-
puting system. It is likely that in the near future virtually all such devices will have 
embedded computing systems.

Types of devices with embedded systems are almost too numerous to list. 
Examples include cell phones, digital cameras, video cameras, calculators, micro-
wave ovens, home security systems, washing machines, lighting systems, ther-
mostats, printers, various automotive systems (e.g., transmission control, cruise 
control, fuel injection,  anti-  lock brakes, and suspension systems), tennis rack-
ets, toothbrushes, and numerous types of sensors and actuators in automated 
systems.

Often, embedded systems are tightly coupled to their environment. This can 
give rise to  real-  time constraints imposed by the need to interact with the environ-
ment. Constraints, such as required speeds of motion, required precision of meas-
urement, and required time durations, dictate the timing of software operations. If 
multiple activities must be managed simultaneously, this imposes more complex 
 real-  time constraints.

Figure 1.14 shows in general terms an embedded system organization. In addi-
tion to the processor and memory, there are a number of elements that differ from 
the typical desktop or laptop computer:

 ■ There may be a variety of interfaces that enable the system to measure, manip-
ulate, and otherwise interact with the external environment. Embedded sys-
tems often interact (sense, manipulate, and communicate) with external world 
through sensors and actuators and hence are typically reactive systems; a 
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reactive system is in continual interaction with the environment and executes 
at a pace determined by that environment.

 ■ The human interface may be as simple as a flashing light or as complicated as 
 real-  time robotic vision. In many cases, there is no human interface.

 ■ The diagnostic port may be used for diagnosing the system that is being 
 controlled—  not just for diagnosing the computer.

 ■  Special-  purpose field programmable (FPGA),  application-  specific (ASIC), or 
even nondigital hardware may be used to increase performance or reliability.

 ■ Software often has a fixed function and is specific to the application.
 ■ Efficiency is of paramount importance for embedded systems. They are opti-

mized for energy, code size, execution time, weight and dimensions, and cost.

There are several noteworthy areas of similarity to  general-  purpose computer 
systems as well:

 ■ Even with nominally fixed function software, the ability to field upgrade to fix 
bugs, to improve security, and to add functionality, has become very important 
for embedded systems, and not just in consumer devices.

 ■ One comparatively recent development has been of embedded system plat-
forms that support a wide variety of apps. Good examples of this are smart-
phones and audio/visual devices, such as smart TVs.
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Figure 1.14 Possible Organization of an Embedded 
System
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Embedded Operating Systems

There are two general approaches to developing an embedded operating system 
(OS). The first approach is to take an existing OS and adapt it for the embedded 
application. For example, there are embedded versions of Linux, Windows, and 
Mac, as well as other commercial and proprietary operating systems specialized for 
embedded systems. The other approach is to design and implement an OS intended 
solely for embedded use. An example of the latter is TinyOS, widely used in wireless 
sensor networks. This topic is explored in depth in [STAL15].

Application Processors versus Dedicated Processors

In this subsection, and the next two, we briefly introduce some terms commonly 
found in the literature on embedded systems. Application processors are defined 

by the processor’s ability to execute complex operating systems, such as Linux, 
Android, and Chrome. Thus, the application processor is  general-  purpose in nature. 
A good example of the use of an embedded application processor is the smartphone. 
The embedded system is designed to support numerous apps and perform a wide 
variety of functions.

Most embedded systems employ a dedicated processor, which, as the name 
implies, is dedicated to one or a small number of specific tasks required by the host 
device. Because such an embedded system is dedicated to a specific task or tasks, 
the processor and associated components can be engineered to reduce size and cost.

Microprocessors versus Microcontrollers

As we have seen, early microprocessor chips included registers, an ALU, and some 
sort of control unit or instruction processing logic. As transistor density increased, it 
became possible to increase the complexity of the instruction set architecture, and 
ultimately to add memory and more than one processor. Contemporary micropro-
cessor chips, as shown in Figure 1.2, include multiple cores and a substantial amount 
of cache memory.

A microcontroller chip makes a substantially different use of the logic space 
available. Figure 1.15 shows in general terms the elements typically found on a 
microcontroller chip. As shown, a microcontroller is a single chip that contains the 
processor,  non-  volatile memory for the program (ROM), volatile memory for input 
and output (RAM), a clock, and an I/O control unit. The processor portion of the 
microcontroller has a much lower silicon area than other microprocessors and much 
higher energy efficiency. We examine microcontroller organization in more detail 
in Section 1.6.

Also called a “computer on a chip,” billions of microcontroller units are 
embedded each year in myriad products from toys to appliances to automobiles. For 
example, a single vehicle can use 70 or more microcontrollers. Typically, especially 
for the smaller, less expensive microcontrollers, they are used as dedicated proces-
sors for specific tasks. For example, microcontrollers are heavily utilized in automa-
tion processes. By providing simple reactions to input, they can control machinery, 
turn fans on and off, open and close valves, and so forth. They are integral parts of 
modern industrial technology and are among the most inexpensive ways to produce 
machinery that can handle extremely complex functionalities.
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Microcontrollers come in a range of physical sizes and processing power. Pro-
cessors range from 4-bit to 32-bit architectures. Microcontrollers tend to be much 
slower than microprocessors, typically operating in the MHz range rather than the 
GHz speeds of microprocessors. Another typical feature of a microcontroller is that 
it does not provide for human interaction. The microcontroller is programmed for a 
specific task, embedded in its device, and executes as and when required.

Embedded versus Deeply Embedded Systems

We have, in this section, defined the concept of an embedded system. A subset of 
embedded systems, and a quite numerous subset, is referred to as deeply embed-
ded systems. Although this term is widely used in the technical and commercial 
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Figure 1.15 Typical Microcontroller Chip Elements

literature, you will search the Internet in vain (or at least I did) for a straightfor-
ward definition. Generally, we can say that a deeply embedded system has a proces-
sor whose behavior is difficult to observe both by the programmer and the user.  
A deeply embedded system uses a microcontroller rather than a microprocessor, is 
not programmable once the program logic for the device has been burned into ROM 
( read-  only memory), and has no interaction with a user.

Deeply embedded systems are dedicated,  single-  purpose devices that detect 
something in the environment, perform a basic level of processing, and then do some-
thing with the results. Deeply embedded systems often have wireless capability and 
appear in networked configurations, such as networks of sensors deployed over a large 
area (e.g., factory, agricultural field). The Internet of things depends heavily on deeply 
embedded systems. Typically, deeply embedded systems have extreme resource con-
straints in terms of memory, processor size, time, and power consumption.
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1.6 arm architecture

The ARM architecture refers to a processor architecture that has evolved from 
RISC design principles and is used in embedded systems. Chapter  15 examines 
RISC design principles in detail. In this section, we give a brief overview of the 
ARM architecture.

ARM Evolution

ARM is a family of  RISC-  based microprocessors and microcontrollers designed by 
ARM Holdings, Cambridge, England. The company doesn’t make processors but 
instead designs microprocessor and multicore architectures and licenses them to man-
ufacturers. Specifically, ARM Holdings has two types of licensable products: proces-
sors and processor architectures. For processors, the customer buys the rights to use 
 ARM-  supplied design in their own chips. For a processor architecture, the customer 
buys the rights to design their own processor compliant with ARM’s architecture.

ARM chips are  high-  speed processors that are known for their small die size 
and low power requirements. They are widely used in smartphones and other hand-
held devices, including game systems, as well as a large variety of consumer prod-
ucts. ARM chips are the processors in Apple’s popular iPod and iPhone devices, 
and are used in virtually all Android smartphones as well. ARM is probably the 
most widely used embedded processor architecture and indeed the most widely 
used processor architecture of any kind in the world [VANC14].

The origins of ARM technology can be traced back to the  British-  based Acorn 
Computers company. In the early 1980s, Acorn was awarded a contract by the Brit-
ish Broadcasting Corporation (BBC) to develop a new microcomputer architecture 
for the BBC Computer Literacy Project. The success of this contract enabled Acorn 
to go on to develop the first commercial RISC processor, the Acorn RISC Machine 
(ARM). The first version, ARM1, became operational in 1985 and was used for 
internal research and development as well as being used as a coprocessor in the 
BBC machine.

In this early stage, Acorn used the company VLSI Technology to do the actual 
fabrication of the processor chips. VLSI was licensed to market the chip on its own 
and had some success in getting other companies to use the ARM in their products, 
particularly as an embedded processor.

The ARM design matched a growing commercial need for a  high-  performance, 
 low-  power-  consumption,  small-  size, and  low-  cost processor for embedded appli-
cations. But further development was beyond the scope of Acorn’s capabilities. 
Accordingly, a new company was organized, with Acorn, VLSI, and Apple Com-
puter as founding partners, known as ARM Ltd. The Acorn RISC Machine became 
Advanced RISC Machines.12

Instruction Set Architecture

The ARM instruction set is highly regular, designed for efficient implementation of 
the processor and efficient execution. All instructions are 32 bits long and follow a 
regular format. This makes the ARM ISA suitable for implementation over a wide 
range of products.

8



Augmenting the basic ARM ISA is the Thumb instruction set, which is a  re- 
 encoded subset of the ARM instruction set. Thumb is designed to increase the per-
formance of ARM implementations that use a 16-bit or narrower memory data bus, 

and to allow better code density than provided by the ARM instruction set. The 
Thumb instruction set contains a subset of the ARM 32-bit instruction set recoded 
into 16-bit instructions. The current defined version is  Thumb-  2.

The ARM and  Thumb-  2 ISAs are discussed in Chapters 12 and 13.

ARM Products

ARM Holdings licenses a number of specialized microprocessors and related tech-
nologies, but the bulk of their product line is the Cortex family of microprocessor 
architectures. There are three Cortex architectures, conveniently labeled with the 
initials A, R, and M.

 cortex-  a/ cortex-  a50 The  Cortex-  A and  Cortex-  A50 are application 
processors, intended for mobile devices such as smartphones and eBook readers, 
as well as consumer devices such as digital TV and home gateways (e.g., DSL and 
cable Internet modems). These processors run at higher clock frequency (over  
1 GHz), and support a memory management unit (MMU), which is required for full 
feature OSs such as Linux, Android, MS Windows, and mobile OSs. An MMU is 
a hardware module that supports virtual memory and paging by translating virtual 
addresses into physical addresses; this topic is explored in Chapter 8.

The two architectures use both the ARM and  Thumb-  2 instruction sets; the 
principal difference is that the  Cortex-  A is a 32-bit machine, and the  Cortex-  A50 is 
a 64-bit machine.

 cortex-  r The  Cortex-  R is designed to support  real-  time applications, in which 
the timing of events needs to be controlled with rapid response to events. They can 
run at a fairly high clock frequency (e.g., 200MHz to 800MHz) and have very low 
response latency. The  Cortex-  R includes enhancements both to the instruction set 
and to the processor organization to support deeply embedded  real-  time devices. 
Most of these processors do not have MMU; the limited data requirements and 
the limited number of simultaneous processes eliminates the need for elaborate 
hardware and software support for virtual memory. The  Cortex-  R does have a 
Memory Protection Unit (MPU), cache, and other memory features designed for 
industrial applications. An MPU is a hardware module that prohibits one program 
in memory from accidentally accessing memory assigned to another active program. 
Using various methods, a protective boundary is created around the program, and 
instructions within the program are prohibited from referencing data outside of that 
boundary.

Examples of embedded systems that would use the  Cortex-  R are automotive 
braking systems, mass storage controllers, and networking and printing devices.
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 cortex-  m  Cortex-  M series processors have been developed primarily for the 
microcontroller domain where the need for fast, highly deterministic interrupt 
management is coupled with the desire for extremely low gate count and 
lowest possible power consumption. As with the  Cortex-  R series, the  Cortex-  M 
architecture has an MPU but no MMU. The  Cortex-  M uses only the  Thumb-  2 
instruction set. The market for the  Cortex-  M includes IoT devices, wireless 
sensor/actuator networks used in factories and other enterprises, automotive 
body electronics, and so on.

There are currently four versions of the  Cortex-  M series:

■  Cortex-  M0: Designed for 8- and 16-bit applications, this model emphasizes low
cost, ultra low power, and simplicity. It is optimized for small silicon die size
(starting from 12k gates) and use in the lowest cost chips.

■  Cortex-  M0+: An enhanced version of the M0 that is more energy efficient.
■  Cortex-  M3: Designed for 16- and 32-bit applications, this model emphasizes

performance and energy efficiency. It also has comprehensive debug and trace
features to enable software developers to develop their applications quickly.

■  Cortex-  M4: This model provides all the features of the  Cortex-  M3, with addi-
tional instructions to support digital signal processing tasks.
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