Example 13-4

A 2N5459 has $V_{GS(off)} = -8$ V and $I_{DSS} = 16$ mA. What is the drain current at the half cutoff point?

SOLUTION The drain current is one quarter of the maximum, or:

 $I_D = 4 \text{ mA}$

The gate-source voltage that produces this current is -4 V, half of the cutoff voltage.

PRACTICE PROBLEM 13-4 Repeat Example 13-4 using a JFET with $V_{GS(off)} = -6$ V and $I_{DSS} = 12$ mA.

13-4 Biasing in the Ohmic Region

The JFET can be biased in the ohmic or in the active region. When biased in the ohmic region, the JFET is equivalent to a resistance. When biased in the active region, the JFET is equivalent to a current source. In this section, we discuss gate bias, the method used to bias a JFET in the ohmic region.

Gate Bias

Figure 13-7*a* shows gate bias. A negative gate voltage of $-V_{GG}$ is applied to the gate through biasing resistor R_G . This sets up a drain current that is less than I_{DSS} . When the drain current flows through R_D , it sets up a drain voltage of:

 $V_D = V_{DD} - I_D R_D$

(13-4)

Gate bias is the worst way to bias a JFET in the active region because the Q point is too unstable.

For example, a 2N5459 has the following spreads between minimum and maximum: J_{DSS} varies from 4 to 16 mA, and $V_{GS(off)}$ varies from -2 to -8 V. Figure 13-7b shows the minimum and maximum transconductance curves. If a gate bias of -1 V is used with this JFET, we get the minimum and maximum Q points shown. Q_1 has a drain current of 12.3 mA, and Q_2 has a drain current of only 1 mA.

Hard Saturation

Although not suitable for active-region biasing, gate bias is perfect for ohmicregion biasing because stability of the Q point does not matter. Figure 13-7c shows how to bias a JFET in the ohmic region. The upper end of the dc load line has a drain saturation current of:

$$I_{D(\text{sat})} = \frac{V_{DD}}{R_D}$$

To ensure that a JFET is biased in the ohmic region, all we need to do is use $V_{GS} = 0$ and:

 $I_{D(sat)} \ll I_{DSS}$

Figure 13–7 (*a*) Gate bias; (*b*) *Q* point unstable in active region; (*c*) biased in ohmic region; (*d*) JFET is equivalent to resistance.

The symbol \ll means "much less than." This equation says that the drain saturation current must be much less than the maximum drain current. For instance, if a JFET has $I_{DSS} = 10$ mA, hard saturation will occur if $V_{GS} = 0$ and $I_{D(sat)} = 1$ mA.

When a JFET is biased in the ohmic region, we can replace it by a resistance of R_{DS} , as shown in Fig. 13-7d. With this equivalent circuit, we can calculate the drain voltage. When R_{DS} is much smaller than R_D , the drain voltage is close to zero.

Example 13-5

What is the drain voltage in Fig. 13-8a?

SOLUTION Since $V_P = 4 \text{ V}$, $V_{GS(off)} = -4 \text{ V}$. Before point A in time, the input voltage is -10 V and the JFET is cut off. In this case, the drain voltage is:

$$V_D = 10 V$$

Between points A and B, the input voltage is 0 V. The upper end of the dc load line has a saturation current of:

$$I_{D(\text{sat})} = \frac{10 \text{ V}}{10 \text{ k}\Omega} = 1 \text{ mA}$$

Figure 13-8b shows the dc load line. Since $I_{D(sat)}$ is much less than I_{DSS} , the JFET is in hard saturation.

The ohmic resistance is:

$$R_{DS} = \frac{4 \text{ V}}{10 \text{ mA}} = 400 \Omega$$

In the equivalent circuit of Fig. 13-8c, the drain voltage is:

$$V_D = \frac{400 \ \Omega}{10 \ \text{k}\Omega + 400 \ \Omega} \ 10 \ \text{V} = 0.385 \ \text{V}$$

PRACTICE PROBLEM 13-5 Using Fig. 13-8*a*, find R_{DS} and V_D if $V_p = 3$ V.